Add missing dep

Signed-off-by: Alex Lavallee <73203142+lavalleeale@users.noreply.github.com>
This commit is contained in:
Alex Lavallee 2023-06-19 00:03:10 -07:00
parent 26bbbb8705
commit 3cc30bb8ee
No known key found for this signature in database
GPG key ID: 65BF64989FAB00D7
32 changed files with 53297 additions and 0 deletions

View file

@ -35,6 +35,7 @@ github.com/yvasiyarov/gorelic a9bba5b9ab508a086f9a12b8c51fab68478e2128
github.com/yvasiyarov/newrelic_platform_go b21fdbd4370f3717f3bbd2bf41c223bc273068e6
golang.org/x/crypto 8e447d8cc585b0089d1938b8747264783295e65f
golang.org/x/net daac0cec0cf964a628a29bb4b82940c225b921ed
golang.org/x/text 3a7a2557e7386e7e39d8b31290c3e8962c39e0fc
golang.org/x/oauth2 045497edb6234273d67dbc25da3f2ddbc4c4cacf
google.golang.org/api 9bf6e6e569ff057f75d9604a46c52928f17d2b54
google.golang.org/appengine 12d5545dc1cfa6047a286d5e853841b6471f4c19

27
vendor/golang.org/x/text/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/text/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

83
vendor/golang.org/x/text/README.md generated vendored Normal file
View file

@ -0,0 +1,83 @@
# Go Text
[![Go Reference](https://pkg.go.dev/badge/golang.org/x/text.svg)](https://pkg.go.dev/golang.org/x/text)
This repository holds supplementary Go libraries for text processing, many involving Unicode.
## CLDR Versioning
It is important that the Unicode version used in `x/text` matches the one used
by your Go compiler. The `x/text` repository supports multiple versions of
Unicode and will match the version of Unicode to that of the Go compiler. At the
moment this is supported for Go compilers from version 1.7.
## Download/Install
The easiest way to install is to run `go get -u golang.org/x/text`. You can
also manually git clone the repository to `$GOPATH/src/golang.org/x/text`.
## Contribute
To submit changes to this repository, see http://golang.org/doc/contribute.html.
To generate the tables in this repository (except for the encoding tables),
run go generate from this directory. By default tables are generated for the
Unicode version in core and the CLDR version defined in
golang.org/x/text/unicode/cldr.
Running go generate will as a side effect create a DATA subdirectory in this
directory, which holds all files that are used as a source for generating the
tables. This directory will also serve as a cache.
## Testing
Run
go test ./...
from this directory to run all tests. Add the "-tags icu" flag to also run
ICU conformance tests (if available). This requires that you have the correct
ICU version installed on your system.
TODO:
- updating unversioned source files.
## Generating Tables
To generate the tables in this repository (except for the encoding
tables), run `go generate` from this directory. By default tables are
generated for the Unicode version in core and the CLDR version defined in
golang.org/x/text/unicode/cldr.
Running go generate will as a side effect create a DATA subdirectory in this
directory which holds all files that are used as a source for generating the
tables. This directory will also serve as a cache.
## Versions
To update a Unicode version run
UNICODE_VERSION=x.x.x go generate
where `x.x.x` must correspond to a directory in https://www.unicode.org/Public/.
If this version is newer than the version in core it will also update the
relevant packages there. The idna package in x/net will always be updated.
To update a CLDR version run
CLDR_VERSION=version go generate
where `version` must correspond to a directory in
https://www.unicode.org/Public/cldr/.
Note that the code gets adapted over time to changes in the data and that
backwards compatibility is not maintained.
So updating to a different version may not work.
The files in DATA/{iana|icu|w3|whatwg} are currently not versioned.
## Report Issues / Send Patches
This repository uses Gerrit for code changes. To learn how to submit changes to
this repository, see https://golang.org/doc/contribute.html.
The main issue tracker for the image repository is located at
https://github.com/golang/go/issues. Prefix your issue with "x/text:" in the
subject line, so it is easy to find.

10
vendor/golang.org/x/text/go.mod generated vendored Normal file
View file

@ -0,0 +1,10 @@
module golang.org/x/text
require golang.org/x/tools v0.6.0 // tagx:ignore
require (
golang.org/x/mod v0.8.0 // indirect; tagx:ignore
golang.org/x/sys v0.5.0 // indirect; tagx:ignore
)
go 1.17

336
vendor/golang.org/x/text/secure/bidirule/bidirule.go generated vendored Normal file
View file

@ -0,0 +1,336 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bidirule implements the Bidi Rule defined by RFC 5893.
//
// This package is under development. The API may change without notice and
// without preserving backward compatibility.
package bidirule
import (
"errors"
"unicode/utf8"
"golang.org/x/text/transform"
"golang.org/x/text/unicode/bidi"
)
// This file contains an implementation of RFC 5893: Right-to-Left Scripts for
// Internationalized Domain Names for Applications (IDNA)
//
// A label is an individual component of a domain name. Labels are usually
// shown separated by dots; for example, the domain name "www.example.com" is
// composed of three labels: "www", "example", and "com".
//
// An RTL label is a label that contains at least one character of class R, AL,
// or AN. An LTR label is any label that is not an RTL label.
//
// A "Bidi domain name" is a domain name that contains at least one RTL label.
//
// The following guarantees can be made based on the above:
//
// o In a domain name consisting of only labels that satisfy the rule,
// the requirements of Section 3 are satisfied. Note that even LTR
// labels and pure ASCII labels have to be tested.
//
// o In a domain name consisting of only LDH labels (as defined in the
// Definitions document [RFC5890]) and labels that satisfy the rule,
// the requirements of Section 3 are satisfied as long as a label
// that starts with an ASCII digit does not come after a
// right-to-left label.
//
// No guarantee is given for other combinations.
// ErrInvalid indicates a label is invalid according to the Bidi Rule.
var ErrInvalid = errors.New("bidirule: failed Bidi Rule")
type ruleState uint8
const (
ruleInitial ruleState = iota
ruleLTR
ruleLTRFinal
ruleRTL
ruleRTLFinal
ruleInvalid
)
type ruleTransition struct {
next ruleState
mask uint16
}
var transitions = [...][2]ruleTransition{
// [2.1] The first character must be a character with Bidi property L, R, or
// AL. If it has the R or AL property, it is an RTL label; if it has the L
// property, it is an LTR label.
ruleInitial: {
{ruleLTRFinal, 1 << bidi.L},
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL},
},
ruleRTL: {
// [2.3] In an RTL label, the end of the label must be a character with
// Bidi property R, AL, EN, or AN, followed by zero or more characters
// with Bidi property NSM.
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL | 1<<bidi.EN | 1<<bidi.AN},
// [2.2] In an RTL label, only characters with the Bidi properties R,
// AL, AN, EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.3]
{ruleRTL, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN | 1<<bidi.NSM},
},
ruleRTLFinal: {
// [2.3] In an RTL label, the end of the label must be a character with
// Bidi property R, AL, EN, or AN, followed by zero or more characters
// with Bidi property NSM.
{ruleRTLFinal, 1<<bidi.R | 1<<bidi.AL | 1<<bidi.EN | 1<<bidi.AN | 1<<bidi.NSM},
// [2.2] In an RTL label, only characters with the Bidi properties R,
// AL, AN, EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.3] and NSM.
{ruleRTL, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN},
},
ruleLTR: {
// [2.6] In an LTR label, the end of the label must be a character with
// Bidi property L or EN, followed by zero or more characters with Bidi
// property NSM.
{ruleLTRFinal, 1<<bidi.L | 1<<bidi.EN},
// [2.5] In an LTR label, only characters with the Bidi properties L,
// EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.6].
{ruleLTR, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN | 1<<bidi.NSM},
},
ruleLTRFinal: {
// [2.6] In an LTR label, the end of the label must be a character with
// Bidi property L or EN, followed by zero or more characters with Bidi
// property NSM.
{ruleLTRFinal, 1<<bidi.L | 1<<bidi.EN | 1<<bidi.NSM},
// [2.5] In an LTR label, only characters with the Bidi properties L,
// EN, ES, CS, ET, ON, BN, or NSM are allowed.
// We exclude the entries from [2.6].
{ruleLTR, 1<<bidi.ES | 1<<bidi.CS | 1<<bidi.ET | 1<<bidi.ON | 1<<bidi.BN},
},
ruleInvalid: {
{ruleInvalid, 0},
{ruleInvalid, 0},
},
}
// [2.4] In an RTL label, if an EN is present, no AN may be present, and
// vice versa.
const exclusiveRTL = uint16(1<<bidi.EN | 1<<bidi.AN)
// From RFC 5893
// An RTL label is a label that contains at least one character of type
// R, AL, or AN.
//
// An LTR label is any label that is not an RTL label.
// Direction reports the direction of the given label as defined by RFC 5893.
// The Bidi Rule does not have to be applied to labels of the category
// LeftToRight.
func Direction(b []byte) bidi.Direction {
for i := 0; i < len(b); {
e, sz := bidi.Lookup(b[i:])
if sz == 0 {
i++
}
c := e.Class()
if c == bidi.R || c == bidi.AL || c == bidi.AN {
return bidi.RightToLeft
}
i += sz
}
return bidi.LeftToRight
}
// DirectionString reports the direction of the given label as defined by RFC
// 5893. The Bidi Rule does not have to be applied to labels of the category
// LeftToRight.
func DirectionString(s string) bidi.Direction {
for i := 0; i < len(s); {
e, sz := bidi.LookupString(s[i:])
if sz == 0 {
i++
continue
}
c := e.Class()
if c == bidi.R || c == bidi.AL || c == bidi.AN {
return bidi.RightToLeft
}
i += sz
}
return bidi.LeftToRight
}
// Valid reports whether b conforms to the BiDi rule.
func Valid(b []byte) bool {
var t Transformer
if n, ok := t.advance(b); !ok || n < len(b) {
return false
}
return t.isFinal()
}
// ValidString reports whether s conforms to the BiDi rule.
func ValidString(s string) bool {
var t Transformer
if n, ok := t.advanceString(s); !ok || n < len(s) {
return false
}
return t.isFinal()
}
// New returns a Transformer that verifies that input adheres to the Bidi Rule.
func New() *Transformer {
return &Transformer{}
}
// Transformer implements transform.Transform.
type Transformer struct {
state ruleState
hasRTL bool
seen uint16
}
// A rule can only be violated for "Bidi Domain names", meaning if one of the
// following categories has been observed.
func (t *Transformer) isRTL() bool {
const isRTL = 1<<bidi.R | 1<<bidi.AL | 1<<bidi.AN
return t.seen&isRTL != 0
}
// Reset implements transform.Transformer.
func (t *Transformer) Reset() { *t = Transformer{} }
// Transform implements transform.Transformer. This Transformer has state and
// needs to be reset between uses.
func (t *Transformer) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if len(dst) < len(src) {
src = src[:len(dst)]
atEOF = false
err = transform.ErrShortDst
}
n, err1 := t.Span(src, atEOF)
copy(dst, src[:n])
if err == nil || err1 != nil && err1 != transform.ErrShortSrc {
err = err1
}
return n, n, err
}
// Span returns the first n bytes of src that conform to the Bidi rule.
func (t *Transformer) Span(src []byte, atEOF bool) (n int, err error) {
if t.state == ruleInvalid && t.isRTL() {
return 0, ErrInvalid
}
n, ok := t.advance(src)
switch {
case !ok:
err = ErrInvalid
case n < len(src):
if !atEOF {
err = transform.ErrShortSrc
break
}
err = ErrInvalid
case !t.isFinal():
err = ErrInvalid
}
return n, err
}
// Precomputing the ASCII values decreases running time for the ASCII fast path
// by about 30%.
var asciiTable [128]bidi.Properties
func init() {
for i := range asciiTable {
p, _ := bidi.LookupRune(rune(i))
asciiTable[i] = p
}
}
func (t *Transformer) advance(s []byte) (n int, ok bool) {
var e bidi.Properties
var sz int
for n < len(s) {
if s[n] < utf8.RuneSelf {
e, sz = asciiTable[s[n]], 1
} else {
e, sz = bidi.Lookup(s[n:])
if sz <= 1 {
if sz == 1 {
// We always consider invalid UTF-8 to be invalid, even if
// the string has not yet been determined to be RTL.
// TODO: is this correct?
return n, false
}
return n, true // incomplete UTF-8 encoding
}
}
// TODO: using CompactClass would result in noticeable speedup.
// See unicode/bidi/prop.go:Properties.CompactClass.
c := uint16(1 << e.Class())
t.seen |= c
if t.seen&exclusiveRTL == exclusiveRTL {
t.state = ruleInvalid
return n, false
}
switch tr := transitions[t.state]; {
case tr[0].mask&c != 0:
t.state = tr[0].next
case tr[1].mask&c != 0:
t.state = tr[1].next
default:
t.state = ruleInvalid
if t.isRTL() {
return n, false
}
}
n += sz
}
return n, true
}
func (t *Transformer) advanceString(s string) (n int, ok bool) {
var e bidi.Properties
var sz int
for n < len(s) {
if s[n] < utf8.RuneSelf {
e, sz = asciiTable[s[n]], 1
} else {
e, sz = bidi.LookupString(s[n:])
if sz <= 1 {
if sz == 1 {
return n, false // invalid UTF-8
}
return n, true // incomplete UTF-8 encoding
}
}
// TODO: using CompactClass results in noticeable speedup.
// See unicode/bidi/prop.go:Properties.CompactClass.
c := uint16(1 << e.Class())
t.seen |= c
if t.seen&exclusiveRTL == exclusiveRTL {
t.state = ruleInvalid
return n, false
}
switch tr := transitions[t.state]; {
case tr[0].mask&c != 0:
t.state = tr[0].next
case tr[1].mask&c != 0:
t.state = tr[1].next
default:
t.state = ruleInvalid
if t.isRTL() {
return n, false
}
}
n += sz
}
return n, true
}

View file

@ -0,0 +1,12 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.10
// +build go1.10
package bidirule
func (t *Transformer) isFinal() bool {
return t.state == ruleLTRFinal || t.state == ruleRTLFinal || t.state == ruleInitial
}

View file

@ -0,0 +1,15 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.10
// +build !go1.10
package bidirule
func (t *Transformer) isFinal() bool {
if !t.isRTL() {
return true
}
return t.state == ruleLTRFinal || t.state == ruleRTLFinal || t.state == ruleInitial
}

709
vendor/golang.org/x/text/transform/transform.go generated vendored Normal file
View file

