Update kubernetes/client-go to v7.0.0 (#1808)

This fix updates k8s' client-go to v7.0.0, which matches k8s 1.10.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
This commit is contained in:
Yong Tang 2018-05-16 23:10:28 -07:00 committed by Miek Gieben
parent 9a82fa0374
commit b109a79cb5
730 changed files with 17431 additions and 43251 deletions

View file

@ -1 +0,0 @@
language: go

View file

@ -1,202 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View file

@ -1,12 +0,0 @@
# BTree implementation for Go
![Travis CI Build Status](https://api.travis-ci.org/google/btree.svg?branch=master)
This package provides an in-memory B-Tree implementation for Go, useful as
an ordered, mutable data structure.
The API is based off of the wonderful
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
act as a drop-in replacement for gollrb trees.
See http://godoc.org/github.com/google/btree for documentation.

View file

@ -1,881 +0,0 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implementation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values.
package btree
import (
"fmt"
"io"
"sort"
"strings"
"sync"
)
// Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
}
const (
DefaultFreeListSize = 32
)
var (
nilItems = make(items, 16)
nilChildren = make(children, 16)
)
// FreeList represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList.
// Two Btrees using the same freelist are safe for concurrent write access.
type FreeList struct {
mu sync.Mutex
freelist []*node
}
// NewFreeList creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeList(size int) *FreeList {
return &FreeList{freelist: make([]*node, 0, size)}
}
func (f *FreeList) newNode() (n *node) {
f.mu.Lock()
index := len(f.freelist) - 1
if index < 0 {
f.mu.Unlock()
return new(node)
}
n = f.freelist[index]
f.freelist[index] = nil
f.freelist = f.freelist[:index]
f.mu.Unlock()
return
}
// freeNode adds the given node to the list, returning true if it was added
// and false if it was discarded.
func (f *FreeList) freeNode(n *node) (out bool) {
f.mu.Lock()
if len(f.freelist) < cap(f.freelist) {
f.freelist = append(f.freelist, n)
out = true
}
f.mu.Unlock()
return
}
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator func(i Item) bool
// New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
}
// NewWithFreeList creates a new B-Tree that uses the given node free list.
func NewWithFreeList(degree int, f *FreeList) *BTree {
if degree <= 1 {
panic("bad degree")
}
return &BTree{
degree: degree,
cow: &copyOnWriteContext{freelist: f},
}
}
// items stores items in a node.
type items []Item
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, item Item) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = item
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Item {
item := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
(*s)[len(*s)-1] = nil
*s = (*s)[:len(*s)-1]
return item
}
// pop removes and returns the last element in the list.
func (s *items) pop() (out Item) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// truncate truncates this instance at index so that it contains only the
// first index items. index must be less than or equal to length.
func (s *items) truncate(index int) {
var toClear items
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > 0 {
toClear = toClear[copy(toClear, nilItems):]
}
}
// find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items) find(item Item) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return item.Less(s[i])
})
if i > 0 && !s[i-1].Less(item) {
return i - 1, true
}
return i, false
}
// children stores child nodes in a node.
type children []*node
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = n
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
(*s)[len(*s)-1] = nil
*s = (*s)[:len(*s)-1]
return n
}
// pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// truncate truncates this instance at index so that it contains only the
// first index children. index must be less than or equal to length.
func (s *children) truncate(index int) {
var toClear children
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > 0 {
toClear = toClear[copy(toClear, nilChildren):]
}
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node struct {
items items
children children
cow *copyOnWriteContext
}
func (n *node) mutableFor(cow *copyOnWriteContext) *node {
if n.cow == cow {
return n
}
out := cow.newNode()
if cap(out.items) >= len(n.items) {
out.items = out.items[:len(n.items)]
} else {
out.items = make(items, len(n.items), cap(n.items))
}
copy(out.items, n.items)
// Copy children
if cap(out.children) >= len(n.children) {
out.children = out.children[:len(n.children)]
} else {
out.children = make(children, len(n.children), cap(n.children))
}
copy(out.children, n.children)
return out
}
func (n *node) mutableChild(i int) *node {
c := n.children[i].mutableFor(n.cow)
n.children[i] = c
return c
}
// split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node) split(i int) (Item, *node) {
item := n.items[i]
next := n.cow.newNode()
next.items = append(next.items, n.items[i+1:]...)
n.items.truncate(i)
if len(n.children) > 0 {
next.children = append(next.children, n.children[i+1:]...)
n.children.truncate(i + 1)
}
return item, next
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.mutableChild(i)
item, second := first.split(maxItems / 2)
n.items.insertAt(i, item)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node) insert(item Item, maxItems int) Item {
i, found := n.items.find(item)
if found {
out := n.items[i]
n.items[i] = item
return out
}
if len(n.children) == 0 {
n.items.insertAt(i, item)
return nil
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case item.Less(inTree):
// no change, we want first split node
