coredns/core/dnsserver/server.go
Miek Gieben bcd9c8b0fb server: fix data race (#536)
* server: fix data race

This fixes the detected race.

Fixes #534

* Remove the listener and packetconn from Server

There does not seem a need to store the listener and packetconn again
in the Server structure. The dns.Servers already has access to them
and can also shutdown the handlers.
2017-02-19 20:34:09 +00:00

281 lines
7.6 KiB
Go

// Package dnsserver implements all the interfaces from Caddy, so that CoreDNS can be a servertype plugin.
package dnsserver
import (
"fmt"
"log"
"net"
"runtime"
"sync"
"time"
"github.com/miekg/coredns/middleware"
"github.com/miekg/coredns/middleware/metrics/vars"
"github.com/miekg/coredns/middleware/pkg/edns"
"github.com/miekg/coredns/middleware/pkg/rcode"
"github.com/miekg/coredns/request"
"github.com/miekg/dns"
"golang.org/x/net/context"
)
// Server represents an instance of a server, which serves
// DNS requests at a particular address (host and port). A
// server is capable of serving numerous zones on
// the same address and the listener may be stopped for
// graceful termination (POSIX only).
type Server struct {
Addr string // Address we listen on
mux *dns.ServeMux
server [2]*dns.Server // 0 is a net.Listener, 1 is a net.PacketConn (a *UDPConn) in our case.
m sync.Mutex // protects the servers
zones map[string]*Config // zones keyed by their address
dnsWg sync.WaitGroup // used to wait on outstanding connections
connTimeout time.Duration // the maximum duration of a graceful shutdown
}
// NewServer returns a new CoreDNS server and compiles all middleware in to it.
func NewServer(addr string, group []*Config) (*Server, error) {
s := &Server{
Addr: addr,
zones: make(map[string]*Config),
connTimeout: 5 * time.Second, // TODO(miek): was configurable
}
mux := dns.NewServeMux()
mux.Handle(".", s) // wildcard handler, everything will go through here
s.mux = mux
// We have to bound our wg with one increment
// to prevent a "race condition" that is hard-coded
// into sync.WaitGroup.Wait() - basically, an add
// with a positive delta must be guaranteed to
// occur before Wait() is called on the wg.
// In a way, this kind of acts as a safety barrier.
s.dnsWg.Add(1)
for _, site := range group {
// set the config per zone
s.zones[site.Zone] = site
// compile custom middleware for everything
var stack middleware.Handler
for i := len(site.Middleware) - 1; i >= 0; i-- {
stack = site.Middleware[i](stack)
}
site.middlewareChain = stack
site.Server = s
}
return s, nil
}
// Serve starts the server with an existing listener. It blocks until the server stops.
// This implements caddy.TCPServer interface.
func (s *Server) Serve(l net.Listener) error {
s.m.Lock()
s.server[tcp] = &dns.Server{Listener: l, Net: "tcp", Handler: s.mux}
s.m.Unlock()
return s.server[tcp].ActivateAndServe()
}
// ServePacket starts the server with an existing packetconn. It blocks until the server stops.
// This implements caddy.UDPServer interface.
func (s *Server) ServePacket(p net.PacketConn) error {
s.m.Lock()
s.server[udp] = &dns.Server{PacketConn: p, Net: "udp", Handler: s.mux}
s.m.Unlock()
return s.server[udp].ActivateAndServe()
}
// Listen implements caddy.TCPServer interface.
func (s *Server) Listen() (net.Listener, error) {
l, err := net.Listen("tcp", s.Addr)
if err != nil {
return nil, err
}
return l, nil
}
// ListenPacket implements caddy.UDPServer interface.
func (s *Server) ListenPacket() (net.PacketConn, error) {
p, err := net.ListenPacket("udp", s.Addr)
if err != nil {
return nil, err
}
return p, nil
}
// Stop stops the server. It blocks until the server is
// totally stopped. On POSIX systems, it will wait for
// connections to close (up to a max timeout of a few
// seconds); on Windows it will close the listener
// immediately.
// This implements Caddy.Stopper interface.
func (s *Server) Stop() (err error) {
if runtime.GOOS != "windows" {
