Use qname/qtype for lookups

Drop the use of dns.RR when in fact the only thing we use is the name

and type of the RR. Cleans up a bunch of stuff and also stops the weird

making of dns.RRs just for a lookup. Should safe some memory as well.



Fixes: #66
This commit is contained in:
Miek Gieben 2016-04-02 17:49:13 +01:00
parent 9b21646954
commit 2adbdf34d9
5 changed files with 58 additions and 92 deletions

View file

@ -3,18 +3,18 @@ package file
import "github.com/miekg/dns"
// ClosestEncloser returns the closest encloser for rr.
func (z *Zone) ClosestEncloser(rr dns.RR) string {
func (z *Zone) ClosestEncloser(qname string, qtype uint16) string {
// tree/tree.go does not store a parent *Node pointer, so we can't
// just follow up the tree. TODO(miek): fix.
offset, end := dns.NextLabel(rr.Header().Name, 0)
offset, end := dns.NextLabel(qname, 0)
for !end {
elem, _ := z.Tree.Get(rr)
elem, _ := z.Tree.Search(qname, qtype)
if elem != nil {
return elem.Name()
}
rr.Header().Name = rr.Header().Name[offset:]
qname = qname[offset:]
offset, end = dns.NextLabel(rr.Header().Name, offset)
offset, end = dns.NextLabel(qname, offset)
}
return z.SOA.Header().Name
@ -22,8 +22,8 @@ func (z *Zone) ClosestEncloser(rr dns.RR) string {
// nameErrorProof finds the closest encloser and return an NSEC that proofs
// the wildcard does not exist and an NSEC that proofs the name does no exist.
func (z *Zone) nameErrorProof(rr dns.RR) []dns.RR {
elem := z.Tree.Prev(rr)
func (z *Zone) nameErrorProof(qname string, qtype uint16) []dns.RR {
elem := z.Tree.Prev(qname)
if elem == nil {
return nil
}
@ -37,10 +37,8 @@ func (z *Zone) nameErrorProof(rr dns.RR) []dns.RR {
}
// We do this lookup twice, once for wildcard and once for the name proof. TODO(miek): fix
ce := z.ClosestEncloser(rr)
wildcard := "*." + ce
rr.Header().Name = wildcard
elem = z.Tree.Prev(rr)
ce := z.ClosestEncloser(qname, qtype)
elem = z.Tree.Prev("*." + ce)
if elem == nil {
// Root?
return nil

View file

@ -25,11 +25,8 @@ func TestClosestEncloser(t *testing.T) {
{"blaat.a.miek.nl.", "a.miek.nl."},
}
mk, _ := dns.TypeToRR[dns.TypeA]
rr := mk()
for _, tc := range tests {
rr.Header().Name = tc.in
ce := z.ClosestEncloser(rr)
ce := z.ClosestEncloser(tc.in, dns.TypeA)
if ce != tc.out {
t.Errorf("expected ce to be %s for %s, got %s", tc.out, tc.in, ce)
}

