Update vendor with go dep

This fix updates vendor with `go dep`

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
This commit is contained in:
Yong Tang 2017-04-28 09:14:54 -07:00
parent e08fb277fa
commit 6e3be7f3d5
8538 changed files with 2537051 additions and 81115 deletions

24
vendor/github.com/eapache/go-resiliency/.gitignore generated vendored Normal file
View file

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof

7
vendor/github.com/eapache/go-resiliency/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,7 @@
language: go
go:
- 1.1
- 1.2
- 1.3
- 1.4

22
vendor/github.com/eapache/go-resiliency/LICENSE generated vendored Normal file
View file

@ -0,0 +1,22 @@
The MIT License (MIT)
Copyright (c) 2014 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

20
vendor/github.com/eapache/go-resiliency/README.md generated vendored Normal file
View file

@ -0,0 +1,20 @@
go-resiliency
=============
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency?status.svg)](https://godoc.org/github.com/eapache/go-resiliency)
Resiliency patterns for golang.
Based in part on [Hystrix](https://github.com/Netflix/Hystrix),
[Semian](https://github.com/Shopify/semian), and others.
Currently implemented patterns include:
- circuit-breaker (in the `breaker` directory)
- semaphore (in the `semaphore` directory)
- deadline/timeout (in the `deadline` directory)
- batching (in the `batcher` directory)
- retriable (in the `retrier` directory)
Follows semantic versioning using https://gopkg.in/ - import from
[`gopkg.in/eapache/go-resiliency.v1`](https://gopkg.in/eapache/go-resiliency.v1)
for guaranteed API stability.

View file

@ -0,0 +1,30 @@
batcher
=======
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/batcher?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/batcher)
The batching resiliency pattern for golang.
Creating a batcher takes two parameters:
- the timeout to wait while collecting a batch
- the function to run once a batch has been collected
You can also optionally set a prefilter to fail queries before they enter the
batch.
```go
b := batcher.New(10*time.Millisecond, func(params []interface{}) error {
// do something with the batch of parameters
return nil
})
b.Prefilter(func(param interface{}) error {
// do some sort of sanity check on the parameter, and return an error if it fails
return nil
})
for i := 0; i < 10; i++ {
go b.Run(i)
}
```

View file

@ -0,0 +1,108 @@
// Package batcher implements the batching resiliency pattern for Go.
package batcher
import (
"sync"
"time"
)
type work struct {
param interface{}
future chan error
}
// Batcher implements the batching resiliency pattern
type Batcher struct {
timeout time.Duration
prefilter func(interface{}) error
lock sync.Mutex
submit chan *work
doWork func([]interface{}) error
}
// New constructs a new batcher that will batch all calls to Run that occur within
// `timeout` time before calling doWork just once for the entire batch. The doWork
// function must be safe to run concurrently with itself as this may occur, especially
// when the timeout is small.
func New(timeout time.Duration, doWork func([]interface{}) error) *Batcher {
return &Batcher{
timeout: timeout,
doWork: doWork,
}
}
// Run runs the work function with the given parameter, possibly
// including it in a batch with other calls to Run that occur within the
// specified timeout. It is safe to call Run concurrently on the same batcher.
func (b *Batcher) Run(param interface{}) error {
if b.prefilter != nil {
if err := b.prefilter(param); err != nil {
return err
}
}
if b.timeout == 0 {
return b.doWork([]interface{}{param})
}
w := &work{
param: param,
future: make(chan error, 1),
}
b.submitWork(w)
return <-w.future
}
// Prefilter specifies an optional function that can be used to run initial checks on parameters
// passed to Run before being added to the batch. If the prefilter returns a non-nil error,
// that error is returned immediately from Run and the batcher is not invoked. A prefilter
// cannot safely be specified for a batcher if Run has already been invoked. The filter function
// specified must be concurrency-safe.
func (b *Batcher) Prefilter(filter func(interface{}) error) {
b.prefilter = filter
}
func (b *Batcher) submitWork(w *work) {
b.lock.Lock()
defer b.lock.Unlock()
if b.submit == nil {
b.submit = make(chan *work, 4)
go b.batch()
}
b.submit <- w
}
func (b *Batcher) batch() {
var params []interface{}
var futures []chan error
input := b.submit
go b.timer()
for work := range input {
params = append(params, work.param)
futures = append(futures, work.future)
}
ret := b.doWork(params)
for _, future := range futures {
future <- ret
close(future)
}
}
func (b *Batcher) timer() {
time.Sleep(b.timeout)
b.lock.Lock()
defer b.lock.Unlock()
close(b.submit)
b.submit = nil
}