@ -0,0 +1,709 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package transform provides reader and writer wrappers that transform the
// bytes passing through as well as various transformations. Example
// transformations provided by other packages include normalization and
// conversion between character sets.
package transform // import "golang.org/x/text/transform"
import (
"bytes"
"errors"
"io"
"unicode/utf8"
)
var (
// ErrShortDst means that the destination buffer was too short to
// receive all of the transformed bytes.
ErrShortDst = errors.New("transform: short destination buffer")
// ErrShortSrc means that the source buffer has insufficient data to
// complete the transformation.
ErrShortSrc = errors.New("transform: short source buffer")
// ErrEndOfSpan means that the input and output (the transformed input)
// are not identical.
ErrEndOfSpan = errors.New("transform: input and output are not identical")
// errInconsistentByteCount means that Transform returned success (nil
// error) but also returned nSrc inconsistent with the src argument.
errInconsistentByteCount = errors.New("transform: inconsistent byte count returned")
// errShortInternal means that an internal buffer is not large enough
// to make progress and the Transform operation must be aborted.
errShortInternal = errors.New("transform: short internal buffer")
)
// Transformer transforms bytes.
type Transformer interface {
// Transform writes to dst the transformed bytes read from src, and
// returns the number of dst bytes written and src bytes read. The
// atEOF argument tells whether src represents the last bytes of the
// input.
//
// Callers should always process the nDst bytes produced and account
// for the nSrc bytes consumed before considering the error err.
//
// A nil error means that all of the transformed bytes (whether freshly
// transformed from src or left over from previous Transform calls)
// were written to dst. A nil error can be returned regardless of
// whether atEOF is true. If err is nil then nSrc must equal len(src);
// the converse is not necessarily true.
//
// ErrShortDst means that dst was too short to receive all of the
// transformed bytes. ErrShortSrc means that src had insufficient data
// to complete the transformation. If both conditions apply, then
// either error may be returned. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error)
// Reset resets the state and allows a Transformer to be reused.
Reset()
}
// SpanningTransformer extends the Transformer interface with a Span method
// that determines how much of the input already conforms to the Transformer.
type SpanningTransformer interface {
Transformer
// Span returns a position in src such that transforming src[:n] results in
// identical output src[:n] for these bytes. It does not necessarily return
// the largest such n. The atEOF argument tells whether src represents the
// last bytes of the input.
//
// Callers should always account for the n bytes consumed before
// considering the error err.
//
// A nil error means that all input bytes are known to be identical to the
// output produced by the Transformer. A nil error can be returned
// regardless of whether atEOF is true. If err is nil, then n must
// equal len(src); the converse is not necessarily true.
//
// ErrEndOfSpan means that the Transformer output may differ from the
// input after n bytes. Note that n may be len(src), meaning that the output
// would contain additional bytes after otherwise identical output.
// ErrShortSrc means that src had insufficient data to determine whether the
// remaining bytes would change. Other than the error conditions listed
// here, implementations are free to report other errors that arise.
//
// Calling Span can modify the Transformer state as a side effect. In
// effect, it does the transformation just as calling Transform would, only
// without copying to a destination buffer and only up to a point it can
// determine the input and output bytes are the same. This is obviously more
// limited than calling Transform, but can be more efficient in terms of
// copying and allocating buffers. Calls to Span and Transform may be
// interleaved.
Span(src []byte, atEOF bool) (n int, err error)
}
// NopResetter can be embedded by implementations of Transformer to add a nop
// Reset method.
type NopResetter struct{}
// Reset implements the Reset method of the Transformer interface.
func (NopResetter) Reset() {}
// Reader wraps another io.Reader by transforming the bytes read.
type Reader struct {
r io.Reader
t Transformer
err error
// dst[dst0:dst1] contains bytes that have been transformed by t but
// not yet copied out via Read.
dst []byte
dst0, dst1 int
// src[src0:src1] contains bytes that have been read from r but not
// yet transformed through t.
src []byte
src0, src1 int
// transformComplete is whether the transformation is complete,
// regardless of whether or not it was successful.
transformComplete bool
}
const defaultBufSize = 4096
// NewReader returns a new Reader that wraps r by transforming the bytes read
// via t. It calls Reset on t.
func NewReader(r io.Reader, t Transformer) *Reader {
t.Reset()
return &Reader{
r: r,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Read implements the io.Reader interface.
func (r *Reader) Read(p []byte) (int, error) {
n, err := 0, error(nil)
for {
// Copy out any transformed bytes and return the final error if we are done.
if r.dst0 != r.dst1 {
n = copy(p, r.dst[r.dst0:r.dst1])
r.dst0 += n
if r.dst0 == r.dst1 && r.transformComplete {
return n, r.err
}
return n, nil
} else if r.transformComplete {
return 0, r.err
}
// Try to transform some source bytes, or to flush the transformer if we
// are out of source bytes. We do this even if r.r.Read returned an error.
// As the io.Reader documentation says, "process the n > 0 bytes returned
// before considering the error".
if r.src0 != r.src1 || r.err != nil {
r.dst0 = 0
r.dst1, n, err = r.t.Transform(r.dst, r.src[r.src0:r.src1], r.err == io.EOF)
r.src0 += n
switch {
case err == nil:
if r.src0 != r.src1 {
r.err = errInconsistentByteCount
}
// The Transform call was successful; we are complete if we
// cannot read more bytes into src.
r.transformComplete = r.err != nil
continue
case err == ErrShortDst && (r.dst1 != 0 || n != 0):
// Make room in dst by copying out, and try again.
continue
case err == ErrShortSrc && r.src1-r.src0 != len(r.src) && r.err == nil:
// Read more bytes into src via the code below, and try again.
default:
r.transformComplete = true
// The reader error (r.err) takes precedence over the
// transformer error (err) unless r.err is nil or io.EOF.
if r.err == nil || r.err == io.EOF {
r.err = err
}
continue
}
}
// Move any untransformed source bytes to the start of the buffer
// and read more bytes.
if r.src0 != 0 {
r.src0, r.src1 = 0, copy(r.src, r.src[r.src0:r.src1])
}
n, r.err = r.r.Read(r.src[r.src1:])
r.src1 += n
}
}
// TODO: implement ReadByte (and ReadRune??).
// Writer wraps another io.Writer by transforming the bytes read.
// The user needs to call Close to flush unwritten bytes that may
// be buffered.
type Writer struct {
w io.Writer
t Transformer
dst []byte
// src[:n] contains bytes that have not yet passed through t.
src []byte
n int
}
// NewWriter returns a new Writer that wraps w by transforming the bytes written
// via t. It calls Reset on t.
func NewWriter(w io.Writer, t Transformer) *Writer {
t.Reset()
return &Writer{
w: w,
t: t,
dst: make([]byte, defaultBufSize),
src: make([]byte, defaultBufSize),
}
}
// Write implements the io.Writer interface. If there are not enough
// bytes available to complete a Transform, the bytes will be buffered
// for the next write. Call Close to convert the remaining bytes.
func (w *Writer) Write(data []byte) (n int, err error) {
src := data
if w.n > 0 {
// Append bytes from data to the last remainder.
// TODO: limit the amount copied on first try.
n = copy(w.src[w.n:], data)
w.n += n
src = w.src[:w.n]
}
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, false)
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return n, werr
}
src = src[nSrc:]
if w.n == 0 {
n += nSrc
} else if len(src) <= n {
// Enough bytes from w.src have been consumed. We make src point
// to data instead to reduce the copying.
w.n = 0
n -= len(src)
src = data[n:]
if n < len(data) && (err == nil || err == ErrShortSrc) {
continue
}
}
switch err {
case ErrShortDst:
// This error is okay as long as we are making progress.
if nDst > 0 || nSrc > 0 {
continue
}
case ErrShortSrc:
if len(src) < len(w.src) {
m := copy(w.src, src)
// If w.n > 0, bytes from data were already copied to w.src and n
// was already set to the number of bytes consumed.
if w.n == 0 {
n += m
}
w.n = m
err = nil
} else if nDst > 0 || nSrc > 0 {
// Not enough buffer to store the remainder. Keep processing as
// long as there is progress. Without this case, transforms that
// require a lookahead larger than the buffer may result in an
// error. This is not something one may expect to be common in
// practice, but it may occur when buffers are set to small
// sizes during testing.
continue
}
case nil:
if w.n > 0 {
err = errInconsistentByteCount
}
}
return n, err
}
}
// Close implements the io.Closer interface.
func (w *Writer) Close() error {
src := w.src[:w.n]
for {
nDst, nSrc, err := w.t.Transform(w.dst, src, true)
if _, werr := w.w.Write(w.dst[:nDst]); werr != nil {
return werr
}
if err != ErrShortDst {
return err
}
src = src[nSrc:]
}
}
type nop struct{ NopResetter }
func (nop) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := copy(dst, src)
if n < len(src) {
err = ErrShortDst
}
return n, n, err
}
func (nop) Span(src []byte, atEOF bool) (n int, err error) {
return len(src), nil
}
type discard struct{ NopResetter }
func (discard) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
return 0, len(src), nil
}
var (
// Discard is a Transformer for which all Transform calls succeed
// by consuming all bytes and writing nothing.
Discard Transformer = discard{}
// Nop is a SpanningTransformer that copies src to dst.
Nop SpanningTransformer = nop{}
)
// chain is a sequence of links. A chain with N Transformers has N+1 links and
// N+1 buffers. Of those N+1 buffers, the first and last are the src and dst
// buffers given to chain.Transform and the middle N-1 buffers are intermediate
// buffers owned by the chain. The i'th link transforms bytes from the i'th
// buffer chain.link[i].b at read offset chain.link[i].p to the i+1'th buffer
// chain.link[i+1].b at write offset chain.link[i+1].n, for i in [0, N).
type chain struct {
link []link
err error
// errStart is the index at which the error occurred plus 1. Processing
// errStart at this level at the next call to Transform. As long as
// errStart > 0, chain will not consume any more source bytes.
errStart int
}
func (c *chain) fatalError(errIndex int, err error) {
if i := errIndex + 1; i > c.errStart {
c.errStart = i
c.err = err
}
}
type link struct {
t Transformer
// b[p:n] holds the bytes to be transformed by t.
b []byte
p int
n int
}
func (l *link) src() []byte {
return l.b[l.p:l.n]
}
func (l *link) dst() []byte {
return l.b[l.n:]
}
// Chain returns a Transformer that applies t in sequence.
func Chain(t ...Transformer) Transformer {
if len(t) == 0 {
return nop{}
}
c := &chain{link: make([]link, len(t)+1)}
for i, tt := range t {
c.link[i].t = tt
}
// Allocate intermediate buffers.
b := make([][defaultBufSize]byte, len(t)-1)
for i := range b {
c.link[i+1].b = b[i][:]
}
return c
}
// Reset resets the state of Chain. It calls Reset on all the Transformers.
func (c *chain) Reset() {
for i, l := range c.link {
if l.t != nil {
l.t.Reset()
}
c.link[i].p, c.link[i].n = 0, 0
}
}
// TODO: make chain use Span (is going to be fun to implement!)
// Transform applies the transformers of c in sequence.
func (c *chain) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// Set up src and dst in the chain.
srcL := &c.link[0]
dstL := &c.link[len(c.link)-1]
srcL.b, srcL.p, srcL.n = src, 0, len(src)
dstL.b, dstL.n = dst, 0
var lastFull, needProgress bool // for detecting progress
// i is the index of the next Transformer to apply, for i in [low, high].
// low is the lowest index for which c.link[low] may still produce bytes.
// high is the highest index for which c.link[high] has a Transformer.
// The error returned by Transform determines whether to increase or
// decrease i. We try to completely fill a buffer before converting it.
for low, i, high := c.errStart, c.errStart, len(c.link)-2; low <= i && i <= high; {
in, out := &c.link[i], &c.link[i+1]
nDst, nSrc, err0 := in.t.Transform(out.dst(), in.src(), atEOF && low == i)
out.n += nDst
in.p += nSrc
if i > 0 && in.p == in.n {
in.p, in.n = 0, 0
}
needProgress, lastFull = lastFull, false
switch err0 {
case ErrShortDst:
// Process the destination buffer next. Return if we are already
// at the high index.
if i == high {
return dstL.n, srcL.p, ErrShortDst
}
if out.n != 0 {
i++
// If the Transformer at the next index is not able to process any
// source bytes there is nothing that can be done to make progress
// and the bytes will remain unprocessed. lastFull is used to
// detect this and break out of the loop with a fatal error.
lastFull = true
continue
}
// The destination buffer was too small, but is completely empty.
// Return a fatal error as this transformation can never complete.
c.fatalError(i, errShortInternal)
case ErrShortSrc:
if i == 0 {
// Save ErrShortSrc in err. All other errors take precedence.
err = ErrShortSrc
break
}
// Source bytes were depleted before filling up the destination buffer.
// Verify we made some progress, move the remaining bytes to the errStart
// and try to get more source bytes.
if needProgress && nSrc == 0 || in.n-in.p == len(in.b) {
// There were not enough source bytes to proceed while the source
// buffer cannot hold any more bytes. Return a fatal error as this
// transformation can never complete.
c.fatalError(i, errShortInternal)
break
}
// in.b is an internal buffer and we can make progress.
in.p, in.n = 0, copy(in.b, in.src())
fallthrough
case nil:
// if i == low, we have depleted the bytes at index i or any lower levels.
// In that case we increase low and i. In all other cases we decrease i to
// fetch more bytes before proceeding to the next index.
if i > low {
i--
continue
}
default:
c.fatalError(i, err0)
}
// Exhausted level low or fatal error: increase low and continue
// to process the bytes accepted so far.
i++
low = i
}
// If c.errStart > 0, this means we found a fatal error. We will clear
// all upstream buffers. At this point, no more progress can be made
// downstream, as Transform would have bailed while handling ErrShortDst.
if c.errStart > 0 {
for i := 1; i < c.errStart; i++ {
c.link[i].p, c.link[i].n = 0, 0
}
err, c.errStart, c.err = c.err, 0, nil
}
return dstL.n, srcL.p, err
}
// Deprecated: Use runes.Remove instead.
func RemoveFunc(f func(r rune) bool) Transformer {
return removeF(f)
}
type removeF func(r rune) bool
func (removeF) Reset() {}
// Transform implements the Transformer interface.
func (t removeF) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for r, sz := rune(0), 0; len(src) > 0; src = src[sz:] {
if r = rune(src[0]); r < utf8.RuneSelf {
sz = 1
} else {
r, sz = utf8.DecodeRune(src)
if sz == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src) {
err = ErrShortSrc
break
}
// We replace illegal bytes with RuneError. Not doing so might
// otherwise turn a sequence of invalid UTF-8 into valid UTF-8.
// The resulting byte sequence may subsequently contain runes
// for which t(r) is true that were passed unnoticed.
if !t(r) {
if nDst+3 > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], "\uFFFD")
}
nSrc++
continue
}
}
if !t(r) {
if nDst+sz > len(dst) {
err = ErrShortDst
break
}
nDst += copy(dst[nDst:], src[:sz])
}
nSrc += sz
}
return
}
// grow returns a new []byte that is longer than b, and copies the first n bytes
// of b to the start of the new slice.
func grow(b []byte, n int) []byte {
m := len(b)
if m <= 32 {
m = 64
} else if m <= 256 {
m *= 2
} else {
m += m >> 1
}
buf := make([]byte, m)
copy(buf, b[:n])
return buf
}
const initialBufSize = 128
// String returns a string with the result of converting s[:n] using t, where
// n <= len(s). If err == nil, n will be len(s). It calls Reset on t.
func String(t Transformer, s string) (result string, n int, err error) {
t.Reset()
if s == "" {
// Fast path for the common case for empty input. Results in about a
// 86% reduction of running time for BenchmarkStringLowerEmpty.
if _, _, err := t.Transform(nil, nil, true); err == nil {
return "", 0, nil
}
}
// Allocate only once. Note that both dst and src escape when passed to
// Transform.
buf := [2 * initialBufSize]byte{}
dst := buf[:initialBufSize:initialBufSize]
src := buf[initialBufSize : 2*initialBufSize]
// The input string s is transformed in multiple chunks (starting with a
// chunk size of initialBufSize). nDst and nSrc are per-chunk (or
// per-Transform-call) indexes, pDst and pSrc are overall indexes.
nDst, nSrc := 0, 0
pDst, pSrc := 0, 0
// pPrefix is the length of a common prefix: the first pPrefix bytes of the
// result will equal the first pPrefix bytes of s. It is not guaranteed to
// be the largest such value, but if pPrefix, len(result) and len(s) are
// all equal after the final transform (i.e. calling Transform with atEOF
// being true returned nil error) then we don't need to allocate a new
// result string.
pPrefix := 0
for {
// Invariant: pDst == pPrefix && pSrc == pPrefix.
n := copy(src, s[pSrc:])
nDst, nSrc, err = t.Transform(dst, src[:n], pSrc+n == len(s))
pDst += nDst
pSrc += nSrc
// TODO: let transformers implement an optional Spanner interface, akin
// to norm's QuickSpan. This would even allow us to avoid any allocation.
if !bytes.Equal(dst[:nDst], src[:nSrc]) {
break
}
pPrefix = pSrc
if err == ErrShortDst {
// A buffer can only be short if a transformer modifies its input.
break
} else if err == ErrShortSrc {
if nSrc == 0 {
// No progress was made.
break
}
// Equal so far and !atEOF, so continue checking.
} else if err != nil || pPrefix == len(s) {
return string(s[:pPrefix]), pPrefix, err
}
}
// Post-condition: pDst == pPrefix + nDst && pSrc == pPrefix + nSrc.
// We have transformed the first pSrc bytes of the input s to become pDst
// transformed bytes. Those transformed bytes are discontiguous: the first
// pPrefix of them equal s[:pPrefix] and the last nDst of them equal
// dst[:nDst]. We copy them around, into a new dst buffer if necessary, so
// that they become one contiguous slice: dst[:pDst].
if pPrefix != 0 {
newDst := dst
if pDst > len(newDst) {
newDst = make([]byte, len(s)+nDst-nSrc)
}
copy(newDst[pPrefix:pDst], dst[:nDst])
copy(newDst[:pPrefix], s[:pPrefix])
dst = newDst
}
// Prevent duplicate Transform calls with atEOF being true at the end of
// the input. Also return if we have an unrecoverable error.
if (err == nil && pSrc == len(s)) ||
(err != nil && err != ErrShortDst && err != ErrShortSrc) {
return string(dst[:pDst]), pSrc, err
}
// Transform the remaining input, growing dst and src buffers as necessary.
for {
n := copy(src, s[pSrc:])
atEOF := pSrc+n == len(s)
nDst, nSrc, err := t.Transform(dst[pDst:], src[:n], atEOF)
pDst += nDst
pSrc += nSrc
// If we got ErrShortDst or ErrShortSrc, do not grow as long as we can
// make progress. This may avoid excessive allocations.
if err == ErrShortDst {
if nDst == 0 {
dst = grow(dst, pDst)
}
} else if err == ErrShortSrc {
if atEOF {
return string(dst[:pDst]), pSrc, err
}
if nSrc == 0 {
src = grow(src, 0)
}
} else if err != nil || pSrc == len(s) {
return string(dst[:pDst]), pSrc, err
}
}
}
// Bytes returns a new byte slice with the result of converting b[:n] using t,
// where n <= len(b). If err == nil, n will be len(b). It calls Reset on t.
func Bytes(t Transformer, b []byte) (result []byte, n int, err error) {
return doAppend(t, 0, make([]byte, len(b)), b)
}
// Append appends the result of converting src[:n] using t to dst, where
// n <= len(src), If err == nil, n will be len(src). It calls Reset on t.
func Append(t Transformer, dst, src []byte) (result []byte, n int, err error) {
if len(dst) == cap(dst) {
n := len(src) + len(dst) // It is okay for this to be 0.
b := make([]byte, n)
dst = b[:copy(b, dst)]
}
return doAppend(t, len(dst), dst[:cap(dst)], src)
}
func doAppend(t Transformer, pDst int, dst, src []byte) (result []byte, n int, err error) {
t.Reset()
pSrc := 0
for {
nDst, nSrc, err := t.Transform(dst[pDst:], src[pSrc:], true)
pDst += nDst
pSrc += nSrc
if err != ErrShortDst {
return dst[:pDst], pSrc, err
}
// Grow the destination buffer, but do not grow as long as we can make
// progress. This may avoid excessive allocations.
if nDst == 0 {
dst = grow(dst, pDst)
}
}
}

