restic/doc/Design.md

318 lines
14 KiB
Markdown
Raw Normal View History

2015-01-02 17:43:59 +00:00
This document gives a high-level overview of the design and repository layout of the restic backup program.
2015-01-02 21:45:02 +00:00
Repository Format
=================
2015-01-02 17:43:59 +00:00
2015-01-03 14:24:47 +00:00
All data is stored in a restic repository. A repository is able to store chunks
of data called blobs of several different types, which can later be requested
2015-01-03 16:03:57 +00:00
based on an ID. The ID is the hash (SHA-256) of the content of a blob. All
blobs in a repository are only written once and never modified afterwards. This
allows accessing and even writing to the repository with multiple clients in
parallel. Only the delete operation changes data in the repository.
2015-01-03 14:24:47 +00:00
At the time of writing, the only implemented repository type is based on
directories and files. Such repositories can be accessed locally on the same
system or via the integrated SFTP client. The directory layout is the same for
both access methods. This repository type is described in the following.
Repositories consists of several directories and a file called `version`. This
file contains the version number of the repository. At the moment, this file
is expected to hold the string `1`, with an optional newline character.
For all other blobs stored in the repository, the name for the file is the
lower case hexadecimal representation of the SHA-256 hash of the file's
contents. This allows easily checking all files for accidental modifications
like disk read errors by simply running the program `sha256sum` and comparing
its output to the file name. If the prefix of a filename is unique amongst all
the other files in the same directory, the prefix may be used instead of the
complete filename.
Apart from the `version` file and the files stored below the `keys` directory,
all files are encrypted with AES-256 in counter mode (CTR). The integrity of
the encrypted data is secured by an HMAC-SHA-256 signature.
In the first 16 bytes of each encrypted file the initialisation vector (IV) is
stored. It is followed by the encrypted data and completed by the 32 byte HMAC
signature. The format is: `IV || CIPHERTEXT || HMAC`. The complete encryption
overhead is 48 byte. For each file, a new random IV is selected.
2015-01-02 17:43:59 +00:00
The basic layout of a sample restic repository is shown below:
/tmp/restic-repo
├── data
│ ├── 59
│ │ └── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
│ ├── 73
│ │ └── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
│ [...]
├── keys
│ └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
├── locks
├── maps
│ └── 3c0721e5c3f5d2d78a12664b568a1bc992d17b993d41079599f8437ed66192fe
├── snapshots
│ └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec
├── tmp
├── trees
│ ├── 21
│ │ └── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
│ ├── 32
│ │ └── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
│ ├── 95
│ │ └── 95f75feb05a7cc73e328b2efa668b1ea68f65fece55a93bc65aff6cd0bcfeefc
│ └── e0
│ └── e01150928f7ad24befd6ec15b087de1b9e0f92edabd8e5cabb3317f8b20ad044
└── version
2015-01-02 21:45:02 +00:00
A repository can be initialized with the `restic init` command, e.g.:
$ restic init -r /tmp/restic-repo
Keys and Encryption
-------------------
2015-01-03 14:24:47 +00:00
The directory `keys` contains key files. These are simple JSON documents which
contain all data that is needed to derive the repository's master signing and
encryption keys from a user's password. The JSON document from the repository
can be pretty-printed for example by using the Python module `json` (shortened
to increase readability):
2015-01-02 17:43:59 +00:00
$ python -mjson.tool /tmp/restic-repo/keys/b02de82*
{
"hostname": "kasimir",
"username": "fd0"
"kdf": "scrypt",
"N": 65536,
"r": 8,
"p": 1,
"created": "2015-01-02T18:10:13.48307196+01:00",
"data": "tGwYeKoM0C4j4/9DFrVEmMGAldvEn/+iKC3te/QE/6ox/V4qz58FUOgMa0Bb1cIJ6asrypCx/Ti/pRXCPHLDkIJbNYd2ybC+fLhFIJVLCvkMS+trdywsUkglUbTbi+7+Ldsul5jpAj9vTZ25ajDc+4FKtWEcCWL5ICAOoTAxnPgT+Lh8ByGQBH6KbdWabqamLzTRWxePFoYuxa7yXgmj9A==",
"salt": "uW4fEI1+IOzj7ED9mVor+yTSJFd68DGlGOeLgJELYsTU5ikhG/83/+jGd4KKAaQdSrsfzrdOhAMftTSih5Ux6w==",
}
2015-01-03 14:24:47 +00:00
When the repository is opened by restic, the user is prompted for the
repository password. This is then used with `scrypt`, a key derivation function
(KDF), and the supplied parameters (`N`, `r`, `p` and `salt`) to derive 64 key
bytes. The first 32 bytes are used as the encryption key (for AES-256) and the
last 32 bytes are used as the signing key (for HMAC-SHA-256).