View file

@ -0,0 +1,123 @@
package batcher
import (
"errors"
"sync"
"sync/atomic"
"testing"
"time"
)
var errSomeError = errors.New("errSomeError")
func returnsError(params []interface{}) error {
return errSomeError
}
func returnsSuccess(params []interface{}) error {
return nil
}
func TestBatcherSuccess(t *testing.T) {
b := New(10*time.Millisecond, returnsSuccess)
wg := &sync.WaitGroup{}
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
if err := b.Run(nil); err != nil {
t.Error(err)
}
wg.Done()
}()
}
wg.Wait()
b = New(0, returnsSuccess)
for i := 0; i < 10; i++ {
if err := b.Run(nil); err != nil {
t.Error(err)
}
}
}
func TestBatcherError(t *testing.T) {
b := New(10*time.Millisecond, returnsError)
wg := &sync.WaitGroup{}
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
if err := b.Run(nil); err != errSomeError {
t.Error(err)
}
wg.Done()
}()
}
wg.Wait()
}
func TestBatcherPrefilter(t *testing.T) {
b := New(1*time.Millisecond, returnsSuccess)
b.Prefilter(func(param interface{}) error {
if param == nil {
return errSomeError
}
return nil
})
if err := b.Run(nil); err != errSomeError {
t.Error(err)
}
if err := b.Run(1); err != nil {
t.Error(err)
}
}
func TestBatcherMultipleBatches(t *testing.T) {
var iters uint32
b := New(10*time.Millisecond, func(params []interface{}) error {
atomic.AddUint32(&iters, 1)
return nil
})
wg := &sync.WaitGroup{}
for group := 0; group < 5; group++ {
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
if err := b.Run(nil); err != nil {
t.Error(err)
}
wg.Done()
}()
}
time.Sleep(15 * time.Millisecond)
}
wg.Wait()
if iters != 5 {
t.Error("Wrong number of iters:", iters)
}
}
func ExampleBatcher() {
b := New(10*time.Millisecond, func(params []interface{}) error {
// do something with the batch of parameters
return nil
})
b.Prefilter(func(param interface{}) error {
// do some sort of sanity check on the parameter, and return an error if it fails
return nil
})
for i := 0; i < 10; i++ {
go b.Run(i)
}
}

View file

@ -0,0 +1,33 @@
circuit-breaker
===============
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/breaker?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/breaker)
The circuit-breaker resiliency pattern for golang.
Creating a breaker takes three parameters:
- error threshold (for opening the breaker)
- success threshold (for closing the breaker)
- timeout (how long to keep the breaker open)
```go
b := breaker.New(3, 1, 5*time.Second)
for {
result := b.Run(func() error {
// communicate with some external service and
// return an error if the communication failed
return nil
})
switch result {
case nil:
// success!
case breaker.ErrBreakerOpen:
// our function wasn't run because the breaker was open
default:
// some other error
}
}
```

View file

@ -0,0 +1,161 @@
// Package breaker implements the circuit-breaker resiliency pattern for Go.
package breaker
import (
"errors"
"sync"
"sync/atomic"
"time"
)
// ErrBreakerOpen is the error returned from Run() when the function is not executed
// because the breaker is currently open.
var ErrBreakerOpen = errors.New("circuit breaker is open")
const (
closed uint32 = iota
open
halfOpen
)
// Breaker implements the circuit-breaker resiliency pattern
type Breaker struct {
errorThreshold, successThreshold int
timeout time.Duration
lock sync.Mutex
state uint32
errors, successes int
lastError time.Time
}
// New constructs a new circuit-breaker that starts closed.
// From closed, the breaker opens if "errorThreshold" errors are seen
// without an error-free period of at least "timeout". From open, the
// breaker half-closes after "timeout". From half-open, the breaker closes
// after "successThreshold" consecutive successes, or opens on a single error.
func New(errorThreshold, successThreshold int, timeout time.Duration) *Breaker {
return &Breaker{
errorThreshold: errorThreshold,
successThreshold: successThreshold,
timeout: timeout,
}
}
// Run will either return ErrBreakerOpen immediately if the circuit-breaker is
// already open, or it will run the given function and pass along its return
// value. It is safe to call Run concurrently on the same Breaker.
func (b *Breaker) Run(work func() error) error {
state := atomic.LoadUint32(&b.state)
if state == open {
return ErrBreakerOpen
}
return b.doWork(state, work)
}
// Go will either return ErrBreakerOpen immediately if the circuit-breaker is
// already open, or it will run the given function in a separate goroutine.
// If the function is run, Go will return nil immediately, and will *not* return
// the return value of the function. It is safe to call Go concurrently on the
// same Breaker.
func (b *Breaker) Go(work func() error) error {
state := atomic.LoadUint32(&b.state)
if state == open {
return ErrBreakerOpen
}
// errcheck complains about ignoring the error return value, but
// that's on purpose; if you want an error from a goroutine you have to
// get it over a channel or something
go b.doWork(state, work)
return nil
}
func (b *Breaker) doWork(state uint32, work func() error) error {
var panicValue interface{}
result := func() error {
defer func() {
panicValue = recover()
}()
return work()
}()
if result == nil && panicValue == nil && state == closed {
// short-circuit the normal, success path without contending
// on the lock
return nil
}
// oh well, I guess we have to contend on the lock
b.processResult(result, panicValue)
if panicValue != nil {
// as close as Go lets us come to a "rethrow" although unfortunately
// we lose the original panicing location
panic(panicValue)
}
return result
}
func (b *Breaker) processResult(result error, panicValue interface{}) {
b.lock.Lock()
defer b.lock.Unlock()
if result == nil && panicValue == nil {
if b.state == halfOpen {
b.successes++
if b.successes == b.successThreshold {
b.closeBreaker()
}
}
} else {
if b.errors > 0 {
expiry := b.lastError.Add(b.timeout)
if time.Now().After(expiry) {
b.errors = 0
}
}
switch b.state {
case closed:
b.errors++
if b.errors == b.errorThreshold {
b.openBreaker()
} else {
b.lastError = time.Now()
}
case halfOpen:
b.openBreaker()
}
}
}
func (b *Breaker) openBreaker() {
b.changeState(open)
go b.timer()
}
func (b *Breaker) closeBreaker() {
b.changeState(closed)
}
func (b *Breaker) timer() {
time.Sleep(b.timeout)
b.lock.Lock()
defer b.lock.Unlock()
b.changeState(halfOpen)
}
func (b *Breaker) changeState(newState uint32) {
b.errors = 0
b.successes = 0
atomic.StoreUint32(&b.state, newState)
}