359
vendor/golang.org/x/text/unicode/bidi/bidi.go generated vendored Normal file
View file

@ -0,0 +1,359 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_trieval.go gen_ranges.go
// Package bidi contains functionality for bidirectional text support.
//
// See https://www.unicode.org/reports/tr9.
//
// NOTE: UNDER CONSTRUCTION. This API may change in backwards incompatible ways
// and without notice.
package bidi // import "golang.org/x/text/unicode/bidi"
// TODO
// - Transformer for reordering?
// - Transformer (validator, really) for Bidi Rule.
import (
"bytes"
)
// This API tries to avoid dealing with embedding levels for now. Under the hood
// these will be computed, but the question is to which extent the user should
// know they exist. We should at some point allow the user to specify an
// embedding hierarchy, though.
// A Direction indicates the overall flow of text.
type Direction int
const (
// LeftToRight indicates the text contains no right-to-left characters and
// that either there are some left-to-right characters or the option
// DefaultDirection(LeftToRight) was passed.
LeftToRight Direction = iota
// RightToLeft indicates the text contains no left-to-right characters and
// that either there are some right-to-left characters or the option
// DefaultDirection(RightToLeft) was passed.
RightToLeft
// Mixed indicates text contains both left-to-right and right-to-left
// characters.
Mixed
// Neutral means that text contains no left-to-right and right-to-left
// characters and that no default direction has been set.
Neutral
)
type options struct {
defaultDirection Direction
}
// An Option is an option for Bidi processing.
type Option func(*options)
// ICU allows the user to define embedding levels. This may be used, for example,
// to use hierarchical structure of markup languages to define embeddings.
// The following option may be a way to expose this functionality in this API.
// // LevelFunc sets a function that associates nesting levels with the given text.
// // The levels function will be called with monotonically increasing values for p.
// func LevelFunc(levels func(p int) int) Option {
// panic("unimplemented")
// }
// DefaultDirection sets the default direction for a Paragraph. The direction is
// overridden if the text contains directional characters.
func DefaultDirection(d Direction) Option {
return func(opts *options) {
opts.defaultDirection = d
}
}
// A Paragraph holds a single Paragraph for Bidi processing.
type Paragraph struct {
p []byte
o Ordering
opts []Option
types []Class
pairTypes []bracketType
pairValues []rune
runes []rune
options options
}
// Initialize the p.pairTypes, p.pairValues and p.types from the input previously
// set by p.SetBytes() or p.SetString(). Also limit the input up to (and including) a paragraph
// separator (bidi class B).
//
// The function p.Order() needs these values to be set, so this preparation could be postponed.
// But since the SetBytes and SetStrings functions return the length of the input up to the paragraph
// separator, the whole input needs to be processed anyway and should not be done twice.
//
// The function has the same return values as SetBytes() / SetString()
func (p *Paragraph) prepareInput() (n int, err error) {
p.runes = bytes.Runes(p.p)
bytecount := 0
// clear slices from previous SetString or SetBytes
p.pairTypes = nil
p.pairValues = nil
p.types = nil
for _, r := range p.runes {
props, i := LookupRune(r)
bytecount += i
cls := props.Class()
if cls == B {
return bytecount, nil
}
p.types = append(p.types, cls)
if props.IsOpeningBracket() {
p.pairTypes = append(p.pairTypes, bpOpen)
p.pairValues = append(p.pairValues, r)
} else if props.IsBracket() {
// this must be a closing bracket,
// since IsOpeningBracket is not true
p.pairTypes = append(p.pairTypes, bpClose)
p.pairValues = append(p.pairValues, r)
} else {
p.pairTypes = append(p.pairTypes, bpNone)
p.pairValues = append(p.pairValues, 0)
}
}
return bytecount, nil
}
// SetBytes configures p for the given paragraph text. It replaces text
// previously set by SetBytes or SetString. If b contains a paragraph separator
// it will only process the first paragraph and report the number of bytes
// consumed from b including this separator. Error may be non-nil if options are
// given.
func (p *Paragraph) SetBytes(b []byte, opts ...Option) (n int, err error) {
p.p = b
p.opts = opts
return p.prepareInput()
}
// SetString configures s for the given paragraph text. It replaces text
// previously set by SetBytes or SetString. If s contains a paragraph separator
// it will only process the first paragraph and report the number of bytes
// consumed from s including this separator. Error may be non-nil if options are
// given.
func (p *Paragraph) SetString(s string, opts ...Option) (n int, err error) {
p.p = []byte(s)
p.opts = opts
return p.prepareInput()
}
// IsLeftToRight reports whether the principle direction of rendering for this
// paragraphs is left-to-right. If this returns false, the principle direction
// of rendering is right-to-left.
func (p *Paragraph) IsLeftToRight() bool {
return p.Direction() == LeftToRight
}
// Direction returns the direction of the text of this paragraph.
//
// The direction may be LeftToRight, RightToLeft, Mixed, or Neutral.
func (p *Paragraph) Direction() Direction {
return p.o.Direction()
}
// TODO: what happens if the position is > len(input)? This should return an error.
// RunAt reports the Run at the given position of the input text.
//
// This method can be used for computing line breaks on paragraphs.
func (p *Paragraph) RunAt(pos int) Run {
c := 0
runNumber := 0
for i, r := range p.o.runes {
c += len(r)
if pos < c {
runNumber = i
}
}
return p.o.Run(runNumber)
}
func calculateOrdering(levels []level, runes []rune) Ordering {
var curDir Direction
prevDir := Neutral
prevI := 0
o := Ordering{}
// lvl = 0,2,4,...: left to right
// lvl = 1,3,5,...: right to left
for i, lvl := range levels {
if lvl%2 == 0 {
curDir = LeftToRight
} else {
curDir = RightToLeft
}
if curDir != prevDir {
if i > 0 {
o.runes = append(o.runes, runes[prevI:i])
o.directions = append(o.directions, prevDir)
o.startpos = append(o.startpos, prevI)
}
prevI = i
prevDir = curDir
}
}
o.runes = append(o.runes, runes[prevI:])
o.directions = append(o.directions, prevDir)
o.startpos = append(o.startpos, prevI)
return o
}
// Order computes the visual ordering of all the runs in a Paragraph.
func (p *Paragraph) Order() (Ordering, error) {
if len(p.types) == 0 {
return Ordering{}, nil
}
for _, fn := range p.opts {
fn(&p.options)
}
lvl := level(-1)
if p.options.defaultDirection == RightToLeft {
lvl = 1
}
para, err := newParagraph(p.types, p.pairTypes, p.pairValues, lvl)
if err != nil {
return Ordering{}, err
}
levels := para.getLevels([]int{len(p.types)})
p.o = calculateOrdering(levels, p.runes)
return p.o, nil
}
// Line computes the visual ordering of runs for a single line starting and
// ending at the given positions in the original text.
func (p *Paragraph) Line(start, end int) (Ordering, error) {
lineTypes := p.types[start:end]
para, err := newParagraph(lineTypes, p.pairTypes[start:end], p.pairValues[start:end], -1)
if err != nil {
return Ordering{}, err
}
levels := para.getLevels([]int{len(lineTypes)})
o := calculateOrdering(levels, p.runes[start:end])
return o, nil
}
// An Ordering holds the computed visual order of runs of a Paragraph. Calling
// SetBytes or SetString on the originating Paragraph invalidates an Ordering.
// The methods of an Ordering should only be called by one goroutine at a time.
type Ordering struct {
runes [][]rune
directions []Direction
startpos []int
}
// Direction reports the directionality of the runs.
//
// The direction may be LeftToRight, RightToLeft, Mixed, or Neutral.
func (o *Ordering) Direction() Direction {
return o.directions[0]
}
// NumRuns returns the number of runs.
func (o *Ordering) NumRuns() int {
return len(o.runes)
}
// Run returns the ith run within the ordering.
func (o *Ordering) Run(i int) Run {
r := Run{
runes: o.runes[i],
direction: o.directions[i],
startpos: o.startpos[i],
}
return r
}
// TODO: perhaps with options.
// // Reorder creates a reader that reads the runes in visual order per character.
// // Modifiers remain after the runes they modify.
// func (l *Runs) Reorder() io.Reader {
// panic("unimplemented")
// }
// A Run is a continuous sequence of characters of a single direction.
type Run struct {
runes []rune
direction Direction
startpos int
}
// String returns the text of the run in its original order.
func (r *Run) String() string {
return string(r.runes)
}
// Bytes returns the text of the run in its original order.
func (r *Run) Bytes() []byte {
return []byte(r.String())
}
// TODO: methods for
// - Display order
// - headers and footers
// - bracket replacement.
// Direction reports the direction of the run.
func (r *Run) Direction() Direction {
return r.direction
}
// Pos returns the position of the Run within the text passed to SetBytes or SetString of the
// originating Paragraph value.
func (r *Run) Pos() (start, end int) {
return r.startpos, r.startpos + len(r.runes) - 1
}
// AppendReverse reverses the order of characters of in, appends them to out,
// and returns the result. Modifiers will still follow the runes they modify.
// Brackets are replaced with their counterparts.
func AppendReverse(out, in []byte) []byte {
ret := make([]byte, len(in)+len(out))
copy(ret, out)
inRunes := bytes.Runes(in)
for i, r := range inRunes {
prop, _ := LookupRune(r)
if prop.IsBracket() {
inRunes[i] = prop.reverseBracket(r)
}
}
for i, j := 0, len(inRunes)-1; i < j; i, j = i+1, j-1 {
inRunes[i], inRunes[j] = inRunes[j], inRunes[i]
}
copy(ret[len(out):], string(inRunes))
return ret
}
// ReverseString reverses the order of characters in s and returns a new string.
// Modifiers will still follow the runes they modify. Brackets are replaced with
// their counterparts.
func ReverseString(s string) string {
input := []rune(s)
li := len(input)
ret := make([]rune, li)
for i, r := range input {
prop, _ := LookupRune(r)
if prop.IsBracket() {
ret[li-i-1] = prop.reverseBracket(r)
} else {
ret[li-i-1] = r
}
}
return string(ret)
}

