coredns/plugin/pkg/cache/cache.go
Charlie Vieth 031dfede90 pkg/cache: fix race in Add() and Evict() (#3013)
* pkg/cache: fix race in Add() and Evict()

This fixes a race in Add() when the shard is at max capacity and the key
being added is already stored.  Previously, the shard would evict a
random value - when all it needed to do was replace an existing value.
There was a race in how Evict() picked which key to remove, which would
cause concurrent calls to Evict() to remove the same key.

Additionally, this commit removes a lot of the lock contention and a
race around Add() and Evict() by changing them to immediately hold the
write lock.  Previously, they would check conditions with the read lock
held and not re-check those conditions once the write lock was acquired
(this is a race).

* pkg/cache: code review comments

* pkg/cache: simplify Add() logic
2019-07-19 09:19:03 +00:00

125 lines
2.5 KiB
Go

// Package cache implements a cache. The cache hold 256 shards, each shard
// holds a cache: a map with a mutex. There is no fancy expunge algorithm, it
// just randomly evicts elements when it gets full.
package cache
import (
"hash/fnv"
"sync"
)
// Hash returns the FNV hash of what.
func Hash(what []byte) uint64 {
h := fnv.New64()
h.Write(what)
return h.Sum64()
}
// Cache is cache.
type Cache struct {
shards [shardSize]*shard
}
// shard is a cache with random eviction.
type shard struct {
items map[uint64]interface{}
size int
sync.RWMutex
}
// New returns a new cache.
func New(size int) *Cache {
ssize := size / shardSize
if ssize < 4 {
ssize = 4
}
c := &Cache{}
// Initialize all the shards
for i := 0; i < shardSize; i++ {
c.shards[i] = newShard(ssize)
}
return c
}
// Add adds a new element to the cache. If the element already exists it is overwritten.
func (c *Cache) Add(key uint64, el interface{}) {
shard := key & (shardSize - 1)
c.shards[shard].Add(key, el)
}
// Get looks up element index under key.
func (c *Cache) Get(key uint64) (interface{}, bool) {
shard := key & (shardSize - 1)
return c.shards[shard].Get(key)
}
// Remove removes the element indexed with key.
func (c *Cache) Remove(key uint64) {
shard := key & (shardSize - 1)
c.shards[shard].Remove(key)
}
// Len returns the number of elements in the cache.
func (c *Cache) Len() int {
l := 0
for _, s := range c.shards {
l += s.Len()
}
return l
}
// newShard returns a new shard with size.
func newShard(size int) *shard { return &shard{items: make(map[uint64]interface{}), size: size} }
// Add adds element indexed by key into the cache. Any existing element is overwritten
func (s *shard) Add(key uint64, el interface{}) {
s.Lock()
if len(s.items) >= s.size {
if _, ok := s.items[key]; !ok {
for k := range s.items {
delete(s.items, k)
break
}
}
}
s.items[key] = el
s.Unlock()
}
// Remove removes the element indexed by key from the cache.
func (s *shard) Remove(key uint64) {
s.Lock()
delete(s.items, key)
s.Unlock()
}
// Evict removes a random element from the cache.
func (s *shard) Evict() {
s.Lock()
for k := range s.items {
delete(s.items, k)
break
}
s.Unlock()
}
// Get looks up the element indexed under key.
func (s *shard) Get(key uint64) (interface{}, bool) {
s.RLock()
el, found := s.items[key]
s.RUnlock()
return el, found
}
// Len returns the current length of the cache.
func (s *shard) Len() int {
s.RLock()
l := len(s.items)
s.RUnlock()
return l
}
const shardSize = 256