View file

@ -0,0 +1,196 @@
package breaker
import (
"errors"
"testing"
"time"
)
var errSomeError = errors.New("errSomeError")
func alwaysPanics() error {
panic("foo")
}
func returnsError() error {
return errSomeError
}
func returnsSuccess() error {
return nil
}
func TestBreakerErrorExpiry(t *testing.T) {
breaker := New(2, 1, 1*time.Second)
for i := 0; i < 3; i++ {
if err := breaker.Run(returnsError); err != errSomeError {
t.Error(err)
}
time.Sleep(1 * time.Second)
}
for i := 0; i < 3; i++ {
if err := breaker.Go(returnsError); err != nil {
t.Error(err)
}
time.Sleep(1 * time.Second)
}
}
func TestBreakerPanicsCountAsErrors(t *testing.T) {
breaker := New(3, 2, 1*time.Second)
// three errors opens the breaker
for i := 0; i < 3; i++ {
func() {
defer func() {
val := recover()
if val.(string) != "foo" {
t.Error("incorrect panic")
}
}()
if err := breaker.Run(alwaysPanics); err != nil {
t.Error(err)
}
t.Error("shouldn't get here")
}()
}
// breaker is open
for i := 0; i < 5; i++ {
if err := breaker.Run(returnsError); err != ErrBreakerOpen {
t.Error(err)
}
}
}
func TestBreakerStateTransitions(t *testing.T) {
breaker := New(3, 2, 1*time.Second)
// three errors opens the breaker
for i := 0; i < 3; i++ {
if err := breaker.Run(returnsError); err != errSomeError {
t.Error(err)
}
}
// breaker is open
for i := 0; i < 5; i++ {
if err := breaker.Run(returnsError); err != ErrBreakerOpen {
t.Error(err)
}
}
// wait for it to half-close
time.Sleep(2 * time.Second)
// one success works, but is not enough to fully close
if err := breaker.Run(returnsSuccess); err != nil {
t.Error(err)
}
// error works, but re-opens immediately
if err := breaker.Run(returnsError); err != errSomeError {
t.Error(err)
}
// breaker is open
if err := breaker.Run(returnsError); err != ErrBreakerOpen {
t.Error(err)
}
// wait for it to half-close
time.Sleep(2 * time.Second)
// two successes is enough to close it for good
for i := 0; i < 2; i++ {
if err := breaker.Run(returnsSuccess); err != nil {
t.Error(err)
}
}
// error works
if err := breaker.Run(returnsError); err != errSomeError {
t.Error(err)
}
// breaker is still closed
if err := breaker.Run(returnsSuccess); err != nil {
t.Error(err)
}
}
func TestBreakerAsyncStateTransitions(t *testing.T) {
breaker := New(3, 2, 1*time.Second)
// three errors opens the breaker
for i := 0; i < 3; i++ {
if err := breaker.Go(returnsError); err != nil {
t.Error(err)
}
}
// just enough to yield the scheduler and let the goroutines work off
time.Sleep(1 * time.Millisecond)
// breaker is open
for i := 0; i < 5; i++ {
if err := breaker.Go(returnsError); err != ErrBreakerOpen {
t.Error(err)
}
}
// wait for it to half-close
time.Sleep(2 * time.Second)
// one success works, but is not enough to fully close
if err := breaker.Go(returnsSuccess); err != nil {
t.Error(err)
}
// error works, but re-opens immediately
if err := breaker.Go(returnsError); err != nil {
t.Error(err)
}
// just enough to yield the scheduler and let the goroutines work off
time.Sleep(1 * time.Millisecond)
// breaker is open
if err := breaker.Go(returnsError); err != ErrBreakerOpen {
t.Error(err)
}
// wait for it to half-close
time.Sleep(2 * time.Second)
// two successes is enough to close it for good
for i := 0; i < 2; i++ {
if err := breaker.Go(returnsSuccess); err != nil {
t.Error(err)
}
}
// just enough to yield the scheduler and let the goroutines work off
time.Sleep(1 * time.Millisecond)
// error works
if err := breaker.Go(returnsError); err != nil {
t.Error(err)
}
// just enough to yield the scheduler and let the goroutines work off
time.Sleep(1 * time.Millisecond)
// breaker is still closed
if err := breaker.Go(returnsSuccess); err != nil {
t.Error(err)
}
}
func ExampleBreaker() {
breaker := New(3, 1, 5*time.Second)
for {
result := breaker.Run(func() error {
// communicate with some external service and
// return an error if the communication failed
return nil
})
switch result {
case nil:
// success!
case ErrBreakerOpen:
// our function wasn't run because the breaker was open
default:
// some other error
}
}
}