case inTree.Less(item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out
}
}
return n.mutableChild(i).insert(item, maxItems)
}
// get finds the given key in the subtree and returns it.
func (n *node) get(key Item) Item {
i, found := n.items.find(key)
if found {
return n.items[i]
} else if len(n.children) > 0 {
return n.children[i].get(key)
}
return nil
}
// min returns the first item in the subtree.
func min(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[0]
}
if len(n.items) == 0 {
return nil
}
return n.items[0]
}
// max returns the last item in the subtree.
func max(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[len(n.children)-1]
}
if len(n.items) == 0 {
return nil
}
return n.items[len(n.items)-1]
}
// toRemove details what item to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
)
// remove removes an item from the subtree rooted at this node.
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.items.pop()
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.items.removeAt(0)
}
i = 0
case removeItem:
i, found = n.items.find(item)
if len(n.children) == 0 {
if found {
return n.items.removeAt(i)
}
return nil
}
default:
panic("invalid type")
}
// If we get to here, we have children.
if len(n.children[i].items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
child := n.mutableChild(i)
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
n.items[i] = child.remove(nil, minItems, removeMax)
return out
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
if i > 0 && len(n.children[i-1].items) > minItems {
// Steal from left child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i - 1)
stolenItem := stealFrom.items.pop()
child.items.insertAt(0, n.items[i-1])
n.items[i-1] = stolenItem
if len(stealFrom.children) > 0 {
child.children.insertAt(0, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
// steal from right child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i + 1)
stolenItem := stealFrom.items.removeAt(0)
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > 0 {
child.children = append(child.children, stealFrom.children.removeAt(0))
}
} else {
if i >= len(n.items) {
i--
}
child := n.mutableChild(i)
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.cow.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
}
type direction int
const (
descend = direction(-1)
ascend = direction(+1)
)
// iterate provides a simple method for iterating over elements in the tree.
//
// When ascending, the 'start' should be less than 'stop' and when descending,
// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
// will force the iterator to include the first item when it equals 'start',
// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
// "greaterThan" or "lessThan" queries.
func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
var ok bool
switch dir {
case ascend:
for i := 0; i < len(n.items); i++ {
if start != nil && n.items[i].Less(start) {
continue
}
if len(n.children) > 0 {
if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
hit = true
continue
}
hit = true
if stop != nil && !n.items[i].Less(stop) {
return hit, false
}
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
case descend:
for i := len(n.items) - 1; i >= 0; i-- {
if start != nil && !n.items[i].Less(start) {
if !includeStart || hit || start.Less(n.items[i]) {
continue
}
}
if len(n.children) > 0 {
if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if stop != nil && !stop.Less(n.items[i]) {
return hit, false // continue
}
hit = true
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
}
return hit, true
}
// Used for testing/debugging purposes.
func (n *node) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+1)
}
}
// BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree struct {
degree int
length int
root *node
cow *copyOnWriteContext
}
// copyOnWriteContext pointers determine node ownership... a tree with a write
// context equivalent to a node's write context is allowed to modify that node.
// A tree whose write context does not match a node's is not allowed to modify
// it, and must create a new, writable copy (IE: it's a Clone).
//
// When doing any write operation, we maintain the invariant that the current
// node's context is equal to the context of the tree that requested the write.
// We do this by, before we descend into any node, creating a copy with the
// correct context if the contexts don't match.
//
// Since the node we're currently visiting on any write has the requesting
// tree's context, that node is modifiable in place. Children of that node may
// not share context, but before we descend into them, we'll make a mutable
// copy.
type copyOnWriteContext struct {
freelist *FreeList
}
// Clone clones the btree, lazily. Clone should not be called concurrently,
// but the original tree (t) and the new tree (t2) can be used concurrently
// once the Clone call completes.
//
// The internal tree structure of b is marked read-only and shared between t and
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
// whenever one of b's original nodes would have been modified. Read operations
// should have no performance degredation. Write operations for both t and t2
// will initially experience minor slow-downs caused by additional allocs and
// copies due to the aforementioned copy-on-write logic, but should converge to
// the original performance characteristics of the original tree.
func (t *BTree) Clone() (t2 *BTree) {
// Create two entirely new copy-on-write contexts.
// This operation effectively creates three trees:
// the original, shared nodes (old b.cow)
// the new b.cow nodes
// the new out.cow nodes
cow1, cow2 := *t.cow, *t.cow
out := *t
t.cow = &cow1
out.cow = &cow2