// force connections to close after timeout
done := make(chan struct{})
go func() {
s.dnsWg.Done() // decrement our initial increment used as a barrier
s.dnsWg.Wait()
close(done)
}()
// Wait for remaining connections to finish or
// force them all to close after timeout
select {
case <-time.After(s.connTimeout):
case <-done:
}
}
// Close the listener now; this stops the server without delay
s.m.Lock()
for _, s1 := range s.server {
// We might not have started and initialized the full set of servers
if s1 != nil {
err = s1.Shutdown()
}
}
s.m.Unlock()
return
}
// Address together with Stop() implement caddy.GracefulServer.
func (s *Server) Address() string { return s.Addr }
// ServeDNS is the entry point for every request to the address that s
// is bound to. It acts as a multiplexer for the requests zonename as
// defined in the request so that the correct zone
// (configuration and middleware stack) will handle the request.
func (s *Server) ServeDNS(w dns.ResponseWriter, r *dns.Msg) {
defer func() {
// In case the user doesn't enable error middleware, we still
// need to make sure that we stay alive up here
if rec := recover(); rec != nil {
DefaultErrorFunc(w, r, dns.RcodeServerFailure)
}
}()
if m, err := edns.Version(r); err != nil { // Wrong EDNS version, return at once.
w.WriteMsg(m)
return
}
q := r.Question[0].Name
b := make([]byte, len(q))
off, end := 0, false
ctx := context.Background()
var dshandler *Config
for {
l := len(q[off:])
for i := 0; i < l; i++ {
b[i] = q[off+i]
// normalize the name for the lookup
if b[i] >= 'A' && b[i] <= 'Z' {
b[i] |= ('a' - 'A')
}
}
if h, ok := s.zones[string(b[:l])]; ok {
if r.Question[0].Qtype != dns.TypeDS {
rcode, _ := h.middlewareChain.ServeDNS(ctx, w, r)
if rcodeNoClientWrite(rcode) {
DefaultErrorFunc(w, r, rcode)
}
return
}
// The type is DS, keep the handler, but keep on searching as maybe we are serving
// the parent as well and the DS should be routed to it - this will probably *misroute* DS
// queries to a possibly grand parent, but there is no way for us to know at this point
// if there is an actually delegation from grandparent -> parent -> zone.
// In all fairness: direct DS queries should not be needed.
dshandler = h
}
off, end = dns.NextLabel(q, off)
if end {
break
}
}
if dshandler != nil {
// DS request, and we found a zone, use the handler for the query
rcode, _ := dshandler.middlewareChain.ServeDNS(ctx, w, r)
if rcodeNoClientWrite(rcode) {
DefaultErrorFunc(w, r, rcode)
}
return
}
// Wildcard match, if we have found nothing try the root zone as a last resort.
if h, ok := s.zones["."]; ok {
rcode, _ := h.middlewareChain.ServeDNS(ctx, w, r)
if rcodeNoClientWrite(rcode) {
DefaultErrorFunc(w, r, rcode)
}
return
}
// Still here? Error out with REFUSED and some logging
remoteHost := w.RemoteAddr().String()
DefaultErrorFunc(w, r, dns.RcodeRefused)
log.Printf("[INFO] \"%s %s %s\" - No such zone at %s (Remote: %s)", dns.Type(r.Question[0].Qtype), dns.Class(r.Question[0].Qclass), q, s.Addr, remoteHost)
}
// OnStartupComplete lists the sites served by this server
// and any relevant information, assuming Quiet is false.
func (s *Server) OnStartupComplete() {
if Quiet {
return
}
for zone, config := range s.zones {
fmt.Println(zone + ":" + config.Port)
}
}
// DefaultErrorFunc responds to an DNS request with an error.
func DefaultErrorFunc(w dns.ResponseWriter, r *dns.Msg, rc int) {
state := request.Request{W: w, Req: r}
answer := new(dns.Msg)
answer.SetRcode(r, rc)
state.SizeAndDo(answer)
vars.Report(state, vars.Dropped, rcode.ToString(rc), answer.Len(), time.Now())
w.WriteMsg(answer)
}
func rcodeNoClientWrite(rcode int) bool {
switch rcode {
case dns.RcodeServerFailure:
fallthrough
case dns.RcodeRefused:
fallthrough
case dns.RcodeFormatError:
fallthrough
case dns.RcodeNotImplemented:
return true
}
return false
}
const (
tcp = 0
udp = 1
)
var (
// Quiet mode will not show any informative output on initialization.
Quiet bool
)