View file

@ -0,0 +1,26 @@
deadline
========
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/deadline?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/deadline)
The deadline/timeout resiliency pattern for golang.
Creating a deadline takes one parameter: how long to wait.
```go
dl := deadline.New(1 * time.Second)
err := dl.Run(func(stopper <-chan struct{}) error {
// do something possibly slow
// check stopper function and give up if timed out
return nil
})
switch err {
case deadline.ErrTimedOut:
// execution took too long, oops
default:
// some other error
}
```

View file

@ -0,0 +1,45 @@
// Package deadline implements the deadline (also known as "timeout") resiliency pattern for Go.
package deadline
import (
"errors"
"time"
)
// ErrTimedOut is the error returned from Run when the deadline expires.
var ErrTimedOut = errors.New("timed out waiting for function to finish")
// Deadline implements the deadline/timeout resiliency pattern.
type Deadline struct {
timeout time.Duration
}
// New constructs a new Deadline with the given timeout.
func New(timeout time.Duration) *Deadline {
return &Deadline{
timeout: timeout,
}
}
// Run runs the given function, passing it a stopper channel. If the deadline passes before
// the function finishes executing, Run returns ErrTimeOut to the caller and closes the stopper
// channel so that the work function can attempt to exit gracefully. It does not (and cannot)
// simply kill the running function, so if it doesn't respect the stopper channel then it may
// keep running after the deadline passes. If the function finishes before the deadline, then
// the return value of the function is returned from Run.
func (d *Deadline) Run(work func(<-chan struct{}) error) error {
result := make(chan error)
stopper := make(chan struct{})
go func() {
result <- work(stopper)
}()
select {
case ret := <-result:
return ret
case <-time.After(d.timeout):
close(stopper)
return ErrTimedOut
}
}

View file

@ -0,0 +1,65 @@
package deadline
import (
"errors"
"testing"
"time"
)
func takesFiveMillis(stopper <-chan struct{}) error {
time.Sleep(5 * time.Millisecond)
return nil
}
func takesTwentyMillis(stopper <-chan struct{}) error {
time.Sleep(20 * time.Millisecond)
return nil
}
func returnsError(stopper <-chan struct{}) error {
return errors.New("foo")
}
func TestDeadline(t *testing.T) {
dl := New(10 * time.Millisecond)
if err := dl.Run(takesFiveMillis); err != nil {
t.Error(err)
}
if err := dl.Run(takesTwentyMillis); err != ErrTimedOut {
t.Error(err)
}
if err := dl.Run(returnsError); err.Error() != "foo" {
t.Error(err)
}
done := make(chan struct{})
err := dl.Run(func(stopper <-chan struct{}) error {
<-stopper
close(done)
return nil
})
if err != ErrTimedOut {
t.Error(err)
}
<-done
}
func ExampleDeadline() {
dl := New(1 * time.Second)
err := dl.Run(func(stopper <-chan struct{}) error {
// do something possibly slow
// check stopper function and give up if timed out
return nil
})
switch err {
case ErrTimedOut:
// execution took too long, oops
default:
// some other error
}
}

View file

@ -0,0 +1,25 @@
retrier
=======
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/retrier?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/retrier)
The retriable resiliency pattern for golang.
Creating a retrier takes two parameters:
- the times to back-off between retries (and implicitly the number of times to
retry)
- the classifier that determines which errors to retry
```go
r := retrier.New(retrier.ConstantBackoff(3, 100*time.Millisecond), nil)
err := r.Run(func() error {
// do some work
return nil
})
if err != nil {
// handle the case where the work failed three times
}
```

View file

@ -0,0 +1,24 @@
package retrier
import "time"
// ConstantBackoff generates a simple back-off strategy of retrying 'n' times, and waiting 'amount' time after each one.
func ConstantBackoff(n int, amount time.Duration) []time.Duration {
ret := make([]time.Duration, n)
for i := range ret {
ret[i] = amount
}
return ret
}
// ExponentialBackoff generates a simple back-off strategy of retrying 'n' times, and doubling the amount of
// time waited after each one.
func ExponentialBackoff(n int, initialAmount time.Duration) []time.Duration {
ret := make([]time.Duration, n)
next := initialAmount
for i := range ret {
ret[i] = next
next *= 2
}
return ret
}

View file

@ -0,0 +1,55 @@
package retrier
import (
"testing"
"time"
)
func TestConstantBackoff(t *testing.T) {
b := ConstantBackoff(1, 10*time.Millisecond)
if len(b) != 1 {
t.Error("incorrect length")
}
for i := range b {
if b[i] != 10*time.Millisecond {
t.Error("incorrect value at", i)
}
}
b = ConstantBackoff(10, 250*time.Hour)
if len(b) != 10 {
t.Error("incorrect length")
}
for i := range b {
if b[i] != 250*time.Hour {
t.Error("incorrect value at", i)
}
}
}
func TestExponentialBackoff(t *testing.T) {
b := ExponentialBackoff(1, 10*time.Millisecond)
if len(b) != 1 {
t.Error("incorrect length")
}
if b[0] != 10*time.Millisecond {
t.Error("incorrect value")
}
b = ExponentialBackoff(4, 1*time.Minute)
if len(b) != 4 {
t.Error("incorrect length")
}
if b[0] != 1*time.Minute {
t.Error("incorrect value")
}
if b[1] != 2*time.Minute {
t.Error("incorrect value")
}
if b[2] != 4*time.Minute {
t.Error("incorrect value")
}
if b[3] != 8*time.Minute {
t.Error("incorrect value")
}
}