335
vendor/golang.org/x/text/unicode/bidi/bracket.go generated vendored Normal file
View file

@ -0,0 +1,335 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bidi
import (
"container/list"
"fmt"
"sort"
)
// This file contains a port of the reference implementation of the
// Bidi Parentheses Algorithm:
// https://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/BidiPBAReference.java
//
// The implementation in this file covers definitions BD14-BD16 and rule N0
// of UAX#9.
//
// Some preprocessing is done for each rune before data is passed to this
// algorithm:
// - opening and closing brackets are identified
// - a bracket pair type, like '(' and ')' is assigned a unique identifier that
// is identical for the opening and closing bracket. It is left to do these
// mappings.
// - The BPA algorithm requires that bracket characters that are canonical
// equivalents of each other be able to be substituted for each other.
// It is the responsibility of the caller to do this canonicalization.
//
// In implementing BD16, this implementation departs slightly from the "logical"
// algorithm defined in UAX#9. In particular, the stack referenced there
// supports operations that go beyond a "basic" stack. An equivalent
// implementation based on a linked list is used here.
// Bidi_Paired_Bracket_Type
// BD14. An opening paired bracket is a character whose
// Bidi_Paired_Bracket_Type property value is Open.
//
// BD15. A closing paired bracket is a character whose
// Bidi_Paired_Bracket_Type property value is Close.
type bracketType byte
const (
bpNone bracketType = iota
bpOpen
bpClose
)
// bracketPair holds a pair of index values for opening and closing bracket
// location of a bracket pair.
type bracketPair struct {
opener int
closer int
}
func (b *bracketPair) String() string {
return fmt.Sprintf("(%v, %v)", b.opener, b.closer)
}
// bracketPairs is a slice of bracketPairs with a sort.Interface implementation.
type bracketPairs []bracketPair
func (b bracketPairs) Len() int { return len(b) }
func (b bracketPairs) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b bracketPairs) Less(i, j int) bool { return b[i].opener < b[j].opener }
// resolvePairedBrackets runs the paired bracket part of the UBA algorithm.
//
// For each rune, it takes the indexes into the original string, the class the
// bracket type (in pairTypes) and the bracket identifier (pairValues). It also
// takes the direction type for the start-of-sentence and the embedding level.
//
// The identifiers for bracket types are the rune of the canonicalized opening
// bracket for brackets (open or close) or 0 for runes that are not brackets.
func resolvePairedBrackets(s *isolatingRunSequence) {
p := bracketPairer{
sos: s.sos,
openers: list.New(),
codesIsolatedRun: s.types,
indexes: s.indexes,
}
dirEmbed := L
if s.level&1 != 0 {
dirEmbed = R
}
p.locateBrackets(s.p.pairTypes, s.p.pairValues)
p.resolveBrackets(dirEmbed, s.p.initialTypes)
}
type bracketPairer struct {
sos Class // direction corresponding to start of sequence
// The following is a restatement of BD 16 using non-algorithmic language.
//
// A bracket pair is a pair of characters consisting of an opening
// paired bracket and a closing paired bracket such that the
// Bidi_Paired_Bracket property value of the former equals the latter,
// subject to the following constraints.
// - both characters of a pair occur in the same isolating run sequence
// - the closing character of a pair follows the opening character
// - any bracket character can belong at most to one pair, the earliest possible one
// - any bracket character not part of a pair is treated like an ordinary character
// - pairs may nest properly, but their spans may not overlap otherwise
// Bracket characters with canonical decompositions are supposed to be
// treated as if they had been normalized, to allow normalized and non-
// normalized text to give the same result. In this implementation that step
// is pushed out to the caller. The caller has to ensure that the pairValue
// slices contain the rune of the opening bracket after normalization for
// any opening or closing bracket.
openers *list.List // list of positions for opening brackets
// bracket pair positions sorted by location of opening bracket
pairPositions bracketPairs
codesIsolatedRun []Class // directional bidi codes for an isolated run
indexes []int // array of index values into the original string
}
// matchOpener reports whether characters at given positions form a matching
// bracket pair.
func (p *bracketPairer) matchOpener(pairValues []rune, opener, closer int) bool {
return pairValues[p.indexes[opener]] == pairValues[p.indexes[closer]]
}
const maxPairingDepth = 63
// locateBrackets locates matching bracket pairs according to BD16.
//
// This implementation uses a linked list instead of a stack, because, while
// elements are added at the front (like a push) they are not generally removed
// in atomic 'pop' operations, reducing the benefit of the stack archetype.
func (p *bracketPairer) locateBrackets(pairTypes []bracketType, pairValues []rune) {
// traverse the run
// do that explicitly (not in a for-each) so we can record position
for i, index := range p.indexes {
// look at the bracket type for each character
if pairTypes[index] == bpNone || p.codesIsolatedRun[i] != ON {
// continue scanning
continue
}
switch pairTypes[index] {
case bpOpen:
// check if maximum pairing depth reached
if p.openers.Len() == maxPairingDepth {
p.openers.Init()
return
}
// remember opener location, most recent first
p.openers.PushFront(i)
case bpClose:
// see if there is a match
count := 0
for elem := p.openers.Front(); elem != nil; elem = elem.Next() {
count++
opener := elem.Value.(int)
if p.matchOpener(pairValues, opener, i) {
// if the opener matches, add nested pair to the ordered list
p.pairPositions = append(p.pairPositions, bracketPair{opener, i})
// remove up to and including matched opener
for ; count > 0; count-- {
p.openers.Remove(p.openers.Front())
}
break
}
}
sort.Sort(p.pairPositions)
// if we get here, the closing bracket matched no openers
// and gets ignored
}
}
}
// Bracket pairs within an isolating run sequence are processed as units so
// that both the opening and the closing paired bracket in a pair resolve to
// the same direction.
//
// N0. Process bracket pairs in an isolating run sequence sequentially in
// the logical order of the text positions of the opening paired brackets
// using the logic given below. Within this scope, bidirectional types EN
// and AN are treated as R.
//
// Identify the bracket pairs in the current isolating run sequence
// according to BD16. For each bracket-pair element in the list of pairs of
// text positions:
//
// a Inspect the bidirectional types of the characters enclosed within the
// bracket pair.
//
// b If any strong type (either L or R) matching the embedding direction is
// found, set the type for both brackets in the pair to match the embedding
// direction.
//
// o [ e ] o -> o e e e o
//
// o [ o e ] -> o e o e e
//
// o [ NI e ] -> o e NI e e
//
// c Otherwise, if a strong type (opposite the embedding direction) is
// found, test for adjacent strong types as follows: 1 First, check
// backwards before the opening paired bracket until the first strong type
// (L, R, or sos) is found. If that first preceding strong type is opposite
// the embedding direction, then set the type for both brackets in the pair
// to that type. 2 Otherwise, set the type for both brackets in the pair to
// the embedding direction.
//
// o [ o ] e -> o o o o e
//
// o [ o NI ] o -> o o o NI o o
//
// e [ o ] o -> e e o e o
//
// e [ o ] e -> e e o e e
//
// e ( o [ o ] NI ) e -> e e o o o o NI e e
//
// d Otherwise, do not set the type for the current bracket pair. Note that
// if the enclosed text contains no strong types the paired brackets will
// both resolve to the same level when resolved individually using rules N1
// and N2.
//
// e ( NI ) o -> e ( NI ) o
// getStrongTypeN0 maps character's directional code to strong type as required
// by rule N0.
//
// TODO: have separate type for "strong" directionality.
func (p *bracketPairer) getStrongTypeN0(index int) Class {
switch p.codesIsolatedRun[index] {
// in the scope of N0, number types are treated as R
case EN, AN, AL, R:
return R
case L:
return L
default:
return ON
}
}
// classifyPairContent reports the strong types contained inside a Bracket Pair,
// assuming the given embedding direction.
//
// It returns ON if no strong type is found. If a single strong type is found,
// it returns this type. Otherwise it returns the embedding direction.
//
// TODO: use separate type for "strong" directionality.
func (p *bracketPairer) classifyPairContent(loc bracketPair, dirEmbed Class) Class {
dirOpposite := ON
for i := loc.opener + 1; i < loc.closer; i++ {
dir := p.getStrongTypeN0(i)
if dir == ON {
continue
}
if dir == dirEmbed {
return dir // type matching embedding direction found
}
dirOpposite = dir
}
// return ON if no strong type found, or class opposite to dirEmbed
return dirOpposite
}
// classBeforePair determines which strong types are present before a Bracket
// Pair. Return R or L if strong type found, otherwise ON.
func (p *bracketPairer) classBeforePair(loc bracketPair) Class {
for i := loc.opener - 1; i >= 0; i-- {
if dir := p.getStrongTypeN0(i); dir != ON {
return dir
}
}
// no strong types found, return sos
return p.sos
}
// assignBracketType implements rule N0 for a single bracket pair.
func (p *bracketPairer) assignBracketType(loc bracketPair, dirEmbed Class, initialTypes []Class) {
// rule "N0, a", inspect contents of pair
dirPair := p.classifyPairContent(loc, dirEmbed)
// dirPair is now L, R, or N (no strong type found)
// the following logical tests are performed out of order compared to
// the statement of the rules but yield the same results
if dirPair == ON {
return // case "d" - nothing to do
}
if dirPair != dirEmbed {
// case "c": strong type found, opposite - check before (c.1)
dirPair = p.classBeforePair(loc)
if dirPair == dirEmbed || dirPair == ON {
// no strong opposite type found before - use embedding (c.2)
dirPair = dirEmbed
}
}
// else: case "b", strong type found matching embedding,
// no explicit action needed, as dirPair is already set to embedding
// direction
// set the bracket types to the type found
p.setBracketsToType(loc, dirPair, initialTypes)
}
func (p *bracketPairer) setBracketsToType(loc bracketPair, dirPair Class, initialTypes []Class) {
p.codesIsolatedRun[loc.opener] = dirPair
p.codesIsolatedRun[loc.closer] = dirPair
for i := loc.opener + 1; i < loc.closer; i++ {
index := p.indexes[i]
if initialTypes[index] != NSM {
break
}
p.codesIsolatedRun[i] = dirPair
}
for i := loc.closer + 1; i < len(p.indexes); i++ {
index := p.indexes[i]
if initialTypes[index] != NSM {
break
}
p.codesIsolatedRun[i] = dirPair
}
}
// resolveBrackets implements rule N0 for a list of pairs.
func (p *bracketPairer) resolveBrackets(dirEmbed Class, initialTypes []Class) {
for _, loc := range p.pairPositions {
p.assignBracketType(loc, dirEmbed, initialTypes)
}
}

1071
vendor/golang.org/x/text/unicode/bidi/core.go generated vendored Normal file

File diff suppressed because it is too large Load diff

206
vendor/golang.org/x/text/unicode/bidi/prop.go generated vendored Normal file
View file

@ -0,0 +1,206 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bidi
import "unicode/utf8"
// Properties provides access to BiDi properties of runes.
type Properties struct {
entry uint8
last uint8
}
var trie = newBidiTrie(0)
// TODO: using this for bidirule reduces the running time by about 5%. Consider
// if this is worth exposing or if we can find a way to speed up the Class
// method.
//
// // CompactClass is like Class, but maps all of the BiDi control classes
// // (LRO, RLO, LRE, RLE, PDF, LRI, RLI, FSI, PDI) to the class Control.
// func (p Properties) CompactClass() Class {
// return Class(p.entry & 0x0F)
// }
// Class returns the Bidi class for p.
func (p Properties) Class() Class {
c := Class(p.entry & 0x0F)
if c == Control {
c = controlByteToClass[p.last&0xF]
}
return c
}
// IsBracket reports whether the rune is a bracket.
func (p Properties) IsBracket() bool { return p.entry&0xF0 != 0 }
// IsOpeningBracket reports whether the rune is an opening bracket.
// IsBracket must return true.
func (p Properties) IsOpeningBracket() bool { return p.entry&openMask != 0 }
// TODO: find a better API and expose.
func (p Properties) reverseBracket(r rune) rune {
return xorMasks[p.entry>>xorMaskShift] ^ r
}
var controlByteToClass = [16]Class{
0xD: LRO, // U+202D LeftToRightOverride,
0xE: RLO, // U+202E RightToLeftOverride,
0xA: LRE, // U+202A LeftToRightEmbedding,
0xB: RLE, // U+202B RightToLeftEmbedding,
0xC: PDF, // U+202C PopDirectionalFormat,
0x6: LRI, // U+2066 LeftToRightIsolate,
0x7: RLI, // U+2067 RightToLeftIsolate,
0x8: FSI, // U+2068 FirstStrongIsolate,
0x9: PDI, // U+2069 PopDirectionalIsolate,
}
// LookupRune returns properties for r.
func LookupRune(r rune) (p Properties, size int) {
var buf [4]byte
n := utf8.EncodeRune(buf[:], r)
return Lookup(buf[:n])
}
// TODO: these lookup methods are based on the generated trie code. The returned
// sizes have slightly different semantics from the generated code, in that it
// always returns size==1 for an illegal UTF-8 byte (instead of the length
// of the maximum invalid subsequence). Most Transformers, like unicode/norm,
// leave invalid UTF-8 untouched, in which case it has performance benefits to
// do so (without changing the semantics). Bidi requires the semantics used here
// for the bidirule implementation to be compatible with the Go semantics.
// They ultimately should perhaps be adopted by all trie implementations, for
// convenience sake.
// This unrolled code also boosts performance of the secure/bidirule package by
// about 30%.
// So, to remove this code:
// - add option to trie generator to define return type.
// - always return 1 byte size for ill-formed UTF-8 runes.
// Lookup returns properties for the first rune in s and the width in bytes of
// its encoding. The size will be 0 if s does not hold enough bytes to complete
// the encoding.
func Lookup(s []byte) (p Properties, sz int) {
c0 := s[0]
switch {
case c0 < 0x80: // is ASCII
return Properties{entry: bidiValues[c0]}, 1
case c0 < 0xC2:
return Properties{}, 1
case c0 < 0xE0: // 2-byte UTF-8
if len(s) < 2 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c1)}, 2
case c0 < 0xF0: // 3-byte UTF-8
if len(s) < 3 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c2), last: c2}, 3
case c0 < 0xF8: // 4-byte UTF-8
if len(s) < 4 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
o = uint32(i)<<6 + uint32(c2)
i = bidiIndex[o]
c3 := s[3]
if c3 < 0x80 || 0xC0 <= c3 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c3)}, 4
}
// Illegal rune
return Properties{}, 1
}
// LookupString returns properties for the first rune in s and the width in
// bytes of its encoding. The size will be 0 if s does not hold enough bytes to
// complete the encoding.
func LookupString(s string) (p Properties, sz int) {
c0 := s[0]
switch {
case c0 < 0x80: // is ASCII
return Properties{entry: bidiValues[c0]}, 1
case c0 < 0xC2:
return Properties{}, 1
case c0 < 0xE0: // 2-byte UTF-8
if len(s) < 2 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c1)}, 2
case c0 < 0xF0: // 3-byte UTF-8
if len(s) < 3 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c2), last: c2}, 3
case c0 < 0xF8: // 4-byte UTF-8
if len(s) < 4 {
return Properties{}, 0
}
i := bidiIndex[c0]
c1 := s[1]
if c1 < 0x80 || 0xC0 <= c1 {
return Properties{}, 1
}
o := uint32(i)<<6 + uint32(c1)
i = bidiIndex[o]
c2 := s[2]
if c2 < 0x80 || 0xC0 <= c2 {
return Properties{}, 1
}
o = uint32(i)<<6 + uint32(c2)
i = bidiIndex[o]
c3 := s[3]
if c3 < 0x80 || 0xC0 <= c3 {
return Properties{}, 1
}
return Properties{entry: trie.lookupValue(uint32(i), c3)}, 4
}
// Illegal rune
return Properties{}, 1
}

