coredns/plugin/pkg/cache/cache.go
Miek Gieben 13cef2ee09
plugin/dnssec: use entire RRset as key input (#4537)
* plugin/dnssec: use entire RRset as key input

This uses the entire rrset as input for the hash key; this is to detect
differences in the RRset and generate the correct signature.

As this would then lead to unbounded growth, we periodically (every 8h)
prune the cache of old entries. In theory we could rely on the random
eviction, but it seems nicer to do this in a maintannce loop so that we
remove the unused ones. This required adding a Walk function to the
plugin/pkg/cache.

Signed-off-by: Miek Gieben <miek@miek.nl>

* Update plugin/dnssec/cache.go

Co-authored-by: Chris O'Haver <cohaver@infoblox.com>

Co-authored-by: Chris O'Haver <cohaver@infoblox.com>
2021-04-05 06:45:28 -07:00

157 lines
3.3 KiB
Go

// Package cache implements a cache. The cache hold 256 shards, each shard
// holds a cache: a map with a mutex. There is no fancy expunge algorithm, it
// just randomly evicts elements when it gets full.
package cache
import (
"hash/fnv"
"sync"
)
// Hash returns the FNV hash of what.
func Hash(what []byte) uint64 {
h := fnv.New64()
h.Write(what)
return h.Sum64()
}
// Cache is cache.
type Cache struct {
shards [shardSize]*shard
}
// shard is a cache with random eviction.
type shard struct {
items map[uint64]interface{}
size int
sync.RWMutex
}
// New returns a new cache.
func New(size int) *Cache {
ssize := size / shardSize
if ssize < 4 {
ssize = 4
}
c := &Cache{}
// Initialize all the shards
for i := 0; i < shardSize; i++ {
c.shards[i] = newShard(ssize)
}
return c
}
// Add adds a new element to the cache. If the element already exists it is overwritten.
// Returns true if an existing element was evicted to make room for this element.
func (c *Cache) Add(key uint64, el interface{}) bool {
shard := key & (shardSize - 1)
return c.shards[shard].Add(key, el)
}
// Get looks up element index under key.
func (c *Cache) Get(key uint64) (interface{}, bool) {
shard := key & (shardSize - 1)
return c.shards[shard].Get(key)
}
// Remove removes the element indexed with key.
func (c *Cache) Remove(key uint64) {
shard := key & (shardSize - 1)
c.shards[shard].Remove(key)
}
// Len returns the number of elements in the cache.
func (c *Cache) Len() int {
l := 0
for _, s := range c.shards {
l += s.Len()
}
return l
}
// Walk walks each shard in the cache.
func (c *Cache) Walk(f func(map[uint64]interface{}, uint64) bool) {
for _, s := range c.shards {
s.Walk(f)
}
}
// newShard returns a new shard with size.
func newShard(size int) *shard { return &shard{items: make(map[uint64]interface{}), size: size} }
// Add adds element indexed by key into the cache. Any existing element is overwritten
// Returns true if an existing element was evicted to make room for this element.
func (s *shard) Add(key uint64, el interface{}) bool {
eviction := false
s.Lock()
if len(s.items) >= s.size {
if _, ok := s.items[key]; !ok {
for k := range s.items {
delete(s.items, k)
eviction = true
break
}
}
}
s.items[key] = el
s.Unlock()
return eviction
}
// Remove removes the element indexed by key from the cache.
func (s *shard) Remove(key uint64) {
s.Lock()
delete(s.items, key)
s.Unlock()
}
// Evict removes a random element from the cache.
func (s *shard) Evict() {
s.Lock()
for k := range s.items {
delete(s.items, k)
break
}
s.Unlock()
}
// Get looks up the element indexed under key.
func (s *shard) Get(key uint64) (interface{}, bool) {
s.RLock()
el, found := s.items[key]
s.RUnlock()
return el, found
}
// Len returns the current length of the cache.
func (s *shard) Len() int {
s.RLock()
l := len(s.items)
s.RUnlock()
return l
}
// Walk walks the shard for each element the function f is executed while holding a write lock.
func (s *shard) Walk(f func(map[uint64]interface{}, uint64) bool) {
items := make([]uint64, len(s.items))
s.RLock()
i := 0
for k := range s.items {
items[i] = k
i++
}
s.RUnlock()
for _, k := range items {
s.Lock()
ok := f(s.items, k)
s.Unlock()
if !ok {
return
}
}
}
const shardSize = 256