View file

@ -19,33 +19,21 @@ const (
// Lookup looks up qname and qtype in the zone. When do is true DNSSEC records are included.
// Three sets of records are returned, one for the answer, one for authority and one for the additional section.
func (z *Zone) Lookup(qname string, qtype uint16, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
var rr dns.RR
mk, known := dns.TypeToRR[qtype]
if !known {
return nil, nil, nil, ServerFailure
} else {
rr = mk()
}
if qtype == dns.TypeSOA {
return z.lookupSOA(do)
}
// Misuse rr to be a question.
rr.Header().Rrtype = qtype
rr.Header().Name = qname
elem, res := z.Tree.Get(rr)
elem, res := z.Tree.Search(qname, qtype)
if elem == nil {
if res == tree.EmptyNonTerminal {
return z.emptyNonTerminal(rr, do)
return z.emptyNonTerminal(qname, do)
}
return z.nameError(rr, do)
return z.nameError(qname, qtype, do)
}
rrs := elem.Types(dns.TypeCNAME)
if len(rrs) > 0 { // should only ever be 1 actually; TODO(miek) check for this?
rr.Header().Name = rrs[0].(*dns.CNAME).Target
return z.lookupCNAME(rrs, rr, do)
return z.lookupCNAME(rrs, qtype, do)
}
rrs = elem.Types(qtype)
@ -67,33 +55,29 @@ func (z *Zone) noData(elem *tree.Elem, do bool) ([]dns.RR, []dns.RR, []dns.RR, R
return nil, append(soa, nsec...), nil, Success
}
func (z *Zone) emptyNonTerminal(rr dns.RR, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
func (z *Zone) emptyNonTerminal(qname string, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
soa, _, _, _ := z.lookupSOA(do)
elem := z.Tree.Prev(rr)
elem := z.Tree.Prev(qname)
nsec := z.lookupNSEC(elem, do)
return nil, append(soa, nsec...), nil, Success
}
func (z *Zone) nameError(rr dns.RR, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
func (z *Zone) nameError(qname string, qtype uint16, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
// Is there a wildcard?
rr1 := dns.Copy(rr)
rr1.Header().Name = rr.Header().Name
rr1.Header().Rrtype = rr.Header().Rrtype
ce := z.ClosestEncloser(rr1)
rr1.Header().Name = "*." + ce
elem, _ := z.Tree.Get(rr1) // use result here?
ce := z.ClosestEncloser(qname, qtype)
elem, _ := z.Tree.Search("*."+ce, qtype) // use result here?
if elem != nil {
ret := elem.Types(rr1.Header().Rrtype) // there can only be one of these (or zero)
ret := elem.Types(qtype) // there can only be one of these (or zero)
switch {
case ret != nil:
if do {
sigs := elem.Types(dns.TypeRRSIG)
sigs = signatureForSubType(sigs, rr.Header().Rrtype)
sigs = signatureForSubType(sigs, qtype)
ret = append(ret, sigs...)
}
ret = wildcardReplace(rr, ce, ret)
ret = wildcardReplace(qname, ce, ret)
return ret, nil, nil, Success
case ret == nil:
// nodata, nsec from the wildcard - type does not exist
@ -106,7 +90,7 @@ func (z *Zone) nameError(rr dns.RR, do bool) ([]dns.RR, []dns.RR, []dns.RR, Resu
ret := []dns.RR{z.SOA}
if do {
ret = append(ret, z.SIG...)
ret = append(ret, z.nameErrorProof(rr)...)
ret = append(ret, z.nameErrorProof(qname, qtype)...)
}
return nil, ret, nil, NameError
}
@ -135,15 +119,15 @@ func (z *Zone) lookupNSEC(elem *tree.Elem, do bool) []dns.RR {
return nsec
}
func (z *Zone) lookupCNAME(rrs []dns.RR, rr dns.RR, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
elem, _ := z.Tree.Get(rr)
func (z *Zone) lookupCNAME(rrs []dns.RR, qtype uint16, do bool) ([]dns.RR, []dns.RR, []dns.RR, Result) {
elem, _ := z.Tree.Search(rrs[0].(*dns.CNAME).Target, qtype)
if elem == nil {
return rrs, nil, nil, Success
}
extra := cnameForType(elem.All(), rr.Header().Rrtype)
extra := cnameForType(elem.All(), qtype)
if do {
sigs := elem.Types(dns.TypeRRSIG)
sigs = signatureForSubType(sigs, rr.Header().Rrtype)
sigs = signatureForSubType(sigs, qtype)
if len(sigs) > 0 {
extra = append(extra, sigs...)
}
@ -175,25 +159,13 @@ func signatureForSubType(rrs []dns.RR, subtype uint16) []dns.RR {
return sigs
}
// wildcardReplace replaces the first wildcard with label.
func wildcardReplace(rr dns.RR, ce string, rrs []dns.RR) []dns.RR {
// Get how many labels the ce is off from the fullname, this is how much of the
// original rr's '*' we must replace.
labels := dns.CountLabel(rr.Header().Name) - dns.CountLabel(ce) // can not be 0, TODO(miek): check
indexes := dns.Split(rr.Header().Name)
if labels >= len(indexes) {
// TODO(miek): yes then what?
// Is the == right here?
return nil
}
replacement := rr.Header().Name[:indexes[labels]]
// wildcardReplace replaces the ownername with the original query name.
func wildcardReplace(qname, ce string, rrs []dns.RR) []dns.RR {
// need to copy here, otherwise we change in zone stuff
ret := make([]dns.RR, len(rrs))
for i, r := range rrs {
ret[i] = dns.Copy(r)
ret[i].Header().Name = replacement + r.Header().Name[2:]
ret[i].Header().Name = qname
}
return ret
}

View file

@ -91,9 +91,8 @@ func (e *Elem) Delete(rr dns.RR) (empty bool) {
return
}
func Less(a *Elem, rr dns.RR) int {
return middleware.Less(rr.Header().Name, a.Name())
}
// Less is a tree helper function that calles middleware.Less.
func Less(a *Elem, name string) int { return middleware.Less(name, a.Name()) }
// Assuming the same type and name this will check if the rdata is equal as well.
func equalRdata(a, b dns.RR) bool {