return &out
}
// maxItems returns the max number of items to allow per node.
func (t *BTree) maxItems() int {
return t.degree*2 - 1
}
// minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTree) minItems() int {
return t.degree - 1
}
func (c *copyOnWriteContext) newNode() (n *node) {
n = c.freelist.newNode()
n.cow = c
return
}
type freeType int
const (
ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
ftStored // node was stored in the freelist for later use
ftNotOwned // node was ignored by COW, since it's owned by another one
)
// freeNode frees a node within a given COW context, if it's owned by that
// context. It returns what happened to the node (see freeType const
// documentation).
func (c *copyOnWriteContext) freeNode(n *node) freeType {
if n.cow == c {
// clear to allow GC
n.items.truncate(0)
n.children.truncate(0)
n.cow = nil
if c.freelist.freeNode(n) {
return ftStored
} else {
return ftFreelistFull
}
} else {
return ftNotOwned
}
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.
//
// nil cannot be added to the tree (will panic).
func (t *BTree) ReplaceOrInsert(item Item) Item {
if item == nil {
panic("nil item being added to BTree")
}
if t.root == nil {
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item)
t.length++
return nil
} else {
t.root = t.root.mutableFor(t.cow)
if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / 2)
oldroot := t.root
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
}
out := t.root.insert(item, t.maxItems())
if out == nil {
t.length++
}
return out
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
return t.deleteItem(item, removeItem)
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
return t.deleteItem(nil, removeMin)
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
return t.deleteItem(nil, removeMax)
}
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
if t.root == nil || len(t.root.items) == 0 {
return nil
}
t.root = t.root.mutableFor(t.cow)
out := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
oldroot := t.root
t.root = t.root.children[0]
t.cow.freeNode(oldroot)
}
if out != nil {
t.length--
}
return out
}
// AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
}
// AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, pivot, false, false, iterator)
}
// AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, pivot, nil, true, false, iterator)
}
// Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTree) Ascend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, nil, false, false, iterator)
}
// DescendRange calls the iterator for every value in the tree within the range
// [lessOrEqual, greaterThan), until iterator returns false.
func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
}
// DescendLessOrEqual calls the iterator for every value in the tree within the range
// [pivot, first], until iterator returns false.
func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, pivot, nil, true, false, iterator)
}
// DescendGreaterThan calls the iterator for every value in the tree within
// the range (pivot, last], until iterator returns false.
func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, pivot, false, false, iterator)
}
// Descend calls the iterator for every value in the tree within the range
// [last, first], until iterator returns false.
func (t *BTree) Descend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, nil, false, false, iterator)
}
// Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
if t.root == nil {
return nil
}
return t.root.get(key)
}
// Min returns the smallest item in the tree, or nil if the tree is empty.
func (t *BTree) Min() Item {
return min(t.root)
}
// Max returns the largest item in the tree, or nil if the tree is empty.
func (t *BTree) Max() Item {
return max(t.root)
}
// Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return t.Get(key) != nil
}
// Len returns the number of items currently in the tree.
func (t *BTree) Len() int {
return t.length
}
// Clear removes all items from the btree. If addNodesToFreelist is true,
// t's nodes are added to its freelist as part of this call, until the freelist
// is full. Otherwise, the root node is simply dereferenced and the subtree
// left to Go's normal GC processes.
//
// This can be much faster
// than calling Delete on all elements, because that requires finding/removing
// each element in the tree and updating the tree accordingly. It also is
// somewhat faster than creating a new tree to replace the old one, because
// nodes from the old tree are reclaimed into the freelist for use by the new
// one, instead of being lost to the garbage collector.
//
// This call takes:
// O(1): when addNodesToFreelist is false, this is a single operation.
// O(1): when the freelist is already full, it breaks out immediately
// O(freelist size): when the freelist is empty and the nodes are all owned
// by this tree, nodes are added to the freelist until full.
// O(tree size): when all nodes are owned by another tree, all nodes are
// iterated over looking for nodes to add to the freelist, and due to
// ownership, none are.
func (t *BTree) Clear(addNodesToFreelist bool) {
if t.root != nil && addNodesToFreelist {
t.root.reset(t.cow)
}
t.root, t.length = nil, 0
}
// reset returns a subtree to the freelist. It breaks out immediately if the
// freelist is full, since the only benefit of iterating is to fill that
// freelist up. Returns true if parent reset call should continue.
func (n *node) reset(c *copyOnWriteContext) bool {
for _, child := range n.children {
if !child.reset(c) {
return false
}
}
return c.freeNode(n) != ftFreelistFull
}
// Int implements the Item interface for integers.
type Int int
// Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}

