Make crypto.Key implement cipher.AEAD

This commit is contained in:
Alexander Neumann 2017-10-28 10:59:55 +02:00
parent d01d07fc0a
commit e1b80859f2
2 changed files with 166 additions and 19 deletions

View file

@ -147,7 +147,9 @@ func NewRandomKey() *Key {
return k return k
} }
func newIV() []byte { // NewRandomNonce returns a new random nonce. It panics on error so that the
// program is safely terminated.
func NewRandomNonce() []byte {
iv := make([]byte, ivSize) iv := make([]byte, ivSize)
n, err := rand.Read(iv) n, err := rand.Read(iv)
if n != ivSize || err != nil { if n != ivSize || err != nil {
@ -233,6 +235,144 @@ func (k *EncryptionKey) Valid() bool {
// holds the plaintext. // holds the plaintext.
var ErrInvalidCiphertext = errors.New("invalid ciphertext, same slice used for plaintext") var ErrInvalidCiphertext = errors.New("invalid ciphertext, same slice used for plaintext")
// validNonce checks that nonce is not all zero.
func validNonce(nonce []byte) bool {
sum := 0
for b := range nonce {
sum += b
}
return sum > 0
}
// statically ensure that *Key implements crypto/cipher.AEAD
var _ cipher.AEAD = &Key{}
// NonceSize returns the size of the nonce that must be passed to Seal
// and Open.
func (k *Key) NonceSize() int {
return ivSize
}
// Overhead returns the maximum difference between the lengths of a
// plaintext and its ciphertext.
func (k *Key) Overhead() int {
return macSize
}
// Seal encrypts and authenticates plaintext, authenticates the
// additional data and appends the result to dst, returning the updated
// slice. The nonce must be NonceSize() bytes long and unique for all
// time, for a given key.
//
// The plaintext and dst may alias exactly or not at all. To reuse
// plaintext's storage for the encrypted output, use plaintext[:0] as dst.
func (k *Key) Seal(dst, nonce, plaintext, additionalData []byte) []byte {
if !k.Valid() {
panic("key is invalid")
}
if len(additionalData) > 0 {
panic("additional data is not supported")
}
if len(nonce) != ivSize {
panic("incorrect nonce length")
}
if !validNonce(nonce) {
panic("nonce is invalid")
}
// extend dst so that the ciphertext fits
ciphertextLength := len(plaintext) + k.Overhead()
pos := len(dst)
capacity := cap(dst) - len(dst)
if capacity < ciphertextLength {
dst = dst[:cap(dst)]
dst = append(dst, make([]byte, ciphertextLength-capacity)...)
} else {
dst = dst[:pos+ciphertextLength]
}
c, err := aes.NewCipher(k.EncryptionKey[:])
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
e := cipher.NewCTR(c, nonce)
e.XORKeyStream(dst[pos:pos+len(plaintext)], plaintext)
// truncate to only cover the ciphertext
dst = dst[:pos+len(plaintext)]
mac := poly1305MAC(dst[pos:], nonce, &k.MACKey)
dst = append(dst, mac...)
return dst
}
// Open decrypts and authenticates ciphertext, authenticates the
// additional data and, if successful, appends the resulting plaintext
// to dst, returning the updated slice. The nonce must be NonceSize()
// bytes long and both it and the additional data must match the
// value passed to Seal.
//
// The ciphertext and dst may alias exactly or not at all. To reuse
// ciphertext's storage for the decrypted output, use ciphertext[:0] as dst.
//
// Even if the function fails, the contents of dst, up to its capacity,
// may be overwritten.
func (k *Key) Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if !k.Valid() {
return nil, errors.New("invalid key")
}
// check parameters
if len(nonce) != ivSize {
panic("incorrect nonce length")
}
if !validNonce(nonce) {
return nil, errors.New("nonce is invalid")
}
// check for plausible length
if len(ciphertext) < k.Overhead() {
return nil, errors.Errorf("trying to decrypt invalid data: ciphertext too small")
}
// extract mac
l := len(ciphertext) - macSize
ct, mac := ciphertext[:l], ciphertext[l:]
// verify mac
if !poly1305Verify(ct, nonce, &k.MACKey, mac) {
return nil, ErrUnauthenticated
}
// extend dst so that the plaintext fits
plaintextLength := len(ct)
pos := len(dst)
capacity := cap(dst) - len(dst)
if capacity < plaintextLength {
dst = dst[:cap(dst)]
dst = append(dst, make([]byte, plaintextLength-capacity)...)
} else {
dst = dst[:pos+plaintextLength]
}
// decrypt data
c, err := aes.NewCipher(k.EncryptionKey[:])
if err != nil {
panic(fmt.Sprintf("unable to create cipher: %v", err))
}
e := cipher.NewCTR(c, nonce)
e.XORKeyStream(dst[pos:], ct)
return dst, nil
}
// Encrypt encrypts and authenticates data. Stored in ciphertext is IV || Ciphertext || // Encrypt encrypts and authenticates data. Stored in ciphertext is IV || Ciphertext ||
// MAC. Encrypt returns the new ciphertext slice, which is extended when // MAC. Encrypt returns the new ciphertext slice, which is extended when
// necessary. ciphertext and plaintext may not point to (exactly) the same // necessary. ciphertext and plaintext may not point to (exactly) the same
@ -255,7 +395,7 @@ func (k *Key) Encrypt(ciphertext []byte, plaintext []byte) ([]byte, error) {
ciphertext = append(ciphertext, make([]byte, ext)...) ciphertext = append(ciphertext, make([]byte, ext)...)
} }
iv := newIV() iv := NewRandomNonce()
copy(ciphertext, iv[:]) copy(ciphertext, iv[:])
c, err := aes.NewCipher(k.EncryptionKey[:]) c, err := aes.NewCipher(k.EncryptionKey[:])