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
This signing key is used to compute an HMAC over the bytes contained in the
JSON field `data` (after removing the Base64 encoding and not including the
last 32 byte). If the password is incorrect or the key file has been tampered
with, the computed HMAC will not match the last 32 bytes of the data, and
restic exits with an error. Otherwise, the data is decrypted with the
encryption key derived from `scrypt`. This yields a JSON document which
contains the master signing and encryption keys for this repository.
2015-01-02 21:45:02 +00:00
A repository can have several different passwords, with a key file for each.
This way, the password can be changed without having to re-encrypt all data.
Snapshots
---------
2015-01-02 17:43:59 +00:00
2015-01-03 14:24:47 +00:00
A snapshots represents a directory with all files and sub-directories at a
given point in time. For each backup that is made, a new snapshot is created. A
snapshot is a zlib-compressed JSON document that is stored in an encrypted file
below the directory `snapshots` in the repository. The filename is the SHA-256
hash of the (encrypted) contents. This string is unique and used within restic
to uniquely identify a snapshot.
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
The command `restic cat snapshot` can be used as follows to decrypt and
pretty-print the contents of a snapshot file:
2015-01-02 21:45:02 +00:00
$ restic -r /tmp/restic-repo cat snapshot 22a5af1b
Enter Password for Repository:
{
"time": "2015-01-02T18:10:50.895208559+01:00",
"tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
"map": "3c0721e5c3f5d2d78a12664b568a1bc992d17b993d41079599f8437ed66192fe",
"dir": "/tmp/testdata",
"hostname": "kasimir",
"username": "fd0",
"uid": 1000,
"gid": 100
}
2015-01-03 14:24:47 +00:00
Here it can be seen that this snapshot represents the contents of the directory
`/tmp/testdata`.
2015-01-02 21:45:02 +00:00
The two most important fields are `map` and `tree`.
Maps
----
2015-01-03 14:24:47 +00:00
All content within a restic repository is referenced according to its SHA-256
hash. Before saving, each file is split into variable sized chunks of data. The
SHA-256 hashes of all chunks are saved in an ordered list which then represents
the content of the file. In order to relate these plain text hashes to the
actual encrypted storage hashes (which vary due to random IVs), each snapshot
references a map.
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
A map is an encrypted and compressed JSON document which contains a large list
of plain text hashes and associated storage hashes. This list is sorted by the
plain text hash in order to speed up lookups.
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
Maps are referenced by their storage ID, which is the SHA-256 hash of the
encrypted file stored in the `maps` directory.
2015-01-02 21:45:02 +00:00
The command `restic cat map` can be used to inspect the content of a map:
$ restic -r /tmp/restic-repo cat map 3c0721e5c3f5d2d78a12664b568a1bc992d17b993d41079599f8437ed66192fe
Enter Password for Repository:
[
{
"id": "1424916fc7279d58e3b2d8b533f481981ea5cb0f21a43932f26475e308e9b599",
"size": 287,
"sid": "32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5",
"ssize": 335
},
{
"id": "160916dec2e9f4597a2cc3f0787ff6b3726c21e056177292eb85281c9c2afaa0",
"size": 812,
"sid": "73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c",
"ssize": 860
},
[...]
]
Trees and Data
--------------
2015-01-03 14:24:47 +00:00
The second thing a snapshot references is a tree. Trees are referenced by the
SHA-256 hash of the JSON string representation of its contents and are saved in
a subdirectory of the directory `trees`. The sub directory's name is the first
two characters of the filename the tree object is stored in.
2015-01-02 21:45:02 +00:00
The command `restic cat tree` can be used to inspect the tree referenced above:
$ restic -r /tmp/restic-repo cat tree 2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf
Enter Password for Repository:
[
{
"name": "testdata",
"type": "dir",
"mode": 493,
"mtime": "2014-12-22T14:47:59.912418701+01:00",
"atime": "2014-12-06T17:49:21.748468803+01:00",
"ctime": "2014-12-22T14:47:59.912418701+01:00",
"uid": 1000,
"gid": 100,
"user": "fd0",
"inode": 409704562,
"content": null,
"subtree": "a8838fdbf2902095fb1b9de8b0e30d2e4e2a91bbc82fb15f98f6f1535b9ccbe6"
}
]
A tree is a list of entries which contain meta data like a name and timestamps.