View file

@ -1,76 +0,0 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build ignore
// This binary compares memory usage between btree and gollrb.
package main
import (
"flag"
"fmt"
"math/rand"
"runtime"
"time"
"github.com/google/btree"
"github.com/petar/GoLLRB/llrb"
)
var (
size = flag.Int("size", 1000000, "size of the tree to build")
degree = flag.Int("degree", 8, "degree of btree")
gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
)
func main() {
flag.Parse()
vals := rand.Perm(*size)
var t, v interface{}
v = vals
var stats runtime.MemStats
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- BEFORE ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
start := time.Now()
if *gollrb {
tr := llrb.New()
for _, v := range vals {
tr.ReplaceOrInsert(llrb.Int(v))
}
t = tr // keep it around
} else {
tr := btree.New(*degree)
for _, v := range vals {
tr.ReplaceOrInsert(btree.Int(v))
}
t = tr // keep it around
}
fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
fmt.Println("-------- AFTER ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- AFTER GC ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
if t == v {
fmt.Println("to make sure vals and tree aren't GC'd")
}
}

View file

@ -1,770 +0,0 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package btree
import (
"flag"
"fmt"
"math/rand"
"reflect"
"sort"
"sync"
"testing"
"time"
)
func init() {
seed := time.Now().Unix()
fmt.Println(seed)
rand.Seed(seed)
}
// perm returns a random permutation of n Int items in the range [0, n).
func perm(n int) (out []Item) {
for _, v := range rand.Perm(n) {
out = append(out, Int(v))
}
return
}
// rang returns an ordered list of Int items in the range [0, n).
func rang(n int) (out []Item) {
for i := 0; i < n; i++ {
out = append(out, Int(i))
}
return
}
// all extracts all items from a tree in order as a slice.
func all(t *BTree) (out []Item) {
t.Ascend(func(a Item) bool {
out = append(out, a)
return true
})
return
}
// rangerev returns a reversed ordered list of Int items in the range [0, n).
func rangrev(n int) (out []Item) {
for i := n - 1; i >= 0; i-- {
out = append(out, Int(i))
}
return
}
// allrev extracts all items from a tree in reverse order as a slice.
func allrev(t *BTree) (out []Item) {
t.Descend(func(a Item) bool {
out = append(out, a)
return true
})
return
}
var btreeDegree = flag.Int("degree", 32, "B-Tree degree")
func TestBTree(t *testing.T) {
tr := New(*btreeDegree)
const treeSize = 10000
for i := 0; i < 10; i++ {
if min := tr.Min(); min != nil {
t.Fatalf("empty min, got %+v", min)
}
if max := tr.Max(); max != nil {
t.Fatalf("empty max, got %+v", max)
}
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x != nil {
t.Fatal("insert found item", item)
}
}
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x == nil {
t.Fatal("insert didn't find item", item)
}
}
if min, want := tr.Min(), Item(Int(0)); min != want {
t.Fatalf("min: want %+v, got %+v", want, min)
}
if max, want := tr.Max(), Item(Int(treeSize-1)); max != want {
t.Fatalf("max: want %+v, got %+v", want, max)
}
got := all(tr)
want := rang(treeSize)
if !reflect.DeepEqual(got, want) {
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
}
gotrev := allrev(tr)
wantrev := rangrev(treeSize)
if !reflect.DeepEqual(gotrev, wantrev) {
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
}
for _, item := range perm(treeSize) {
if x := tr.Delete(item); x == nil {
t.Fatalf("didn't find %v", item)
}
}
if got = all(tr); len(got) > 0 {
t.Fatalf("some left!: %v", got)
}
}
}
func ExampleBTree() {
tr := New(*btreeDegree)
for i := Int(0); i < 10; i++ {
tr.ReplaceOrInsert(i)
}
fmt.Println("len: ", tr.Len())
fmt.Println("get3: ", tr.Get(Int(3)))
fmt.Println("get100: ", tr.Get(Int(100)))
fmt.Println("del4: ", tr.Delete(Int(4)))
fmt.Println("del100: ", tr.Delete(Int(100)))
fmt.Println("replace5: ", tr.ReplaceOrInsert(Int(5)))
fmt.Println("replace100:", tr.ReplaceOrInsert(Int(100)))
fmt.Println("min: ", tr.Min())
fmt.Println("delmin: ", tr.DeleteMin())
fmt.Println("max: ", tr.Max())