View file

@ -0,0 +1,66 @@
package retrier
// Action is the type returned by a Classifier to indicate how the Retrier should proceed.
type Action int
const (
Succeed Action = iota // Succeed indicates the Retrier should treat this value as a success.
Fail // Fail indicates the Retrier should treat this value as a hard failure and not retry.
Retry // Retry indicates the Retrier should treat this value as a soft failure and retry.
)
// Classifier is the interface implemented by anything that can classify Errors for a Retrier.
type Classifier interface {
Classify(error) Action
}
// DefaultClassifier classifies errors in the simplest way possible. If
// the error is nil, it returns Succeed, otherwise it returns Retry.
type DefaultClassifier struct{}
// Classify implements the Classifier interface.
func (c DefaultClassifier) Classify(err error) Action {
if err == nil {
return Succeed
}
return Retry
}
// WhitelistClassifier classifies errors based on a whitelist. If the error is nil, it
// returns Succeed; if the error is in the whitelist, it returns Retry; otherwise, it returns Fail.
type WhitelistClassifier []error
// Classify implements the Classifier interface.
func (list WhitelistClassifier) Classify(err error) Action {
if err == nil {
return Succeed
}
for _, pass := range list {
if err == pass {
return Retry
}
}
return Fail
}
// BlacklistClassifier classifies errors based on a blacklist. If the error is nil, it
// returns Succeed; if the error is in the blacklist, it returns Fail; otherwise, it returns Retry.
type BlacklistClassifier []error
// Classify implements the Classifier interface.
func (list BlacklistClassifier) Classify(err error) Action {
if err == nil {
return Succeed
}
for _, pass := range list {
if err == pass {
return Fail
}
}
return Retry
}

View file

@ -0,0 +1,66 @@
package retrier
import (
"errors"
"testing"
)
var (
errFoo = errors.New("FOO")
errBar = errors.New("BAR")
errBaz = errors.New("BAZ")
)
func TestDefaultClassifier(t *testing.T) {
c := DefaultClassifier{}
if c.Classify(nil) != Succeed {
t.Error("default misclassified nil")
}
if c.Classify(errFoo) != Retry {
t.Error("default misclassified foo")
}
if c.Classify(errBar) != Retry {
t.Error("default misclassified bar")
}
if c.Classify(errBaz) != Retry {
t.Error("default misclassified baz")
}
}
func TestWhitelistClassifier(t *testing.T) {
c := WhitelistClassifier{errFoo, errBar}
if c.Classify(nil) != Succeed {
t.Error("whitelist misclassified nil")
}
if c.Classify(errFoo) != Retry {
t.Error("whitelist misclassified foo")
}
if c.Classify(errBar) != Retry {
t.Error("whitelist misclassified bar")
}
if c.Classify(errBaz) != Fail {
t.Error("whitelist misclassified baz")
}
}
func TestBlacklistClassifier(t *testing.T) {
c := BlacklistClassifier{errBar}
if c.Classify(nil) != Succeed {
t.Error("blacklist misclassified nil")
}
if c.Classify(errFoo) != Retry {
t.Error("blacklist misclassified foo")
}
if c.Classify(errBar) != Fail {
t.Error("blacklist misclassified bar")
}
if c.Classify(errBaz) != Retry {
t.Error("blacklist misclassified baz")
}
}

View file

@ -0,0 +1,69 @@
// Package retrier implements the "retriable" resiliency pattern for Go.
package retrier
import (
"math/rand"
"time"
)
// Retrier implements the "retriable" resiliency pattern, abstracting out the process of retrying a failed action
// a certain number of times with an optional back-off between each retry.
type Retrier struct {
backoff []time.Duration
class Classifier
jitter float64
rand *rand.Rand
}
// New constructs a Retrier with the given backoff pattern and classifier. The length of the backoff pattern
// indicates how many times an action will be retried, and the value at each index indicates the amount of time
// waited before each subsequent retry. The classifier is used to determine which errors should be retried and
// which should cause the retrier to fail fast. The DefaultClassifier is used if nil is passed.
func New(backoff []time.Duration, class Classifier) *Retrier {
if class == nil {
class = DefaultClassifier{}
}
return &Retrier{
backoff: backoff,
class: class,
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
}
}
// Run executes the given work function, then classifies its return value based on the classifier used
// to construct the Retrier. If the result is Succeed or Fail, the return value of the work function is
// returned to the caller. If the result is Retry, then Run sleeps according to the its backoff policy
// before retrying. If the total number of retries is exceeded then the return value of the work function
// is returned to the caller regardless.
func (r *Retrier) Run(work func() error) error {
retries := 0
for {
ret := work()
switch r.class.Classify(ret) {
case Succeed, Fail:
return ret
case Retry:
if retries >= len(r.backoff) {
return ret
}
time.Sleep(r.calcSleep(retries))
retries++
}
}
}
func (r *Retrier) calcSleep(i int) time.Duration {
// take a random float in the range (-r.jitter, +r.jitter) and multiply it by the base amount
return r.backoff[i] + time.Duration(((r.rand.Float64()*2)-1)*r.jitter*float64(r.backoff[i]))
}
// SetJitter sets the amount of jitter on each back-off to a factor between 0.0 and 1.0 (values outside this range
// are silently ignored). When a retry occurs, the back-off is adjusted by a random amount up to this value.
func (r *Retrier) SetJitter(jit float64) {
if jit < 0 || jit > 1 {
return
}
r.jitter = jit
}