1816
vendor/golang.org/x/text/unicode/bidi/tables10.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

1888
vendor/golang.org/x/text/unicode/bidi/tables11.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

1924
vendor/golang.org/x/text/unicode/bidi/tables12.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

1956
vendor/golang.org/x/text/unicode/bidi/tables13.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

1782
vendor/golang.org/x/text/unicode/bidi/tables9.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

48
vendor/golang.org/x/text/unicode/bidi/trieval.go generated vendored Normal file
View file

@ -0,0 +1,48 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package bidi
// Class is the Unicode BiDi class. Each rune has a single class.
type Class uint
const (
L Class = iota // LeftToRight
R // RightToLeft
EN // EuropeanNumber
ES // EuropeanSeparator
ET // EuropeanTerminator
AN // ArabicNumber
CS // CommonSeparator
B // ParagraphSeparator
S // SegmentSeparator
WS // WhiteSpace
ON // OtherNeutral
BN // BoundaryNeutral
NSM // NonspacingMark
AL // ArabicLetter
Control // Control LRO - PDI
numClass
LRO // LeftToRightOverride
RLO // RightToLeftOverride
LRE // LeftToRightEmbedding
RLE // RightToLeftEmbedding
PDF // PopDirectionalFormat
LRI // LeftToRightIsolate
RLI // RightToLeftIsolate
FSI // FirstStrongIsolate
PDI // PopDirectionalIsolate
unknownClass = ^Class(0)
)
// A trie entry has the following bits:
// 7..5 XOR mask for brackets
// 4 1: Bracket open, 0: Bracket close
// 3..0 Class type
const (
openMask = 0x10
xorMaskShift = 5
)

512
vendor/golang.org/x/text/unicode/norm/composition.go generated vendored Normal file
View file

@ -0,0 +1,512 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
const (
maxNonStarters = 30
// The maximum number of characters needed for a buffer is
// maxNonStarters + 1 for the starter + 1 for the GCJ
maxBufferSize = maxNonStarters + 2
maxNFCExpansion = 3 // NFC(0x1D160)
maxNFKCExpansion = 18 // NFKC(0xFDFA)
maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
)
// ssState is used for reporting the segment state after inserting a rune.
// It is returned by streamSafe.next.
type ssState int
const (
// Indicates a rune was successfully added to the segment.
ssSuccess ssState = iota
// Indicates a rune starts a new segment and should not be added.
ssStarter
// Indicates a rune caused a segment overflow and a CGJ should be inserted.
ssOverflow
)
// streamSafe implements the policy of when a CGJ should be inserted.
type streamSafe uint8
// first inserts the first rune of a segment. It is a faster version of next if
// it is known p represents the first rune in a segment.
func (ss *streamSafe) first(p Properties) {
*ss = streamSafe(p.nTrailingNonStarters())
}
// insert returns a ssState value to indicate whether a rune represented by p
// can be inserted.
func (ss *streamSafe) next(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
n := p.nLeadingNonStarters()
if *ss += streamSafe(n); *ss > maxNonStarters {
*ss = 0
return ssOverflow
}
// The Stream-Safe Text Processing prescribes that the counting can stop
// as soon as a starter is encountered. However, there are some starters,
// like Jamo V and T, that can combine with other runes, leaving their
// successive non-starters appended to the previous, possibly causing an
// overflow. We will therefore consider any rune with a non-zero nLead to
// be a non-starter. Note that it always hold that if nLead > 0 then
// nLead == nTrail.
if n == 0 {
*ss = streamSafe(p.nTrailingNonStarters())
return ssStarter
}
return ssSuccess
}
// backwards is used for checking for overflow and segment starts
// when traversing a string backwards. Users do not need to call first
// for the first rune. The state of the streamSafe retains the count of
// the non-starters loaded.
func (ss *streamSafe) backwards(p Properties) ssState {
if *ss > maxNonStarters {
panic("streamSafe was not reset")
}
c := *ss + streamSafe(p.nTrailingNonStarters())
if c > maxNonStarters {
return ssOverflow
}
*ss = c
if p.nLeadingNonStarters() == 0 {
return ssStarter
}
return ssSuccess
}
func (ss streamSafe) isMax() bool {
return ss == maxNonStarters
}
// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
const GraphemeJoiner = "\u034F"
// reorderBuffer is used to normalize a single segment. Characters inserted with
// insert are decomposed and reordered based on CCC. The compose method can
// be used to recombine characters. Note that the byte buffer does not hold
// the UTF-8 characters in order. Only the rune array is maintained in sorted
// order. flush writes the resulting segment to a byte array.
type reorderBuffer struct {
rune [maxBufferSize]Properties // Per character info.
byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
nbyte uint8 // Number or bytes.
ss streamSafe // For limiting length of non-starter sequence.
nrune int // Number of runeInfos.
f formInfo
src input
nsrc int
tmpBytes input
out []byte
flushF func(*reorderBuffer) bool
}
func (rb *reorderBuffer) init(f Form, src []byte) {
rb.f = *formTable[f]
rb.src.setBytes(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) initString(f Form, src string) {
rb.f = *formTable[f]
rb.src.setString(src)
rb.nsrc = len(src)
rb.ss = 0
}
func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
rb.out = out
rb.flushF = f
}
// reset discards all characters from the buffer.
func (rb *reorderBuffer) reset() {
rb.nrune = 0
rb.nbyte = 0
}
func (rb *reorderBuffer) doFlush() bool {
if rb.f.composing {
rb.compose()
}
res := rb.flushF(rb)
rb.reset()
return res
}
// appendFlush appends the normalized segment to rb.out.
func appendFlush(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
rb.out = append(rb.out, rb.byte[start:end]...)
}
return true
}
// flush appends the normalized segment to out and resets rb.
func (rb *reorderBuffer) flush(out []byte) []byte {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
out = append(out, rb.byte[start:end]...)
}
rb.reset()
return out
}
// flushCopy copies the normalized segment to buf and resets rb.
// It returns the number of bytes written to buf.
func (rb *reorderBuffer) flushCopy(buf []byte) int {
p := 0
for i := 0; i < rb.nrune; i++ {
runep := rb.rune[i]
p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
}
rb.reset()
return p
}
// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
// It returns false if the buffer is not large enough to hold the rune.
// It is used internally by insert and insertString only.
func (rb *reorderBuffer) insertOrdered(info Properties) {
n := rb.nrune
b := rb.rune[:]
cc := info.ccc
if cc > 0 {
// Find insertion position + move elements to make room.
for ; n > 0; n-- {
if b[n-1].ccc <= cc {
break
}
b[n] = b[n-1]
}
}
rb.nrune += 1
pos := uint8(rb.nbyte)
rb.nbyte += utf8.UTFMax
info.pos = pos
b[n] = info
}
// insertErr is an error code returned by insert. Using this type instead
// of error improves performance up to 20% for many of the benchmarks.
type insertErr int
const (
iSuccess insertErr = -iota
iShortDst
iShortSrc
)
// insertFlush inserts the given rune in the buffer ordered by CCC.
// If a decomposition with multiple segments are encountered, they leading
// ones are flushed.
// It returns a non-zero error code if the rune was not inserted.
func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
return iSuccess
}
if info.hasDecomposition() {
return rb.insertDecomposed(info.Decomposition())
}
rb.insertSingle(src, i, info)
return iSuccess
}
// insertUnsafe inserts the given rune in the buffer ordered by CCC.
// It is assumed there is sufficient space to hold the runes. It is the
// responsibility of the caller to ensure this. This can be done by checking
// the state returned by the streamSafe type.
func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
if rune := src.hangul(i); rune != 0 {
rb.decomposeHangul(rune)
}
if info.hasDecomposition() {
// TODO: inline.
rb.insertDecomposed(info.Decomposition())
} else {
rb.insertSingle(src, i, info)
}
}
// insertDecomposed inserts an entry in to the reorderBuffer for each rune
// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
// It flushes the buffer on each new segment start.
func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
rb.tmpBytes.setBytes(dcomp)
// As the streamSafe accounting already handles the counting for modifiers,
// we don't have to call next. However, we do need to keep the accounting
// intact when flushing the buffer.
for i := 0; i < len(dcomp); {
info := rb.f.info(rb.tmpBytes, i)
if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
return iShortDst
}
i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
rb.insertOrdered(info)
}
return iSuccess
}
// insertSingle inserts an entry in the reorderBuffer for the rune at
// position i. info is the runeInfo for the rune at position i.
func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
rb.insertOrdered(info)
}
// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
func (rb *reorderBuffer) insertCGJ() {
rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
}
// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
func (rb *reorderBuffer) appendRune(r rune) {
bn := rb.nbyte
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.nbyte += utf8.UTFMax
rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
rb.nrune++
}
// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
func (rb *reorderBuffer) assignRune(pos int, r rune) {
bn := rb.rune[pos].pos
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
}
// runeAt returns the rune at position n. It is used for Hangul and recomposition.
func (rb *reorderBuffer) runeAt(n int) rune {
inf := rb.rune[n]
r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
return r
}
// bytesAt returns the UTF-8 encoding of the rune at position n.
// It is used for Hangul and recomposition.
func (rb *reorderBuffer) bytesAt(n int) []byte {
inf := rb.rune[n]
return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
}
// For Hangul we combine algorithmically, instead of using tables.
const (
hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
hangulBase0 = 0xEA
hangulBase1 = 0xB0
hangulBase2 = 0x80
hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
hangulEnd0 = 0xED
hangulEnd1 = 0x9E
hangulEnd2 = 0xA4
jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
jamoLBase0 = 0xE1
jamoLBase1 = 0x84
jamoLEnd = 0x1113
jamoVBase = 0x1161
jamoVEnd = 0x1176
jamoTBase = 0x11A7
jamoTEnd = 0x11C3
jamoTCount = 28
jamoVCount = 21
jamoVTCount = 21 * 28
jamoLVTCount = 19 * 21 * 28
)
const hangulUTF8Size = 3
func isHangul(b []byte) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
func isHangulString(b string) bool {
if len(b) < hangulUTF8Size {
return false
}
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
// Caller must ensure len(b) >= 2.
func isJamoVT(b []byte) bool {
// True if (rune & 0xff00) == jamoLBase
return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
}
func isHangulWithoutJamoT(b []byte) bool {
c, _ := utf8.DecodeRune(b)
c -= hangulBase
return c < jamoLVTCount && c%jamoTCount == 0
}
// decomposeHangul writes the decomposed Hangul to buf and returns the number
// of bytes written. len(buf) should be at least 9.
func decomposeHangul(buf []byte, r rune) int {
const JamoUTF8Len = 3
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
if x != 0 {
utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
return 3 * JamoUTF8Len
}
return 2 * JamoUTF8Len
}
// decomposeHangul algorithmically decomposes a Hangul rune into
// its Jamo components.
// See https://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
func (rb *reorderBuffer) decomposeHangul(r rune) {
r -= hangulBase
x := r % jamoTCount
r /= jamoTCount
rb.appendRune(jamoLBase + r/jamoVCount)
rb.appendRune(jamoVBase + r%jamoVCount)
if x != 0 {
rb.appendRune(jamoTBase + x)
}
}
// combineHangul algorithmically combines Jamo character components into Hangul.
// See https://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
func (rb *reorderBuffer) combineHangul(s, i, k int) {
b := rb.rune[:]
bn := rb.nrune
for ; i < bn; i++ {
cccB := b[k-1].ccc
cccC := b[i].ccc
if cccB == 0 {
s = k - 1
}
if s != k-1 && cccB >= cccC {
// b[i] is blocked by greater-equal cccX below it
b[k] = b[i]
k++
} else {
l := rb.runeAt(s) // also used to compare to hangulBase
v := rb.runeAt(i) // also used to compare to jamoT
switch {
case jamoLBase <= l && l < jamoLEnd &&
jamoVBase <= v && v < jamoVEnd:
// 11xx plus 116x to LV
rb.assignRune(s, hangulBase+
(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
case hangulBase <= l && l < hangulEnd &&
jamoTBase < v && v < jamoTEnd &&
((l-hangulBase)%jamoTCount) == 0:
// ACxx plus 11Ax to LVT
rb.assignRune(s, l+v-jamoTBase)
default:
b[k] = b[i]
k++
}
}
}
rb.nrune = k
}
// compose recombines the runes in the buffer.
// It should only be used to recompose a single segment, as it will not
// handle alternations between Hangul and non-Hangul characters correctly.
func (rb *reorderBuffer) compose() {
// Lazily load the map used by the combine func below, but do
// it outside of the loop.
recompMapOnce.Do(buildRecompMap)
// UAX #15, section X5 , including Corrigendum #5
// "In any character sequence beginning with starter S, a character C is
// blocked from S if and only if there is some character B between S
// and C, and either B is a starter or it has the same or higher
// combining class as C."
bn := rb.nrune
if bn == 0 {
return
}
k := 1
b := rb.rune[:]
for s, i := 0, 1; i < bn; i++ {
if isJamoVT(rb.bytesAt(i)) {
// Redo from start in Hangul mode. Necessary to support
// U+320E..U+321E in NFKC mode.
rb.combineHangul(s, i, k)
return
}
ii := b[i]
// We can only use combineForward as a filter if we later
// get the info for the combined character. This is more
// expensive than using the filter. Using combinesBackward()
// is safe.
if ii.combinesBackward() {
cccB := b[k-1].ccc
cccC := ii.ccc
blocked := false // b[i] blocked by starter or greater or equal CCC?
if cccB == 0 {
s = k - 1
} else {
blocked = s != k-1 && cccB >= cccC
}
if !blocked {
combined := combine(rb.runeAt(s), rb.runeAt(i))
if combined != 0 {
rb.assignRune(s, combined)
continue
}
}
}
b[k] = b[i]
k++
}
rb.nrune = k
}