fmt.Println("delmax: ", tr.DeleteMax())
fmt.Println("len: ", tr.Len())
// Output:
// len: 10
// get3: 3
// get100: <nil>
// del4: 4
// del100: <nil>
// replace5: 5
// replace100: <nil>
// min: 0
// delmin: 0
// max: 100
// delmax: 100
// len: 8
}
func TestDeleteMin(t *testing.T) {
tr := New(3)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMin(); v != nil; v = tr.DeleteMin() {
got = append(got, v)
}
if want := rang(100); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestDeleteMax(t *testing.T) {
tr := New(3)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMax(); v != nil; v = tr.DeleteMax() {
got = append(got, v)
}
// Reverse our list.
for i := 0; i < len(got)/2; i++ {
got[i], got[len(got)-i-1] = got[len(got)-i-1], got[i]
}
if want := rang(100); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendRange(t *testing.T) {
tr := New(2)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[40:60]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestDescendRange(t *testing.T) {
tr := New(2)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendRange(Int(60), Int(40), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev(100)[39:59]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.DescendRange(Int(60), Int(40), func(a Item) bool {
if a.(Int) < 50 {
return false
}
got = append(got, a)
return true
})
if want := rangrev(100)[39:50]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendLessThan(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendLessThan(Int(60), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[:60]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendLessThan(Int(60), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestDescendLessOrEqual(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendLessOrEqual(Int(40), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev(100)[59:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.DescendLessOrEqual(Int(60), func(a Item) bool {
if a.(Int) < 50 {
return false
}
got = append(got, a)
return true
})
if want := rangrev(100)[39:50]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendGreaterOrEqual(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[40:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestDescendGreaterThan(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendGreaterThan(Int(40), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev(100)[:59]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.DescendGreaterThan(Int(40), func(a Item) bool {
if a.(Int) < 50 {
return false
}
got = append(got, a)
return true
})
if want := rangrev(100)[:50]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
}
}
const benchmarkTreeSize = 10000
func BenchmarkInsert(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
i++
if i >= b.N {
return
}
}
}
}
func BenchmarkDeleteInsert(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
}
func BenchmarkDeleteInsertCloneOnce(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
tr = tr.Clone()
b.StartTimer()
for i := 0; i < b.N; i++ {
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
}
func BenchmarkDeleteInsertCloneEachTime(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
tr = tr.Clone()
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
}
func BenchmarkDelete(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Delete(item)
i++
if i >= b.N {
return
}
}
if tr.Len() > 0 {
panic(tr.Len())
}
}
}
func BenchmarkGet(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Get(item)
i++
if i >= b.N {
return
}
}
}
}
func BenchmarkGetCloneEachTime(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr = tr.Clone()
tr.Get(item)
i++
if i >= b.N {
return
}
}
}
}
type byInts []Item
func (a byInts) Len() int {
return len(a)
}
func (a byInts) Less(i, j int) bool {
return a[i].(Int) < a[j].(Int)
}
func (a byInts) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
}
func BenchmarkAscend(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := 0
tr.Ascend(func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