View file

@ -23,7 +23,7 @@ const (
BU23
)
// Result is a result of a Get lookup.
// Result is a result of a Search.
type Result int
const (
@ -149,22 +149,22 @@ func (t *Tree) Len() int {
return t.Count
}
// Get returns the first match of rr in the Tree.
func (t *Tree) Get(rr dns.RR) (*Elem, Result) {
// Search returns the first match of qname/qtype in the Tree.
func (t *Tree) Search(qname string, qtype uint16) (*Elem, Result) {
if t.Root == nil {
return nil, NameError
}
n, res := t.Root.search(rr)
n, res := t.Root.search(qname, qtype)
if n == nil {
return nil, res
}
return n.Elem, res
}
func (n *Node) search(rr dns.RR) (*Node, Result) {
func (n *Node) search(qname string, qtype uint16) (*Node, Result) {
old := n
for n != nil {
switch c := Less(n.Elem, rr); {
switch c := Less(n.Elem, qname); {
case c == 0:
return n, Found
case c < 0:
@ -175,7 +175,7 @@ func (n *Node) search(rr dns.RR) (*Node, Result) {
n = n.Right
}
}
if dns.CountLabel(rr.Header().Name) < dns.CountLabel(old.Elem.Name()) {
if dns.CountLabel(qname) < dns.CountLabel(old.Elem.Name()) {
return n, EmptyNonTerminal
}
@ -205,7 +205,7 @@ func (n *Node) insert(rr dns.RR) (root *Node, d int) {
}
}
switch c := Less(n.Elem, rr); {
switch c := Less(n.Elem, rr.Header().Name); {
case c == 0:
n.Elem.Insert(rr)
case c < 0:
@ -297,7 +297,7 @@ func (t *Tree) Delete(rr dns.RR) {
return
}
el, _ := t.Get(rr)
el, _ := t.Search(rr.Header().Name, rr.Header().Rrtype)
if el == nil {
t.DeleteNode(rr)
return
@ -325,7 +325,7 @@ func (t *Tree) DeleteNode(rr dns.RR) {
}
func (n *Node) delete(rr dns.RR) (root *Node, d int) {
if Less(n.Elem, rr) < 0 {
if Less(n.Elem, rr.Header().Name) < 0 {
if n.Left != nil {
if n.Left.color() == Black && n.Left.Left.color() == Black {
n = n.moveRedLeft()
@ -336,14 +336,14 @@ func (n *Node) delete(rr dns.RR) (root *Node, d int) {
if n.Left.color() == Red {
n = n.rotateRight()
}
if n.Right == nil && Less(n.Elem, rr) == 0 {
if n.Right == nil && Less(n.Elem, rr.Header().Name) == 0 {
return nil, -1
}
if n.Right != nil {
if n.Right.color() == Black && n.Right.Left.color() == Black {
n = n.moveRedRight()
}
if Less(n.Elem, rr) == 0 {
if Less(n.Elem, rr.Header().Name) == 0 {
n.Elem = n.Right.min().Elem
n.Right, d = n.Right.deleteMin()
} else {
@ -384,58 +384,58 @@ func (n *Node) max() *Node {
return n
}
// Prev returns the greatest value equal to or less than the rr according to Less().
func (t *Tree) Prev(rr dns.RR) *Elem {
// Prev returns the greatest value equal to or less than the qname according to Less().
func (t *Tree) Prev(qname string) *Elem {
if t.Root == nil {
return nil
}
n := t.Root.floor(rr)
n := t.Root.floor(qname)
if n == nil {
return nil
}
return n.Elem
}
func (n *Node) floor(rr dns.RR) *Node {
func (n *Node) floor(qname string) *Node {
if n == nil {
return nil
}
switch c := Less(n.Elem, rr); {
switch c := Less(n.Elem, qname); {
case c == 0:
return n
case c < 0:
return n.Left.floor(rr)
return n.Left.floor(qname)
default:
if r := n.Right.floor(rr); r != nil {
if r := n.Right.floor(qname); r != nil {
return r
}
}
return n
}
// Next returns the smallest value equal to or greater than the rr according to Less().
func (t *Tree) Next(rr dns.RR) *Elem {
// Next returns the smallest value equal to or greater than the qname according to Less().
func (t *Tree) Next(qname string) *Elem {
if t.Root == nil {
return nil
}
n := t.Root.ceil(rr)
n := t.Root.ceil(qname)
if n == nil {
return nil
}
return n.Elem
}
func (n *Node) ceil(rr dns.RR) *Node {
func (n *Node) ceil(qname string) *Node {
if n == nil {
return nil
}
switch c := Less(n.Elem, rr); {
switch c := Less(n.Elem, qname); {
case c == 0:
return n
case c > 0:
return n.Right.ceil(rr)
return n.Right.ceil(qname)
default:
if l := n.Left.ceil(rr); l != nil {
if l := n.Left.ceil(qname); l != nil {
return l
}
}