279
vendor/golang.org/x/text/unicode/norm/forminfo.go generated vendored Normal file
View file

@ -0,0 +1,279 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "encoding/binary"
// This file contains Form-specific logic and wrappers for data in tables.go.
// Rune info is stored in a separate trie per composing form. A composing form
// and its corresponding decomposing form share the same trie. Each trie maps
// a rune to a uint16. The values take two forms. For v >= 0x8000:
// bits
// 15: 1 (inverse of NFD_QC bit of qcInfo)
// 13..7: qcInfo (see below). isYesD is always true (no decomposition).
// 6..0: ccc (compressed CCC value).
// For v < 0x8000, the respective rune has a decomposition and v is an index
// into a byte array of UTF-8 decomposition sequences and additional info and
// has the form:
// <header> <decomp_byte>* [<tccc> [<lccc>]]
// The header contains the number of bytes in the decomposition (excluding this
// length byte). The two most significant bits of this length byte correspond
// to bit 5 and 4 of qcInfo (see below). The byte sequence itself starts at v+1.
// The byte sequence is followed by a trailing and leading CCC if the values
// for these are not zero. The value of v determines which ccc are appended
// to the sequences. For v < firstCCC, there are none, for v >= firstCCC,
// the sequence is followed by a trailing ccc, and for v >= firstLeadingCC
// there is an additional leading ccc. The value of tccc itself is the
// trailing CCC shifted left 2 bits. The two least-significant bits of tccc
// are the number of trailing non-starters.
const (
qcInfoMask = 0x3F // to clear all but the relevant bits in a qcInfo
headerLenMask = 0x3F // extract the length value from the header byte
headerFlagsMask = 0xC0 // extract the qcInfo bits from the header byte
)
// Properties provides access to normalization properties of a rune.
type Properties struct {
pos uint8 // start position in reorderBuffer; used in composition.go
size uint8 // length of UTF-8 encoding of this rune
ccc uint8 // leading canonical combining class (ccc if not decomposition)
tccc uint8 // trailing canonical combining class (ccc if not decomposition)
nLead uint8 // number of leading non-starters.
flags qcInfo // quick check flags
index uint16
}
// functions dispatchable per form
type lookupFunc func(b input, i int) Properties
// formInfo holds Form-specific functions and tables.
type formInfo struct {
form Form
composing, compatibility bool // form type
info lookupFunc
nextMain iterFunc
}
var formTable = []*formInfo{{
form: NFC,
composing: true,
compatibility: false,
info: lookupInfoNFC,
nextMain: nextComposed,
}, {
form: NFD,
composing: false,
compatibility: false,
info: lookupInfoNFC,
nextMain: nextDecomposed,
}, {
form: NFKC,
composing: true,
compatibility: true,
info: lookupInfoNFKC,
nextMain: nextComposed,
}, {
form: NFKD,
composing: false,
compatibility: true,
info: lookupInfoNFKC,
nextMain: nextDecomposed,
}}
// We do not distinguish between boundaries for NFC, NFD, etc. to avoid
// unexpected behavior for the user. For example, in NFD, there is a boundary
// after 'a'. However, 'a' might combine with modifiers, so from the application's
// perspective it is not a good boundary. We will therefore always use the
// boundaries for the combining variants.
// BoundaryBefore returns true if this rune starts a new segment and
// cannot combine with any rune on the left.
func (p Properties) BoundaryBefore() bool {
if p.ccc == 0 && !p.combinesBackward() {
return true
}
// We assume that the CCC of the first character in a decomposition
// is always non-zero if different from info.ccc and that we can return
// false at this point. This is verified by maketables.
return false
}
// BoundaryAfter returns true if runes cannot combine with or otherwise
// interact with this or previous runes.
func (p Properties) BoundaryAfter() bool {
// TODO: loosen these conditions.
return p.isInert()
}
// We pack quick check data in 4 bits:
//
// 5: Combines forward (0 == false, 1 == true)
// 4..3: NFC_QC Yes(00), No (10), or Maybe (11)
// 2: NFD_QC Yes (0) or No (1). No also means there is a decomposition.
// 1..0: Number of trailing non-starters.
//
// When all 4 bits are zero, the character is inert, meaning it is never
// influenced by normalization.
type qcInfo uint8
func (p Properties) isYesC() bool { return p.flags&0x10 == 0 }
func (p Properties) isYesD() bool { return p.flags&0x4 == 0 }
func (p Properties) combinesForward() bool { return p.flags&0x20 != 0 }
func (p Properties) combinesBackward() bool { return p.flags&0x8 != 0 } // == isMaybe
func (p Properties) hasDecomposition() bool { return p.flags&0x4 != 0 } // == isNoD
func (p Properties) isInert() bool {
return p.flags&qcInfoMask == 0 && p.ccc == 0
}
func (p Properties) multiSegment() bool {
return p.index >= firstMulti && p.index < endMulti
}
func (p Properties) nLeadingNonStarters() uint8 {
return p.nLead
}
func (p Properties) nTrailingNonStarters() uint8 {
return uint8(p.flags & 0x03)
}
// Decomposition returns the decomposition for the underlying rune
// or nil if there is none.
func (p Properties) Decomposition() []byte {
// TODO: create the decomposition for Hangul?
if p.index == 0 {
return nil
}
i := p.index
n := decomps[i] & headerLenMask
i++
return decomps[i : i+uint16(n)]
}
// Size returns the length of UTF-8 encoding of the rune.
func (p Properties) Size() int {
return int(p.size)
}
// CCC returns the canonical combining class of the underlying rune.
func (p Properties) CCC() uint8 {
if p.index >= firstCCCZeroExcept {
return 0
}
return ccc[p.ccc]
}
// LeadCCC returns the CCC of the first rune in the decomposition.
// If there is no decomposition, LeadCCC equals CCC.
func (p Properties) LeadCCC() uint8 {
return ccc[p.ccc]
}
// TrailCCC returns the CCC of the last rune in the decomposition.
// If there is no decomposition, TrailCCC equals CCC.
func (p Properties) TrailCCC() uint8 {
return ccc[p.tccc]
}
func buildRecompMap() {
recompMap = make(map[uint32]rune, len(recompMapPacked)/8)
var buf [8]byte
for i := 0; i < len(recompMapPacked); i += 8 {
copy(buf[:], recompMapPacked[i:i+8])
key := binary.BigEndian.Uint32(buf[:4])
val := binary.BigEndian.Uint32(buf[4:])
recompMap[key] = rune(val)
}
}
// Recomposition
// We use 32-bit keys instead of 64-bit for the two codepoint keys.
// This clips off the bits of three entries, but we know this will not
// result in a collision. In the unlikely event that changes to
// UnicodeData.txt introduce collisions, the compiler will catch it.
// Note that the recomposition map for NFC and NFKC are identical.
// combine returns the combined rune or 0 if it doesn't exist.
//
// The caller is responsible for calling
// recompMapOnce.Do(buildRecompMap) sometime before this is called.
func combine(a, b rune) rune {
key := uint32(uint16(a))<<16 + uint32(uint16(b))
if recompMap == nil {
panic("caller error") // see func comment
}
return recompMap[key]
}
func lookupInfoNFC(b input, i int) Properties {
v, sz := b.charinfoNFC(i)
return compInfo(v, sz)
}
func lookupInfoNFKC(b input, i int) Properties {
v, sz := b.charinfoNFKC(i)
return compInfo(v, sz)
}
// Properties returns properties for the first rune in s.
func (f Form) Properties(s []byte) Properties {
if f == NFC || f == NFD {
return compInfo(nfcData.lookup(s))
}
return compInfo(nfkcData.lookup(s))
}
// PropertiesString returns properties for the first rune in s.
func (f Form) PropertiesString(s string) Properties {
if f == NFC || f == NFD {
return compInfo(nfcData.lookupString(s))
}
return compInfo(nfkcData.lookupString(s))
}
// compInfo converts the information contained in v and sz
// to a Properties. See the comment at the top of the file
// for more information on the format.
func compInfo(v uint16, sz int) Properties {
if v == 0 {
return Properties{size: uint8(sz)}
} else if v >= 0x8000 {
p := Properties{
size: uint8(sz),
ccc: uint8(v),
tccc: uint8(v),
flags: qcInfo(v >> 8),
}
if p.ccc > 0 || p.combinesBackward() {
p.nLead = uint8(p.flags & 0x3)
}
return p
}
// has decomposition
h := decomps[v]
f := (qcInfo(h&headerFlagsMask) >> 2) | 0x4
p := Properties{size: uint8(sz), flags: f, index: v}
if v >= firstCCC {
v += uint16(h&headerLenMask) + 1
c := decomps[v]
p.tccc = c >> 2
p.flags |= qcInfo(c & 0x3)
if v >= firstLeadingCCC {
p.nLead = c & 0x3
if v >= firstStarterWithNLead {
// We were tricked. Remove the decomposition.
p.flags &= 0x03
p.index = 0
return p
}
p.ccc = decomps[v+1]
}
}
return p
}

109
vendor/golang.org/x/text/unicode/norm/input.go generated vendored Normal file
View file

@ -0,0 +1,109 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "unicode/utf8"
type input struct {
str string
bytes []byte
}
func inputBytes(str []byte) input {
return input{bytes: str}
}
func inputString(str string) input {
return input{str: str}
}
func (in *input) setBytes(str []byte) {
in.str = ""
in.bytes = str
}
func (in *input) setString(str string) {
in.str = str
in.bytes = nil
}
func (in *input) _byte(p int) byte {
if in.bytes == nil {
return in.str[p]
}
return in.bytes[p]
}
func (in *input) skipASCII(p, max int) int {
if in.bytes == nil {
for ; p < max && in.str[p] < utf8.RuneSelf; p++ {
}
} else {
for ; p < max && in.bytes[p] < utf8.RuneSelf; p++ {
}
}
return p
}
func (in *input) skipContinuationBytes(p int) int {
if in.bytes == nil {
for ; p < len(in.str) && !utf8.RuneStart(in.str[p]); p++ {
}
} else {
for ; p < len(in.bytes) && !utf8.RuneStart(in.bytes[p]); p++ {
}
}
return p
}
func (in *input) appendSlice(buf []byte, b, e int) []byte {
if in.bytes != nil {
return append(buf, in.bytes[b:e]...)
}
for i := b; i < e; i++ {
buf = append(buf, in.str[i])
}
return buf
}
func (in *input) copySlice(buf []byte, b, e int) int {
if in.bytes == nil {
return copy(buf, in.str[b:e])
}
return copy(buf, in.bytes[b:e])
}
func (in *input) charinfoNFC(p int) (uint16, int) {
if in.bytes == nil {
return nfcData.lookupString(in.str[p:])
}
return nfcData.lookup(in.bytes[p:])
}
func (in *input) charinfoNFKC(p int) (uint16, int) {
if in.bytes == nil {
return nfkcData.lookupString(in.str[p:])
}
return nfkcData.lookup(in.bytes[p:])
}
func (in *input) hangul(p int) (r rune) {
var size int
if in.bytes == nil {
if !isHangulString(in.str[p:]) {
return 0
}
r, size = utf8.DecodeRuneInString(in.str[p:])
} else {
if !isHangul(in.bytes[p:]) {
return 0
}
r, size = utf8.DecodeRune(in.bytes[p:])
}
if size != hangulUTF8Size {
return 0
}
return r
}

458
vendor/golang.org/x/text/unicode/norm/iter.go generated vendored Normal file
View file