View file

@ -0,0 +1,129 @@
package retrier
import (
"testing"
"time"
)
var i int
func genWork(returns []error) func() error {
i = 0
return func() error {
i++
if i > len(returns) {
return nil
}
return returns[i-1]
}
}
func TestRetrier(t *testing.T) {
r := New([]time.Duration{0, 10 * time.Millisecond}, WhitelistClassifier{errFoo})
err := r.Run(genWork([]error{errFoo, errFoo}))
if err != nil {
t.Error(err)
}
if i != 3 {
t.Error("run wrong number of times")
}
err = r.Run(genWork([]error{errFoo, errBar}))
if err != errBar {
t.Error(err)
}
if i != 2 {
t.Error("run wrong number of times")
}
err = r.Run(genWork([]error{errBar, errBaz}))
if err != errBar {
t.Error(err)
}
if i != 1 {
t.Error("run wrong number of times")
}
}
func TestRetrierNone(t *testing.T) {
r := New(nil, nil)
i = 0
err := r.Run(func() error {
i++
return errFoo
})
if err != errFoo {
t.Error(err)
}
if i != 1 {
t.Error("run wrong number of times")
}
i = 0
err = r.Run(func() error {
i++
return nil
})
if err != nil {
t.Error(err)
}
if i != 1 {
t.Error("run wrong number of times")
}
}
func TestRetrierJitter(t *testing.T) {
r := New([]time.Duration{0, 10 * time.Millisecond, 4 * time.Hour}, nil)
if r.calcSleep(0) != 0 {
t.Error("Incorrect sleep calculated")
}
if r.calcSleep(1) != 10*time.Millisecond {
t.Error("Incorrect sleep calculated")
}
if r.calcSleep(2) != 4*time.Hour {
t.Error("Incorrect sleep calculated")
}
r.SetJitter(0.25)
for i := 0; i < 20; i++ {
if r.calcSleep(0) != 0 {
t.Error("Incorrect sleep calculated")
}
slp := r.calcSleep(1)
if slp < 7500*time.Microsecond || slp > 12500*time.Microsecond {
t.Error("Incorrect sleep calculated")
}
slp = r.calcSleep(2)
if slp < 3*time.Hour || slp > 5*time.Hour {
t.Error("Incorrect sleep calculated")
}
}
r.SetJitter(-1)
if r.jitter != 0.25 {
t.Error("Invalid jitter value accepted")
}
r.SetJitter(2)
if r.jitter != 0.25 {
t.Error("Invalid jitter value accepted")
}
}
func ExampleRetrier() {
r := New(ConstantBackoff(3, 100*time.Millisecond), nil)
err := r.Run(func() error {
// do some work
return nil
})
if err != nil {
// handle the case where the work failed three times
}
}

View file

@ -0,0 +1,21 @@
semaphore
=========
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/semaphore?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/semaphore)
The semaphore resiliency pattern for golang.
Creating a semaphore takes two parameters:
- ticket count (how many tickets to give out at once)
- timeout (how long to wait for a ticket if none are currently available)
```go
sem := semaphore.New(3, 1*time.Second)
if err := sem.Acquire(); err != nil {
// could not acquire semaphore
return err
}
defer sem.Release()
```

View file

@ -0,0 +1,45 @@
// Package semaphore implements the semaphore resiliency pattern for Go.
package semaphore
import (
"errors"
"time"
)
// ErrNoTickets is the error returned by Acquire when it could not acquire
// a ticket from the semaphore within the configured timeout.
var ErrNoTickets = errors.New("could not aquire semaphore ticket")
// Semaphore implements the semaphore resiliency pattern
type Semaphore struct {
sem chan struct{}
timeout time.Duration
}
// New constructs a new Semaphore with the given ticket-count
// and timeout.
func New(tickets int, timeout time.Duration) *Semaphore {
return &Semaphore{
sem: make(chan struct{}, tickets),
timeout: timeout,
}
}
// Acquire tries to acquire a ticket from the semaphore. If it can, it returns nil.
// If it cannot after "timeout" amount of time, it returns ErrNoTickets. It is
// safe to call Acquire concurrently on a single Semaphore.
func (s *Semaphore) Acquire() error {
select {
case s.sem <- struct{}{}:
return nil
case <-time.After(s.timeout):
return ErrNoTickets
}
}
// Release releases an acquired ticket back to the semaphore. It is safe to call
// Release concurrently on a single Semaphore. It is an error to call Release on
// a Semaphore from which you have not first acquired a ticket.
func (s *Semaphore) Release() {
<-s.sem
}