View file

@ -113,43 +113,50 @@ func TestCrypto(t *testing.T) {
MACKey: tv.skey, MACKey: tv.skey,
} }
msg, err := k.Encrypt(msg, tv.plaintext) nonce := NewRandomNonce()
if err != nil { ciphertext := k.Seal(msg, nonce, tv.plaintext, nil)
t.Fatal(err)
}
// decrypt message // decrypt message
buf := make([]byte, len(tv.plaintext)) buf := make([]byte, len(tv.plaintext))
n, err := k.Decrypt(buf, msg) buf, err := k.Open(buf, nonce, ciphertext, nil)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
buf = buf[:n]
// change mac, this must fail if !bytes.Equal(buf, tv.plaintext) {
msg[len(msg)-8] ^= 0x23 t.Fatalf("wrong plaintext returned")
if _, err = k.Decrypt(buf, msg); err != ErrUnauthenticated {
t.Fatal("wrong MAC value not detected")
} }
// change mac, this must fail
ciphertext[len(ciphertext)-8] ^= 0x23
if _, err = k.Open(buf, nonce, ciphertext, nil); err != ErrUnauthenticated {
t.Fatal("wrong MAC value not detected")
}
// reset mac // reset mac
msg[len(msg)-8] ^= 0x23 ciphertext[len(ciphertext)-8] ^= 0x23
// tamper with nonce, this must fail
nonce[2] ^= 0x88
if _, err = k.Open(buf, nonce, ciphertext, nil); err != ErrUnauthenticated {
t.Fatal("tampered nonce not detected")
}
// reset nonce
nonce[2] ^= 0x88
// tamper with message, this must fail // tamper with message, this must fail
msg[16+5] ^= 0x85 ciphertext[16+5] ^= 0x85
if _, err = k.Open(buf, nonce, ciphertext, nil); err != ErrUnauthenticated {
if _, err = k.Decrypt(buf, msg); err != ErrUnauthenticated {
t.Fatal("tampered message not detected") t.Fatal("tampered message not detected")
} }
// test decryption // test decryption
p := make([]byte, len(tv.ciphertext)) p := make([]byte, len(tv.ciphertext))
n, err = k.Decrypt(p, tv.ciphertext) nonce, ciphertext = tv.ciphertext[:16], tv.ciphertext[16:]
p, err = k.Open(p, nonce, ciphertext, nil)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
p = p[:n]
if !bytes.Equal(p, tv.plaintext) { if !bytes.Equal(p, tv.plaintext) {
t.Fatalf("wrong plaintext: expected %q but got %q\n", tv.plaintext, p) t.Fatalf("wrong plaintext: expected %q but got %q\n", tv.plaintext, p)