@ -0,0 +1,458 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"fmt"
"unicode/utf8"
)
// MaxSegmentSize is the maximum size of a byte buffer needed to consider any
// sequence of starter and non-starter runes for the purpose of normalization.
const MaxSegmentSize = maxByteBufferSize
// An Iter iterates over a string or byte slice, while normalizing it
// to a given Form.
type Iter struct {
rb reorderBuffer
buf [maxByteBufferSize]byte
info Properties // first character saved from previous iteration
next iterFunc // implementation of next depends on form
asciiF iterFunc
p int // current position in input source
multiSeg []byte // remainder of multi-segment decomposition
}
type iterFunc func(*Iter) []byte
// Init initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) Init(f Form, src []byte) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.init(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIBytes
i.info = i.rb.f.info(i.rb.src, i.p)
i.rb.ss.first(i.info)
}
// InitString initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) InitString(f Form, src string) {
i.p = 0
if len(src) == 0 {
i.setDone()
i.rb.nsrc = 0
return
}
i.multiSeg = nil
i.rb.initString(f, src)
i.next = i.rb.f.nextMain
i.asciiF = nextASCIIString
i.info = i.rb.f.info(i.rb.src, i.p)
i.rb.ss.first(i.info)
}
// Seek sets the segment to be returned by the next call to Next to start
// at position p. It is the responsibility of the caller to set p to the
// start of a segment.
func (i *Iter) Seek(offset int64, whence int) (int64, error) {
var abs int64
switch whence {
case 0:
abs = offset
case 1:
abs = int64(i.p) + offset
case 2:
abs = int64(i.rb.nsrc) + offset
default:
return 0, fmt.Errorf("norm: invalid whence")
}
if abs < 0 {
return 0, fmt.Errorf("norm: negative position")
}
if int(abs) >= i.rb.nsrc {
i.setDone()
return int64(i.p), nil
}
i.p = int(abs)
i.multiSeg = nil
i.next = i.rb.f.nextMain
i.info = i.rb.f.info(i.rb.src, i.p)
i.rb.ss.first(i.info)
return abs, nil
}
// returnSlice returns a slice of the underlying input type as a byte slice.
// If the underlying is of type []byte, it will simply return a slice.
// If the underlying is of type string, it will copy the slice to the buffer
// and return that.
func (i *Iter) returnSlice(a, b int) []byte {
if i.rb.src.bytes == nil {
return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
}
return i.rb.src.bytes[a:b]
}
// Pos returns the byte position at which the next call to Next will commence processing.
func (i *Iter) Pos() int {
return i.p
}
func (i *Iter) setDone() {
i.next = nextDone
i.p = i.rb.nsrc
}
// Done returns true if there is no more input to process.
func (i *Iter) Done() bool {
return i.p >= i.rb.nsrc
}
// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
// For any input a and b for which f(a) == f(b), subsequent calls
// to Next will return the same segments.
// Modifying runes are grouped together with the preceding starter, if such a starter exists.
// Although not guaranteed, n will typically be the smallest possible n.
func (i *Iter) Next() []byte {
return i.next(i)
}
func nextASCIIBytes(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
p0 := i.p
i.setDone()
return i.rb.src.bytes[p0:p]
}
if i.rb.src.bytes[p] < utf8.RuneSelf {
p0 := i.p
i.p = p
return i.rb.src.bytes[p0:p]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextASCIIString(i *Iter) []byte {
p := i.p + 1
if p >= i.rb.nsrc {
i.buf[0] = i.rb.src.str[i.p]
i.setDone()
return i.buf[:1]
}
if i.rb.src.str[p] < utf8.RuneSelf {
i.buf[0] = i.rb.src.str[i.p]
i.p = p
return i.buf[:1]
}
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
func nextHangul(i *Iter) []byte {
p := i.p
next := p + hangulUTF8Size
if next >= i.rb.nsrc {
i.setDone()
} else if i.rb.src.hangul(next) == 0 {
i.rb.ss.next(i.info)
i.info = i.rb.f.info(i.rb.src, i.p)
i.next = i.rb.f.nextMain
return i.next(i)
}
i.p = next
return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
}
func nextDone(i *Iter) []byte {
return nil
}
// nextMulti is used for iterating over multi-segment decompositions
// for decomposing normal forms.
func nextMulti(i *Iter) []byte {
j := 0
d := i.multiSeg
// skip first rune
for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
}
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.multiSeg = d[j:]
return d[:j]
}
j += int(info.size)
}
// treat last segment as normal decomposition
i.next = i.rb.f.nextMain
return i.next(i)
}
// nextMultiNorm is used for iterating over multi-segment decompositions
// for composing normal forms.
func nextMultiNorm(i *Iter) []byte {
j := 0
d := i.multiSeg
for j < len(d) {
info := i.rb.f.info(input{bytes: d}, j)
if info.BoundaryBefore() {
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
i.rb.insertUnsafe(input{bytes: d}, j, info)
i.multiSeg = d[j+int(info.size):]
return seg
}
i.rb.insertUnsafe(input{bytes: d}, j, info)
j += int(info.size)
}
i.multiSeg = nil
i.next = nextComposed
return doNormComposed(i)
}
// nextDecomposed is the implementation of Next for forms NFD and NFKD.
func nextDecomposed(i *Iter) (next []byte) {
outp := 0
inCopyStart, outCopyStart := i.p, 0
for {
if sz := int(i.info.size); sz <= 1 {
i.rb.ss = 0
p := i.p
i.p++ // ASCII or illegal byte. Either way, advance by 1.
if i.p >= i.rb.nsrc {
i.setDone()
return i.returnSlice(p, i.p)
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.next = i.asciiF
return i.returnSlice(p, i.p)
}
outp++
} else if d := i.info.Decomposition(); d != nil {
// Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
// Case 1: there is a leftover to copy. In this case the decomposition
// must begin with a modifier and should always be appended.
// Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
p := outp + len(d)
if outp > 0 {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
// TODO: this condition should not be possible, but we leave it
// in for defensive purposes.
if p > len(i.buf) {
return i.buf[:outp]
}
} else if i.info.multiSegment() {
// outp must be 0 as multi-segment decompositions always
// start a new segment.
if i.multiSeg == nil {
i.multiSeg = d
i.next = nextMulti
return nextMulti(i)
}
// We are in the last segment. Treat as normal decomposition.
d = i.multiSeg
i.multiSeg = nil
p = len(d)
}
prevCC := i.info.tccc
if i.p += sz; i.p >= i.rb.nsrc {
i.setDone()
i.info = Properties{} // Force BoundaryBefore to succeed.
} else {
i.info = i.rb.f.info(i.rb.src, i.p)
}
switch i.rb.ss.next(i.info) {
case ssOverflow:
i.next = nextCGJDecompose
fallthrough
case ssStarter:
if outp > 0 {
copy(i.buf[outp:], d)
return i.buf[:p]
}
return d
}
copy(i.buf[outp:], d)
outp = p
inCopyStart, outCopyStart = i.p, outp
if i.info.ccc < prevCC {
goto doNorm
}
continue
} else if r := i.rb.src.hangul(i.p); r != 0 {
outp = decomposeHangul(i.buf[:], r)
i.p += hangulUTF8Size
inCopyStart, outCopyStart = i.p, outp
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src.hangul(i.p) != 0 {
i.next = nextHangul
return i.buf[:outp]
}
} else {
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
}
if i.p >= i.rb.nsrc {
i.setDone()
break
}
prevCC := i.info.tccc
i.info = i.rb.f.info(i.rb.src, i.p)
if v := i.rb.ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJDecompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
if outCopyStart == 0 {
return i.returnSlice(inCopyStart, i.p)
} else if inCopyStart < i.p {
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
}
return i.buf[:outp]
doNorm:
// Insert what we have decomposed so far in the reorderBuffer.
// As we will only reorder, there will always be enough room.
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
i.rb.insertDecomposed(i.buf[0:outp])
return doNormDecomposed(i)
}
func doNormDecomposed(i *Iter) []byte {
for {
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.ccc == 0 {
break
}
if s := i.rb.ss.next(i.info); s == ssOverflow {
i.next = nextCGJDecompose
break
}
}
// new segment or too many combining characters: exit normalization
return i.buf[:i.rb.flushCopy(i.buf[:])]
}
func nextCGJDecompose(i *Iter) []byte {
i.rb.ss = 0
i.rb.insertCGJ()
i.next = nextDecomposed
i.rb.ss.first(i.info)
buf := doNormDecomposed(i)
return buf
}
// nextComposed is the implementation of Next for forms NFC and NFKC.
func nextComposed(i *Iter) []byte {
outp, startp := 0, i.p
var prevCC uint8
for {
if !i.info.isYesC() {
goto doNorm
}
prevCC = i.info.tccc
sz := int(i.info.size)
if sz == 0 {
sz = 1 // illegal rune: copy byte-by-byte
}
p := outp + sz
if p > len(i.buf) {
break
}
outp = p
i.p += sz
if i.p >= i.rb.nsrc {
i.setDone()
break
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
i.rb.ss = 0
i.next = i.asciiF
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if v := i.rb.ss.next(i.info); v == ssStarter {
break
} else if v == ssOverflow {
i.next = nextCGJCompose
break
}
if i.info.ccc < prevCC {
goto doNorm
}
}
return i.returnSlice(startp, i.p)
doNorm:
// reset to start position
i.p = startp
i.info = i.rb.f.info(i.rb.src, i.p)
i.rb.ss.first(i.info)
if i.info.multiSegment() {
d := i.info.Decomposition()
info := i.rb.f.info(input{bytes: d}, 0)
i.rb.insertUnsafe(input{bytes: d}, 0, info)
i.multiSeg = d[int(info.size):]
i.next = nextMultiNorm
return nextMultiNorm(i)
}
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}
func doNormComposed(i *Iter) []byte {
// First rune should already be inserted.
for {
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.setDone()
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
if s := i.rb.ss.next(i.info); s == ssStarter {
break
} else if s == ssOverflow {
i.next = nextCGJCompose
break
}
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
}
i.rb.compose()
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
return seg
}
func nextCGJCompose(i *Iter) []byte {
i.rb.ss = 0 // instead of first
i.rb.insertCGJ()
i.next = nextComposed
// Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
// even if they are not. This is particularly dubious for U+FF9E and UFF9A.
// If we ever change that, insert a check here.
i.rb.ss.first(i.info)
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
return doNormComposed(i)
}

610
vendor/golang.org/x/text/unicode/norm/normalize.go generated vendored Normal file
View file