View file

@ -0,0 +1,61 @@
package semaphore
import (
"testing"
"time"
)
func TestSemaphoreAcquireRelease(t *testing.T) {
sem := New(3, 1*time.Second)
for i := 0; i < 10; i++ {
if err := sem.Acquire(); err != nil {
t.Error(err)
}
if err := sem.Acquire(); err != nil {
t.Error(err)
}
if err := sem.Acquire(); err != nil {
t.Error(err)
}
sem.Release()
sem.Release()
sem.Release()
}
}
func TestSemaphoreBlockTimeout(t *testing.T) {
sem := New(1, 200*time.Millisecond)
if err := sem.Acquire(); err != nil {
t.Error(err)
}
start := time.Now()
if err := sem.Acquire(); err != ErrNoTickets {
t.Error(err)
}
if start.Add(200 * time.Millisecond).After(time.Now()) {
t.Error("semaphore did not wait long enough")
}
sem.Release()
if err := sem.Acquire(); err != nil {
t.Error(err)
}
}
func ExampleSemaphore() {
sem := New(3, 1*time.Second)
for i := 0; i < 10; i++ {
go func() {
if err := sem.Acquire(); err != nil {
return //could not acquire semaphore
}
defer sem.Release()
// do something semaphore-guarded
}()
}
}

24
vendor/github.com/eapache/go-xerial-snappy/.gitignore generated vendored Normal file
View file

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof

View file

@ -0,0 +1,7 @@
language: go
go:
- 1.5.4
- 1.6.1
sudo: false

21
vendor/github.com/eapache/go-xerial-snappy/LICENSE generated vendored Normal file
View file

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13
vendor/github.com/eapache/go-xerial-snappy/README.md generated vendored Normal file
View file

@ -0,0 +1,13 @@
# go-xerial-snappy
[![Build Status](https://travis-ci.org/eapache/go-xerial-snappy.svg?branch=master)](https://travis-ci.org/eapache/go-xerial-snappy)
Xerial-compatible Snappy framing support for golang.
Packages using Xerial for snappy encoding use a framing format incompatible with
basically everything else in existence. This package wraps Go's built-in snappy
package to support it.
Apps that use this format include Apache Kafka (see
https://github.com/dpkp/kafka-python/issues/126#issuecomment-35478921 for
details).

43
vendor/github.com/eapache/go-xerial-snappy/snappy.go generated vendored Normal file
View file

@ -0,0 +1,43 @@
package snappy
import (
"bytes"
"encoding/binary"
master "github.com/golang/snappy"
)
var xerialHeader = []byte{130, 83, 78, 65, 80, 80, 89, 0}
// Encode encodes data as snappy with no framing header.
func Encode(src []byte) []byte {
return master.Encode(nil, src)
}
// Decode decodes snappy data whether it is traditional unframed
// or includes the xerial framing format.
func Decode(src []byte) ([]byte, error) {
if !bytes.Equal(src[:8], xerialHeader) {
return master.Decode(nil, src)
}
var (
pos = uint32(16)
max = uint32(len(src))
dst = make([]byte, 0, len(src))
chunk []byte
err error
)
for pos < max {
size := binary.BigEndian.Uint32(src[pos : pos+4])
pos += 4
chunk, err = master.Decode(chunk, src[pos:pos+size])
if err != nil {
return nil, err
}
pos += size
dst = append(dst, chunk...)
}
return dst, nil
}

File diff suppressed because one or more lines are too long

23
vendor/github.com/eapache/queue/.gitignore generated vendored Normal file
View file

@ -0,0 +1,23 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test

7
vendor/github.com/eapache/queue/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,7 @@
language: go
sudo: false
go:
- 1.2
- 1.3
- 1.4

21
vendor/github.com/eapache/queue/LICENSE generated vendored Normal file
View file

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

16
vendor/github.com/eapache/queue/README.md generated vendored Normal file
View file

@ -0,0 +1,16 @@
Queue
=====
[![Build Status](https://travis-ci.org/eapache/queue.svg)](https://travis-ci.org/eapache/queue)
[![GoDoc](https://godoc.org/github.com/eapache/queue?status.png)](https://godoc.org/github.com/eapache/queue)
[![Code of Conduct](https://img.shields.io/badge/code%20of%20conduct-active-blue.svg)](https://eapache.github.io/conduct.html)
A fast Golang queue using a ring-buffer, based on the version suggested by Dariusz Górecki.
Using this instead of other, simpler, queue implementations (slice+append or linked list) provides
substantial memory and time benefits, and fewer GC pauses.
The queue implemented here is as fast as it is in part because it is *not* thread-safe.
Follows semantic versioning using https://gopkg.in/ - import from
[`gopkg.in/eapache/queue.v1`](https://gopkg.in/eapache/queue.v1)
for guaranteed API stability.

88
vendor/github.com/eapache/queue/queue.go generated vendored Normal file
View file