return true
})
}
}
func BenchmarkDescend(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := len(arr) - 1
tr.Descend(func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
return true
})
}
}
func BenchmarkAscendRange(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := 100
tr.AscendRange(Int(100), arr[len(arr)-100], func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
return true
})
if j != len(arr)-100 {
b.Fatalf("expected: %v, got %v", len(arr)-100, j)
}
}
}
func BenchmarkDescendRange(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := len(arr) - 100
tr.DescendRange(arr[len(arr)-100], Int(100), func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
return true
})
if j != 100 {
b.Fatalf("expected: %v, got %v", len(arr)-100, j)
}
}
}
func BenchmarkAscendGreaterOrEqual(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := 100
k := 0
tr.AscendGreaterOrEqual(Int(100), func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
k++
return true
})
if j != len(arr) {
b.Fatalf("expected: %v, got %v", len(arr), j)
}
if k != len(arr)-100 {
b.Fatalf("expected: %v, got %v", len(arr)-100, k)
}
}
}
func BenchmarkDescendLessOrEqual(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := 0; i < b.N; i++ {
j := len(arr) - 100
k := len(arr)
tr.DescendLessOrEqual(arr[len(arr)-100], func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
k--
return true
})
if j != -1 {
b.Fatalf("expected: %v, got %v", -1, j)
}
if k != 99 {
b.Fatalf("expected: %v, got %v", 99, k)
}
}
}
const cloneTestSize = 10000
func cloneTest(t *testing.T, b *BTree, start int, p []Item, wg *sync.WaitGroup, trees *[]*BTree) {
t.Logf("Starting new clone at %v", start)
*trees = append(*trees, b)
for i := start; i < cloneTestSize; i++ {
b.ReplaceOrInsert(p[i])
if i%(cloneTestSize/5) == 0 {
wg.Add(1)
go cloneTest(t, b.Clone(), i+1, p, wg, trees)
}
}
wg.Done()
}
func TestCloneConcurrentOperations(t *testing.T) {
b := New(*btreeDegree)
trees := []*BTree{}
p := perm(cloneTestSize)
var wg sync.WaitGroup
wg.Add(1)
go cloneTest(t, b, 0, p, &wg, &trees)
wg.Wait()
want := rang(cloneTestSize)
t.Logf("Starting equality checks on %d trees", len(trees))
for i, tree := range trees {
if !reflect.DeepEqual(want, all(tree)) {
t.Errorf("tree %v mismatch", i)
}
}
t.Log("Removing half from first half")
toRemove := rang(cloneTestSize)[cloneTestSize/2:]
for i := 0; i < len(trees)/2; i++ {
tree := trees[i]
wg.Add(1)
go func() {
for _, item := range toRemove {
tree.Delete(item)
}
wg.Done()
}()
}
wg.Wait()
t.Log("Checking all values again")
for i, tree := range trees {
var wantpart []Item
if i < len(trees)/2 {
wantpart = want[:cloneTestSize/2]
} else {
wantpart = want
}
if got := all(tree); !reflect.DeepEqual(wantpart, got) {
t.Errorf("tree %v mismatch, want %v got %v", i, len(want), len(got))
}
}
}
func BenchmarkDeleteAndRestore(b *testing.B) {
items := perm(16392)
b.ResetTimer()
b.Run(`CopyBigFreeList`, func(b *testing.B) {
fl := NewFreeList(16392)
tr := NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
dels := make([]Item, 0, tr.Len())
tr.Ascend(ItemIterator(func(b Item) bool {
dels = append(dels, b)
return true
}))
for _, del := range dels {
tr.Delete(del)
}
// tr is now empty, we make a new empty copy of it.
tr = NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`Copy`, func(b *testing.B) {
tr := New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
dels := make([]Item, 0, tr.Len())
tr.Ascend(ItemIterator(func(b Item) bool {
dels = append(dels, b)
return true
}))
for _, del := range dels {
tr.Delete(del)
}
// tr is now empty, we make a new empty copy of it.
tr = New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`ClearBigFreelist`, func(b *testing.B) {
fl := NewFreeList(16392)
tr := NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
tr.Clear(true)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`Clear`, func(b *testing.B) {
tr := New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
tr.Clear(true)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
}