2015-01-03 14:24:47 +00:00
When the entry references a directory, the field `subtree` contains the plain
text ID of another tree object. The associated storage ID can be found in the
map object.
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
This can also be inspected by using `restic cat tree`, which automatically
searches all available maps for the storage ID:
2015-01-02 21:45:02 +00:00
$ restic -r /tmp/restic-repo cat tree a8838fdbf2902095fb1b9de8b0e30d2e4e2a91bbc82fb15f98f6f1535b9ccbe6
2015-01-03 14:24:47 +00:00
Enter Password for Repository:
2015-01-02 21:45:02 +00:00
[
{
"name": "testfile",
"type": "file",
"mode": 420,
"mtime": "2014-12-06T17:50:23.34513538+01:00",
"atime": "2014-12-06T17:50:23.338468713+01:00",
"ctime": "2014-12-06T17:50:23.34513538+01:00",
"uid": 1000,
"gid": 100,
"user": "fd0",
"inode": 416863351,
"size": 1234,
"links": 1,
"content": [
"50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d"
]
},
[...]
]
2015-01-03 14:24:47 +00:00
This tree contains a file entry. In contrast to the entry above, the `subtree`
field is not present and the `content` field contains a list with one plain
text SHA-256 hash. The storage ID for this ID can in turn be looked up in the
map. Data chunks stored as encrypted files in a sub directory of the directory
`data`, similar to tree objects.
2015-01-02 21:45:02 +00:00
2015-01-03 14:24:47 +00:00
The command `restic cat data` can be used to lookup, extract and decrypt data,
e.g. for the data mentioned above:
2015-01-02 21:45:02 +00:00
$ restic -r /tmp/restic-repo cat blob 50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d | sha256sum
2015-01-03 14:24:47 +00:00
Enter Password for Repository:
2015-01-02 21:45:02 +00:00
50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d -
2015-01-03 14:24:47 +00:00
As can be seen from the output of the program `sha256sum`, the hash is the
same, so the correct data has been returned.
2015-01-02 17:43:59 +00:00
Backups and Deduplication
=========================
2015-01-03 14:24:47 +00:00
For creating a backup, restic scans the target directory for all files,
sub-directories and other entries. The data from each file is split into
variable length chunks cut at offsets defined by a sliding window of 64 byte.
The implementation uses Rabin Fingerprints for implementing this Content
Defined Chunking (CDC).
Files smaller than 512 KiB are not split, chunks are of 512 KiB to 8 MiB in
size. The implementation aims for 1 MiB chunk size on average.
For modified files, only modified chunks have to be saved in a subsequent
backup. This even works if bytes are inserted or removed at arbitrary positions
within the file.
2015-01-02 17:43:59 +00:00
2015-01-02 21:45:02 +00:00
Files smaller than 512KiB are not split, chunks are of 512KiB to 8MiB in size.
The implementation aims for 1MiB chunk size on average.
2015-01-02 17:43:59 +00:00
2015-01-02 21:45:02 +00:00
For modified files, only modified chunks have to be saved in a subsequent backup.
This even works if bytes are inserted or removed at arbitrary positions within the file.
2015-01-03 14:28:33 +00:00
Threat Model
============
The design goals for restic include being able to securely store backups in a
location that is not completely trusted, e.g. a shared system where others can
potentially access the files or (in the case of the system administrator) even
modify or delete them.
General assumptions:
* The host system a backup is created on is trusted. This is the most basic
requirement, and essential for creating trustworthy backups.
The restic backup program guarantees the following:
* Accessing content of backup-up files and meta data should not be possible
without a password for the repository. Everything except the `version` file
and the meta data included for informational purposes in the key files is
encrypted and then signed.
* Modifications (intentional or unintentional) can be detected automatically
on several layers:
1. For all accesses of data stored in the repository it is checked whether
the cryptographic hash of the contents matches the storage ID (the
file's name). This way, modifications (bad RAM, broken harddisk) can be
detected easily.
2. Before decrypting any data, the HMAC signature on the encrypted data is
checked. If there has been a modification, the signature check will
fail. This step happens even before the data is decrypted, so data that
has been tampered with is not decrypted at all.
However, the restic backup program is not designed to protect against attackers
deleting files at the storage location. There is nothing that can be done about
this. If this needs to be guaranteed, get a secure location without any access
from third parties. If you assume that attackers have write access to your
files at the storage location, attackers are able to figure out (e.g. based on
the timestamps of the stored files) which files belong to what snapshot. When
only these files are deleted, the particular snapshot vanished and all
snapshots depending on data that has been added in the snapshot cannot be
restored completely. Restic is not designed to detect this attack.