@ -0,0 +1,88 @@
/*
Package queue provides a fast, ring-buffer queue based on the version suggested by Dariusz Górecki.
Using this instead of other, simpler, queue implementations (slice+append or linked list) provides
substantial memory and time benefits, and fewer GC pauses.
The queue implemented here is as fast as it is for an additional reason: it is *not* thread-safe.
*/
package queue
const minQueueLen = 16
// Queue represents a single instance of the queue data structure.
type Queue struct {
buf []interface{}
head, tail, count int
}
// New constructs and returns a new Queue.
func New() *Queue {
return &Queue{
buf: make([]interface{}, minQueueLen),
}
}
// Length returns the number of elements currently stored in the queue.
func (q *Queue) Length() int {
return q.count
}
// resizes the queue to fit exactly twice its current contents
// this can result in shrinking if the queue is less than half-full
func (q *Queue) resize() {
newBuf := make([]interface{}, q.count*2)
if q.tail > q.head {
copy(newBuf, q.buf[q.head:q.tail])
} else {
n := copy(newBuf, q.buf[q.head:])
copy(newBuf[n:], q.buf[:q.tail])
}
q.head = 0
q.tail = q.count
q.buf = newBuf
}
// Add puts an element on the end of the queue.
func (q *Queue) Add(elem interface{}) {
if q.count == len(q.buf) {
q.resize()
}
q.buf[q.tail] = elem
q.tail = (q.tail + 1) % len(q.buf)
q.count++
}
// Peek returns the element at the head of the queue. This call panics
// if the queue is empty.
func (q *Queue) Peek() interface{} {
if q.count <= 0 {
panic("queue: Peek() called on empty queue")
}
return q.buf[q.head]
}
// Get returns the element at index i in the queue. If the index is
// invalid, the call will panic.
func (q *Queue) Get(i int) interface{} {
if i < 0 || i >= q.count {
panic("queue: Get() called with index out of range")
}
return q.buf[(q.head+i)%len(q.buf)]
}
// Remove removes the element from the front of the queue. If you actually
// want the element, call Peek first. This call panics if the queue is empty.
func (q *Queue) Remove() {
if q.count <= 0 {
panic("queue: Remove() called on empty queue")
}
q.buf[q.head] = nil
q.head = (q.head + 1) % len(q.buf)
q.count--
if len(q.buf) > minQueueLen && q.count*4 == len(q.buf) {
q.resize()
}
}

162
vendor/github.com/eapache/queue/queue_test.go generated vendored Normal file
View file

@ -0,0 +1,162 @@
package queue
import "testing"
func TestQueueSimple(t *testing.T) {
q := New()
for i := 0; i < minQueueLen; i++ {
q.Add(i)
}
for i := 0; i < minQueueLen; i++ {
if q.Peek().(int) != i {
t.Error("peek", i, "had value", q.Peek())
}
q.Remove()
}
}
func TestQueueWrapping(t *testing.T) {
q := New()
for i := 0; i < minQueueLen; i++ {
q.Add(i)
}
for i := 0; i < 3; i++ {
q.Remove()
q.Add(minQueueLen + i)
}
for i := 0; i < minQueueLen; i++ {
if q.Peek().(int) != i+3 {
t.Error("peek", i, "had value", q.Peek())
}
q.Remove()
}
}
func TestQueueLength(t *testing.T) {
q := New()
if q.Length() != 0 {
t.Error("empty queue length not 0")
}
for i := 0; i < 1000; i++ {
q.Add(i)
if q.Length() != i+1 {
t.Error("adding: queue with", i, "elements has length", q.Length())
}
}
for i := 0; i < 1000; i++ {
q.Remove()
if q.Length() != 1000-i-1 {
t.Error("removing: queue with", 1000-i-i, "elements has length", q.Length())
}
}
}
func TestQueueGet(t *testing.T) {
q := New()
for i := 0; i < 1000; i++ {
q.Add(i)
for j := 0; j < q.Length(); j++ {
if q.Get(j).(int) != j {
t.Errorf("index %d doesn't contain %d", j, j)
}
}
}
}
func TestQueueGetOutOfRangePanics(t *testing.T) {
q := New()
q.Add(1)
q.Add(2)
q.Add(3)
assertPanics(t, "should panic when negative index", func() {
q.Get(-1)
})
assertPanics(t, "should panic when index greater than length", func() {
q.Get(4)
})
}
func TestQueuePeekOutOfRangePanics(t *testing.T) {
q := New()
assertPanics(t, "should panic when peeking empty queue", func() {
q.Peek()
})
q.Add(1)
q.Remove()
assertPanics(t, "should panic when peeking emptied queue", func() {
q.Peek()
})
}
func TestQueueRemoveOutOfRangePanics(t *testing.T) {
q := New()
assertPanics(t, "should panic when removing empty queue", func() {
q.Remove()
})
q.Add(1)
q.Remove()
assertPanics(t, "should panic when removing emptied queue", func() {
q.Remove()
})
}
func assertPanics(t *testing.T, name string, f func()) {
defer func() {
if r := recover(); r == nil {
t.Errorf("%s: didn't panic as expected", name)
}
}()
f()
}
// General warning: Go's benchmark utility (go test -bench .) increases the number of
// iterations until the benchmarks take a reasonable amount of time to run; memory usage
// is *NOT* considered. On my machine, these benchmarks hit around ~1GB before they've had
// enough, but if you have less than that available and start swapping, then all bets are off.
func BenchmarkQueueSerial(b *testing.B) {
q := New()
for i := 0; i < b.N; i++ {
q.Add(nil)
}
for i := 0; i < b.N; i++ {
q.Peek()
q.Remove()
}
}
func BenchmarkQueueGet(b *testing.B) {
q := New()
for i := 0; i < b.N; i++ {
q.Add(i)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
q.Get(i)
}
}
func BenchmarkQueueTickTock(b *testing.B) {
q := New()
for i := 0; i < b.N; i++ {
q.Add(nil)
q.Peek()
q.Remove()
}
}