frostfs-s3-gw/cmd/crypto/key.go

176 lines
5.9 KiB
Go
Raw Normal View History

// MinIO Cloud Storage, (C) 2015, 2016, 2017, 2018 MinIO, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package crypto
import (
"bytes"
"context"
"crypto/hmac"
"crypto/rand"
"encoding/binary"
"errors"
"io"
"path"
"github.com/minio/minio/cmd/logger"
sha256 "github.com/minio/sha256-simd"
"github.com/minio/sio"
)
// ObjectKey is a 256 bit secret key used to encrypt the object.
// It must never be stored in plaintext.
type ObjectKey [32]byte
// GenerateKey generates a unique ObjectKey from a 256 bit external key
// and a source of randomness. If random is nil the default PRNG of the
// system (crypto/rand) is used.
func GenerateKey(extKey [32]byte, random io.Reader) (key ObjectKey) {
if random == nil {
random = rand.Reader
}
var nonce [32]byte
if _, err := io.ReadFull(random, nonce[:]); err != nil {
logger.CriticalIf(context.Background(), errOutOfEntropy)
}
sha := sha256.New()
sha.Write(extKey[:])
sha.Write(nonce[:])
sha.Sum(key[:0])
return key
}
// GenerateIV generates a new random 256 bit IV from the provided source
// of randomness. If random is nil the default PRNG of the system
// (crypto/rand) is used.
func GenerateIV(random io.Reader) (iv [32]byte) {
if random == nil {
random = rand.Reader
}
if _, err := io.ReadFull(random, iv[:]); err != nil {
logger.CriticalIf(context.Background(), errOutOfEntropy)
}
return iv
}
// SealedKey represents a sealed object key. It can be stored
// at an untrusted location.
type SealedKey struct {
Key [64]byte // The encrypted and authenticted object-key.
IV [32]byte // The random IV used to encrypt the object-key.
Algorithm string // The sealing algorithm used to encrypt the object key.
}
// Seal encrypts the ObjectKey using the 256 bit external key and IV. The sealed
// key is also cryptographically bound to the object's path (bucket/object) and the
// domain (SSE-C or SSE-S3).
func (key ObjectKey) Seal(extKey, iv [32]byte, domain, bucket, object string) SealedKey {
var (
sealingKey [32]byte
encryptedKey bytes.Buffer
)
mac := hmac.New(sha256.New, extKey[:])
mac.Write(iv[:])
mac.Write([]byte(domain))
mac.Write([]byte(SealAlgorithm))
mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object'
mac.Sum(sealingKey[:0])
if n, err := sio.Encrypt(&encryptedKey, bytes.NewReader(key[:]), sio.Config{Key: sealingKey[:]}); n != 64 || err != nil {
logger.CriticalIf(context.Background(), errors.New("Unable to generate sealed key"))
}
sealedKey := SealedKey{
IV: iv,
Algorithm: SealAlgorithm,
}
copy(sealedKey.Key[:], encryptedKey.Bytes())
return sealedKey
}
// Unseal decrypts a sealed key using the 256 bit external key. Since the sealed key
// may be cryptographically bound to the object's path the same bucket/object as during sealing
// must be provided. On success the ObjectKey contains the decrypted sealed key.
func (key *ObjectKey) Unseal(extKey [32]byte, sealedKey SealedKey, domain, bucket, object string) error {
var (
unsealConfig sio.Config
decryptedKey bytes.Buffer
)
switch sealedKey.Algorithm {
default:
return Errorf("The sealing algorithm '%s' is not supported", sealedKey.Algorithm)
case SealAlgorithm:
mac := hmac.New(sha256.New, extKey[:])
mac.Write(sealedKey.IV[:])
mac.Write([]byte(domain))
mac.Write([]byte(SealAlgorithm))
mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object'
unsealConfig = sio.Config{MinVersion: sio.Version20, Key: mac.Sum(nil)}
case InsecureSealAlgorithm:
sha := sha256.New()
sha.Write(extKey[:])
sha.Write(sealedKey.IV[:])
unsealConfig = sio.Config{MinVersion: sio.Version10, Key: sha.Sum(nil)}
}
if n, err := sio.Decrypt(&decryptedKey, bytes.NewReader(sealedKey.Key[:]), unsealConfig); n != 32 || err != nil {
return ErrSecretKeyMismatch
}
copy(key[:], decryptedKey.Bytes())
return nil
}
// DerivePartKey derives an unique 256 bit key from an ObjectKey and the part index.
func (key ObjectKey) DerivePartKey(id uint32) (partKey [32]byte) {
var bin [4]byte
binary.LittleEndian.PutUint32(bin[:], id)
mac := hmac.New(sha256.New, key[:])
mac.Write(bin[:])
mac.Sum(partKey[:0])
return partKey
}
// SealETag seals the etag using the object key.
// It does not encrypt empty ETags because such ETags indicate
// that the S3 client hasn't sent an ETag = MD5(object) and
// the backend can pick an ETag value.
func (key ObjectKey) SealETag(etag []byte) []byte {
if len(etag) == 0 { // don't encrypt empty ETag - only if client sent ETag = MD5(object)
return etag
}
var buffer bytes.Buffer
mac := hmac.New(sha256.New, key[:])
mac.Write([]byte("SSE-etag"))
if _, err := sio.Encrypt(&buffer, bytes.NewReader(etag), sio.Config{Key: mac.Sum(nil)}); err != nil {
logger.CriticalIf(context.Background(), errors.New("Unable to encrypt ETag using object key"))
}
return buffer.Bytes()
}
// UnsealETag unseals the etag using the provided object key.
// It does not try to decrypt the ETag if len(etag) == 16
// because such ETags indicate that the S3 client hasn't sent
// an ETag = MD5(object) and the backend has picked an ETag value.
func (key ObjectKey) UnsealETag(etag []byte) ([]byte, error) {
if !IsETagSealed(etag) {
return etag, nil
}
var buffer bytes.Buffer
mac := hmac.New(sha256.New, key[:])
mac.Write([]byte("SSE-etag"))
if _, err := sio.Decrypt(&buffer, bytes.NewReader(etag), sio.Config{Key: mac.Sum(nil)}); err != nil {
return nil, err
}
return buffer.Bytes(), nil
}