@ -0,0 +1,610 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Note: the file data_test.go that is generated should not be checked in.
//go:generate go run maketables.go triegen.go
//go:generate go test -tags test
// Package norm contains types and functions for normalizing Unicode strings.
package norm // import "golang.org/x/text/unicode/norm"
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// A Form denotes a canonical representation of Unicode code points.
// The Unicode-defined normalization and equivalence forms are:
//
// NFC Unicode Normalization Form C
// NFD Unicode Normalization Form D
// NFKC Unicode Normalization Form KC
// NFKD Unicode Normalization Form KD
//
// For a Form f, this documentation uses the notation f(x) to mean
// the bytes or string x converted to the given form.
// A position n in x is called a boundary if conversion to the form can
// proceed independently on both sides:
//
// f(x) == append(f(x[0:n]), f(x[n:])...)
//
// References: https://unicode.org/reports/tr15/ and
// https://unicode.org/notes/tn5/.
type Form int
const (
NFC Form = iota
NFD
NFKC
NFKD
)
// Bytes returns f(b). May return b if f(b) = b.
func (f Form) Bytes(b []byte) []byte {
src := inputBytes(b)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return b
}
out := make([]byte, n, len(b))
copy(out, b[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b), out: out, flushF: appendFlush}
return doAppendInner(&rb, n)
}
// String returns f(s).
func (f Form) String(s string) string {
src := inputString(s)
ft := formTable[f]
n, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return s
}
out := make([]byte, n, len(s))
copy(out, s[0:n])
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s), out: out, flushF: appendFlush}
return string(doAppendInner(&rb, n))
}
// IsNormal returns true if b == f(b).
func (f Form) IsNormal(b []byte) bool {
src := inputBytes(b)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(b), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b)}
rb.setFlusher(nil, cmpNormalBytes)
for bp < len(b) {
rb.out = b[bp:]
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(b), true)
}
return true
}
func cmpNormalBytes(rb *reorderBuffer) bool {
b := rb.out
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if int(info.size) > len(b) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if b[0] != rb.byte[p] {
return false
}
b = b[1:]
}
}
return true
}
// IsNormalString returns true if s == f(s).
func (f Form) IsNormalString(s string) bool {
src := inputString(s)
ft := formTable[f]
bp, ok := ft.quickSpan(src, 0, len(s), true)
if ok {
return true
}
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s)}
rb.setFlusher(nil, func(rb *reorderBuffer) bool {
for i := 0; i < rb.nrune; i++ {
info := rb.rune[i]
if bp+int(info.size) > len(s) {
return false
}
p := info.pos
pe := p + info.size
for ; p < pe; p++ {
if s[bp] != rb.byte[p] {
return false
}
bp++
}
}
return true
})
for bp < len(s) {
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
return false
}
bp, _ = rb.f.quickSpan(rb.src, bp, len(s), true)
}
return true
}
// patchTail fixes a case where a rune may be incorrectly normalized
// if it is followed by illegal continuation bytes. It returns the
// patched buffer and whether the decomposition is still in progress.
func patchTail(rb *reorderBuffer) bool {
info, p := lastRuneStart(&rb.f, rb.out)
if p == -1 || info.size == 0 {
return true
}
end := p + int(info.size)
extra := len(rb.out) - end
if extra > 0 {
// Potentially allocating memory. However, this only
// happens with ill-formed UTF-8.
x := make([]byte, 0)
x = append(x, rb.out[len(rb.out)-extra:]...)
rb.out = rb.out[:end]
decomposeToLastBoundary(rb)
rb.doFlush()
rb.out = append(rb.out, x...)
return false
}
buf := rb.out[p:]
rb.out = rb.out[:p]
decomposeToLastBoundary(rb)
if s := rb.ss.next(info); s == ssStarter {
rb.doFlush()
rb.ss.first(info)
} else if s == ssOverflow {
rb.doFlush()
rb.insertCGJ()
rb.ss = 0
}
rb.insertUnsafe(inputBytes(buf), 0, info)
return true
}
func appendQuick(rb *reorderBuffer, i int) int {
if rb.nsrc == i {
return i
}
end, _ := rb.f.quickSpan(rb.src, i, rb.nsrc, true)
rb.out = rb.src.appendSlice(rb.out, i, end)
return end
}
// Append returns f(append(out, b...)).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) Append(out []byte, src ...byte) []byte {
return f.doAppend(out, inputBytes(src), len(src))
}
func (f Form) doAppend(out []byte, src input, n int) []byte {
if n == 0 {
return out
}
ft := formTable[f]
// Attempt to do a quickSpan first so we can avoid initializing the reorderBuffer.
if len(out) == 0 {
p, _ := ft.quickSpan(src, 0, n, true)
out = src.appendSlice(out, 0, p)
if p == n {
return out
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n, out: out, flushF: appendFlush}
return doAppendInner(&rb, p)
}
rb := reorderBuffer{f: *ft, src: src, nsrc: n}
return doAppend(&rb, out, 0)
}
func doAppend(rb *reorderBuffer, out []byte, p int) []byte {
rb.setFlusher(out, appendFlush)
src, n := rb.src, rb.nsrc
doMerge := len(out) > 0
if q := src.skipContinuationBytes(p); q > p {
// Move leading non-starters to destination.
rb.out = src.appendSlice(rb.out, p, q)
p = q
doMerge = patchTail(rb)
}
fd := &rb.f
if doMerge {
var info Properties
if p < n {
info = fd.info(src, p)
if !info.BoundaryBefore() || info.nLeadingNonStarters() > 0 {
if p == 0 {
decomposeToLastBoundary(rb)
}
p = decomposeSegment(rb, p, true)
}
}
if info.size == 0 {
rb.doFlush()
// Append incomplete UTF-8 encoding.
return src.appendSlice(rb.out, p, n)
}
if rb.nrune > 0 {
return doAppendInner(rb, p)
}
}
p = appendQuick(rb, p)
return doAppendInner(rb, p)
}
func doAppendInner(rb *reorderBuffer, p int) []byte {
for n := rb.nsrc; p < n; {
p = decomposeSegment(rb, p, true)
p = appendQuick(rb, p)
}
return rb.out
}
// AppendString returns f(append(out, []byte(s))).
// The buffer out must be nil, empty, or equal to f(out).
func (f Form) AppendString(out []byte, src string) []byte {
return f.doAppend(out, inputString(src), len(src))
}
// QuickSpan returns a boundary n such that b[0:n] == f(b[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpan(b []byte) int {
n, _ := formTable[f].quickSpan(inputBytes(b), 0, len(b), true)
return n
}
// Span implements transform.SpanningTransformer. It returns a boundary n such
// that b[0:n] == f(b[0:n]). It is not guaranteed to return the largest such n.
func (f Form) Span(b []byte, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), atEOF)
if n < len(b) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// SpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) SpanString(s string, atEOF bool) (n int, err error) {
n, ok := formTable[f].quickSpan(inputString(s), 0, len(s), atEOF)
if n < len(s) {
if !ok {
err = transform.ErrEndOfSpan
} else {
err = transform.ErrShortSrc
}
}
return n, err
}
// quickSpan returns a boundary n such that src[0:n] == f(src[0:n]) and
// whether any non-normalized parts were found. If atEOF is false, n will
// not point past the last segment if this segment might be become
// non-normalized by appending other runes.
func (f *formInfo) quickSpan(src input, i, end int, atEOF bool) (n int, ok bool) {
var lastCC uint8
ss := streamSafe(0)
lastSegStart := i
for n = end; i < n; {
if j := src.skipASCII(i, n); i != j {
i = j
lastSegStart = i - 1
lastCC = 0
ss = 0
continue
}
info := f.info(src, i)
if info.size == 0 {
if atEOF {
// include incomplete runes
return n, true
}
return lastSegStart, true
}
// This block needs to be before the next, because it is possible to
// have an overflow for runes that are starters (e.g. with U+FF9E).
switch ss.next(info) {
case ssStarter:
lastSegStart = i
case ssOverflow:
return lastSegStart, false
case ssSuccess:
if lastCC > info.ccc {
return lastSegStart, false
}
}
if f.composing {
if !info.isYesC() {
break
}
} else {
if !info.isYesD() {
break
}
}
lastCC = info.ccc
i += int(info.size)
}
if i == n {
if !atEOF {
n = lastSegStart
}
return n, true
}
return lastSegStart, false
}
// QuickSpanString returns a boundary n such that s[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpanString(s string) int {
n, _ := formTable[f].quickSpan(inputString(s), 0, len(s), true)
return n
}
// FirstBoundary returns the position i of the first boundary in b
// or -1 if b contains no boundary.
func (f Form) FirstBoundary(b []byte) int {
return f.firstBoundary(inputBytes(b), len(b))
}
func (f Form) firstBoundary(src input, nsrc int) int {
i := src.skipContinuationBytes(0)
if i >= nsrc {
return -1
}
fd := formTable[f]
ss := streamSafe(0)
// We should call ss.first here, but we can't as the first rune is
// skipped already. This means FirstBoundary can't really determine
// CGJ insertion points correctly. Luckily it doesn't have to.
for {
info := fd.info(src, i)
if info.size == 0 {
return -1
}
if s := ss.next(info); s != ssSuccess {
return i
}
i += int(info.size)
if i >= nsrc {
if !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
}
}
// FirstBoundaryInString returns the position i of the first boundary in s
// or -1 if s contains no boundary.
func (f Form) FirstBoundaryInString(s string) int {
return f.firstBoundary(inputString(s), len(s))
}
// NextBoundary reports the index of the boundary between the first and next
// segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundary(b []byte, atEOF bool) int {
return f.nextBoundary(inputBytes(b), len(b), atEOF)
}
// NextBoundaryInString reports the index of the boundary between the first and
// next segment in b or -1 if atEOF is false and there are not enough bytes to
// determine this boundary.
func (f Form) NextBoundaryInString(s string, atEOF bool) int {
return f.nextBoundary(inputString(s), len(s), atEOF)
}
func (f Form) nextBoundary(src input, nsrc int, atEOF bool) int {
if nsrc == 0 {
if atEOF {
return 0
}
return -1
}
fd := formTable[f]
info := fd.info(src, 0)
if info.size == 0 {
if atEOF {
return 1
}
return -1
}
ss := streamSafe(0)
ss.first(info)
for i := int(info.size); i < nsrc; i += int(info.size) {
info = fd.info(src, i)
if info.size == 0 {
if atEOF {
return i
}
return -1
}
// TODO: Using streamSafe to determine the boundary isn't the same as
// using BoundaryBefore. Determine which should be used.
if s := ss.next(info); s != ssSuccess {
return i
}
}
if !atEOF && !info.BoundaryAfter() && !ss.isMax() {
return -1
}
return nsrc
}
// LastBoundary returns the position i of the last boundary in b
// or -1 if b contains no boundary.
func (f Form) LastBoundary(b []byte) int {
return lastBoundary(formTable[f], b)
}
func lastBoundary(fd *formInfo, b []byte) int {
i := len(b)
info, p := lastRuneStart(fd, b)
if p == -1 {
return -1
}
if info.size == 0 { // ends with incomplete rune
if p == 0 { // starts with incomplete rune
return -1
}
i = p
info, p = lastRuneStart(fd, b[:i])
if p == -1 { // incomplete UTF-8 encoding or non-starter bytes without a starter
return i
}
}
if p+int(info.size) != i { // trailing non-starter bytes: illegal UTF-8
return i
}
if info.BoundaryAfter() {
return i
}
ss := streamSafe(0)
v := ss.backwards(info)
for i = p; i >= 0 && v != ssStarter; i = p {
info, p = lastRuneStart(fd, b[:i])
if v = ss.backwards(info); v == ssOverflow {
break
}
if p+int(info.size) != i {
if p == -1 { // no boundary found
return -1
}
return i // boundary after an illegal UTF-8 encoding
}
}
return i
}
// decomposeSegment scans the first segment in src into rb. It inserts 0x034f
// (Grapheme Joiner) when it encounters a sequence of more than 30 non-starters
// and returns the number of bytes consumed from src or iShortDst or iShortSrc.
func decomposeSegment(rb *reorderBuffer, sp int, atEOF bool) int {
// Force one character to be consumed.
info := rb.f.info(rb.src, sp)
if info.size == 0 {
return 0
}
if s := rb.ss.next(info); s == ssStarter {
// TODO: this could be removed if we don't support merging.
if rb.nrune > 0 {
goto end
}
} else if s == ssOverflow {
rb.insertCGJ()
goto end
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
for {
sp += int(info.size)
if sp >= rb.nsrc {
if !atEOF && !info.BoundaryAfter() {
return int(iShortSrc)
}
break
}
info = rb.f.info(rb.src, sp)
if info.size == 0 {
if !atEOF {
return int(iShortSrc)
}
break
}
if s := rb.ss.next(info); s == ssStarter {
break
} else if s == ssOverflow {
rb.insertCGJ()
break
}
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
return int(err)
}
}
end:
if !rb.doFlush() {
return int(iShortDst)
}
return sp
}
// lastRuneStart returns the runeInfo and position of the last
// rune in buf or the zero runeInfo and -1 if no rune was found.
func lastRuneStart(fd *formInfo, buf []byte) (Properties, int) {
p := len(buf) - 1
for ; p >= 0 && !utf8.RuneStart(buf[p]); p-- {
}
if p < 0 {
return Properties{}, -1
}
return fd.info(inputBytes(buf), p), p
}
// decomposeToLastBoundary finds an open segment at the end of the buffer
// and scans it into rb. Returns the buffer minus the last segment.
func decomposeToLastBoundary(rb *reorderBuffer) {
fd := &rb.f
info, i := lastRuneStart(fd, rb.out)
if int(info.size) != len(rb.out)-i {
// illegal trailing continuation bytes
return
}
if info.BoundaryAfter() {
return
}
var add [maxNonStarters + 1]Properties // stores runeInfo in reverse order
padd := 0
ss := streamSafe(0)
p := len(rb.out)
for {
add[padd] = info
v := ss.backwards(info)
if v == ssOverflow {
// Note that if we have an overflow, it the string we are appending to
// is not correctly normalized. In this case the behavior is undefined.
break
}
padd++
p -= int(info.size)
if v == ssStarter || p < 0 {
break
}
info, i = lastRuneStart(fd, rb.out[:p])
if int(info.size) != p-i {
break
}
}
rb.ss = ss
// Copy bytes for insertion as we may need to overwrite rb.out.
var buf [maxBufferSize * utf8.UTFMax]byte
cp := buf[:copy(buf[:], rb.out[p:])]
rb.out = rb.out[:p]
for padd--; padd >= 0; padd-- {
info = add[padd]
rb.insertUnsafe(inputBytes(cp), 0, info)
cp = cp[info.size:]
}
}

125
vendor/golang.org/x/text/unicode/norm/readwriter.go generated vendored Normal file
View file

@ -0,0 +1,125 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "io"
type normWriter struct {
rb reorderBuffer
w io.Writer
buf []byte
}
// Write implements the standard write interface. If the last characters are
// not at a normalization boundary, the bytes will be buffered for the next
// write. The remaining bytes will be written on close.
func (w *normWriter) Write(data []byte) (n int, err error) {
// Process data in pieces to keep w.buf size bounded.
const chunk = 4000
for len(data) > 0 {
// Normalize into w.buf.
m := len(data)
if m > chunk {
m = chunk
}
w.rb.src = inputBytes(data[:m])
w.rb.nsrc = m
w.buf = doAppend(&w.rb, w.buf, 0)
data = data[m:]
n += m
// Write out complete prefix, save remainder.
// Note that lastBoundary looks back at most 31 runes.
i := lastBoundary(&w.rb.f, w.buf)
if i == -1 {
i = 0
}
if i > 0 {
if _, err = w.w.Write(w.buf[:i]); err != nil {
break
}
bn := copy(w.buf, w.buf[i:])
w.buf = w.buf[:bn]
}
}
return n, err
}
// Close forces data that remains in the buffer to be written.
func (w *normWriter) Close() error {
if len(w.buf) > 0 {
_, err := w.w.Write(w.buf)
if err != nil {
return err
}
}
return nil
}
// Writer returns a new writer that implements Write(b)
// by writing f(b) to w. The returned writer may use an
// internal buffer to maintain state across Write calls.
// Calling its Close method writes any buffered data to w.
func (f Form) Writer(w io.Writer) io.WriteCloser {
wr := &normWriter{rb: reorderBuffer{}, w: w}
wr.rb.init(f, nil)
return wr
}
type normReader struct {
rb reorderBuffer
r io.Reader
inbuf []byte
outbuf []byte
bufStart int
lastBoundary int
err error
}
// Read implements the standard read interface.
func (r *normReader) Read(p []byte) (int, error) {
for {
if r.lastBoundary-r.bufStart > 0 {
n := copy(p, r.outbuf[r.bufStart:r.lastBoundary])
r.bufStart += n
if r.lastBoundary-r.bufStart > 0 {
return n, nil
}
return n, r.err
}
if r.err != nil {
return 0, r.err
}
outn := copy(r.outbuf, r.outbuf[r.lastBoundary:])
r.outbuf = r.outbuf[0:outn]
r.bufStart = 0
n, err := r.r.Read(r.inbuf)
r.rb.src = inputBytes(r.inbuf[0:n])
r.rb.nsrc, r.err = n, err
if n > 0 {
r.outbuf = doAppend(&r.rb, r.outbuf, 0)
}
if err == io.EOF {
r.lastBoundary = len(r.outbuf)
} else {
r.lastBoundary = lastBoundary(&r.rb.f, r.outbuf)
if r.lastBoundary == -1 {
r.lastBoundary = 0
}
}
}
}
// Reader returns a new reader that implements Read
// by reading data from r and returning f(data).
func (f Form) Reader(r io.Reader) io.Reader {
const chunk = 4000
buf := make([]byte, chunk)
rr := &normReader{rb: reorderBuffer{}, r: r, inbuf: buf}
rr.rb.init(f, buf)
return rr
}

7658
vendor/golang.org/x/text/unicode/norm/tables10.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

7694
vendor/golang.org/x/text/unicode/norm/tables11.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

7711
vendor/golang.org/x/text/unicode/norm/tables12.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

7761
vendor/golang.org/x/text/unicode/norm/tables13.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

7638
vendor/golang.org/x/text/unicode/norm/tables9.0.0.go generated vendored Normal file

File diff suppressed because it is too large Load diff

88
vendor/golang.org/x/text/unicode/norm/transform.go generated vendored Normal file
View file

@ -0,0 +1,88 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// Reset implements the Reset method of the transform.Transformer interface.
func (Form) Reset() {}
// Transform implements the Transform method of the transform.Transformer
// interface. It may need to write segments of up to MaxSegmentSize at once.
// Users should either catch ErrShortDst and allow dst to grow or have dst be at
// least of size MaxTransformChunkSize to be guaranteed of progress.
func (f Form) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// Cap the maximum number of src bytes to check.
b := src
eof := atEOF
if ns := len(dst); ns < len(b) {
err = transform.ErrShortDst
eof = false
b = b[:ns]
}
i, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), eof)
n := copy(dst, b[:i])
if !ok {
nDst, nSrc, err = f.transform(dst[n:], src[n:], atEOF)
return nDst + n, nSrc + n, err
}
if err == nil && n < len(src) && !atEOF {
err = transform.ErrShortSrc
}
return n, n, err
}
func flushTransform(rb *reorderBuffer) bool {
// Write out (must fully fit in dst, or else it is an ErrShortDst).
if len(rb.out) < rb.nrune*utf8.UTFMax {
return false
}
rb.out = rb.out[rb.flushCopy(rb.out):]
return true
}
var errs = []error{nil, transform.ErrShortDst, transform.ErrShortSrc}
// transform implements the transform.Transformer interface. It is only called
// when quickSpan does not pass for a given string.
func (f Form) transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
// TODO: get rid of reorderBuffer. See CL 23460044.
rb := reorderBuffer{}
rb.init(f, src)
for {
// Load segment into reorder buffer.
rb.setFlusher(dst[nDst:], flushTransform)
end := decomposeSegment(&rb, nSrc, atEOF)
if end < 0 {
return nDst, nSrc, errs[-end]
}
nDst = len(dst) - len(rb.out)
nSrc = end
// Next quickSpan.
end = rb.nsrc
eof := atEOF
if n := nSrc + len(dst) - nDst; n < end {
err = transform.ErrShortDst
end = n
eof = false
}
end, ok := rb.f.quickSpan(rb.src, nSrc, end, eof)
n := copy(dst[nDst:], rb.src.bytes[nSrc:end])
nSrc += n
nDst += n
if ok {
if err == nil && n < rb.nsrc && !atEOF {
err = transform.ErrShortSrc
}
return nDst, nSrc, err
}
}
}

54
vendor/golang.org/x/text/unicode/norm/trie.go generated vendored Normal file
View file

@ -0,0 +1,54 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
type valueRange struct {
value uint16 // header: value:stride
lo, hi byte // header: lo:n
}
type sparseBlocks struct {
values []valueRange
offset []uint16
}
var nfcSparse = sparseBlocks{
values: nfcSparseValues[:],
offset: nfcSparseOffset[:],
}
var nfkcSparse = sparseBlocks{
values: nfkcSparseValues[:],
offset: nfkcSparseOffset[:],
}
var (
nfcData = newNfcTrie(0)
nfkcData = newNfkcTrie(0)
)
// lookupValue determines the type of block n and looks up the value for b.
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
// is a list of ranges with an accompanying value. Given a matching range r,
// the value for b is by r.value + (b - r.lo) * stride.
func (t *sparseBlocks) lookup(n uint32, b byte) uint16 {
offset := t.offset[n]
header := t.values[offset]
lo := offset + 1
hi := lo + uint16(header.lo)
for lo < hi {
m := lo + (hi-lo)/2
r := t.values[m]
if r.lo <= b && b <= r.hi {
return r.value + uint16(b-r.lo)*header.value
}
if b < r.lo {
hi = m
} else {
lo = m + 1
}
}
return 0
}