vendor: github.com/prometheus/client_golang v1.12.1

Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
Sebastiaan van Stijn 2022-05-04 20:54:58 +02:00
parent 985711c1f4
commit ec47096efc
No known key found for this signature in database
GPG key ID: 76698F39D527CE8C
574 changed files with 101741 additions and 22828 deletions

View file

@ -1 +1 @@
See [![go-doc](https://godoc.org/github.com/prometheus/client_golang/prometheus?status.svg)](https://godoc.org/github.com/prometheus/client_golang/prometheus).
See [![Go Reference](https://pkg.go.dev/badge/github.com/prometheus/client_golang/prometheus.svg)](https://pkg.go.dev/github.com/prometheus/client_golang/prometheus).

View file

@ -1,4 +1,4 @@
// Copyright 2019 The Prometheus Authors
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
@ -11,19 +11,28 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// +build go1.12
package prometheus
import "runtime/debug"
// readBuildInfo is a wrapper around debug.ReadBuildInfo for Go 1.12+.
func readBuildInfo() (path, version, sum string) {
path, version, sum = "unknown", "unknown", "unknown"
// NewBuildInfoCollector is the obsolete version of collectors.NewBuildInfoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewBuildInfoCollector instead.
func NewBuildInfoCollector() Collector {
path, version, sum := "unknown", "unknown", "unknown"
if bi, ok := debug.ReadBuildInfo(); ok {
path = bi.Main.Path
version = bi.Main.Version
sum = bi.Main.Sum
}
return
c := &selfCollector{MustNewConstMetric(
NewDesc(
"go_build_info",
"Build information about the main Go module.",
nil, Labels{"path": path, "version": version, "checksum": sum},
),
GaugeValue, 1)}
c.init(c.self)
return c
}

View file

@ -118,3 +118,11 @@ func (c *selfCollector) Describe(ch chan<- *Desc) {
func (c *selfCollector) Collect(ch chan<- Metric) {
ch <- c.self
}
// collectorMetric is a metric that is also a collector.
// Because of selfCollector, most (if not all) Metrics in
// this package are also collectors.
type collectorMetric interface {
Metric
Collector
}

View file

@ -17,6 +17,7 @@ import (
"errors"
"math"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
)
@ -42,11 +43,27 @@ type Counter interface {
Add(float64)
}
// ExemplarAdder is implemented by Counters that offer the option of adding a
// value to the Counter together with an exemplar. Its AddWithExemplar method
// works like the Add method of the Counter interface but also replaces the
// currently saved exemplar (if any) with a new one, created from the provided
// value, the current time as timestamp, and the provided labels. Empty Labels
// will lead to a valid (label-less) exemplar. But if Labels is nil, the current
// exemplar is left in place. AddWithExemplar panics if the value is < 0, if any
// of the provided labels are invalid, or if the provided labels contain more
// than 64 runes in total.
type ExemplarAdder interface {
AddWithExemplar(value float64, exemplar Labels)
}
// CounterOpts is an alias for Opts. See there for doc comments.
type CounterOpts Opts
// NewCounter creates a new Counter based on the provided CounterOpts.
//
// The returned implementation also implements ExemplarAdder. It is safe to
// perform the corresponding type assertion.
//
// The returned implementation tracks the counter value in two separate
// variables, a float64 and a uint64. The latter is used to track calls of the
// Inc method and calls of the Add method with a value that can be represented
@ -61,7 +78,7 @@ func NewCounter(opts CounterOpts) Counter {
nil,
opts.ConstLabels,
)
result := &counter{desc: desc, labelPairs: desc.constLabelPairs}
result := &counter{desc: desc, labelPairs: desc.constLabelPairs, now: time.Now}
result.init(result) // Init self-collection.
return result
}
@ -78,6 +95,9 @@ type counter struct {
desc *Desc
labelPairs []*dto.LabelPair
exemplar atomic.Value // Containing nil or a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (c *counter) Desc() *Desc {
@ -88,6 +108,7 @@ func (c *counter) Add(v float64) {
if v < 0 {
panic(errors.New("counter cannot decrease in value"))
}
ival := uint64(v)
if float64(ival) == v {
atomic.AddUint64(&c.valInt, ival)
@ -103,16 +124,41 @@ func (c *counter) Add(v float64) {
}
}
func (c *counter) AddWithExemplar(v float64, e Labels) {
c.Add(v)
c.updateExemplar(v, e)
}
func (c *counter) Inc() {
atomic.AddUint64(&c.valInt, 1)
}
func (c *counter) Write(out *dto.Metric) error {
func (c *counter) get() float64 {
fval := math.Float64frombits(atomic.LoadUint64(&c.valBits))
ival := atomic.LoadUint64(&c.valInt)
val := fval + float64(ival)
return fval + float64(ival)
}
return populateMetric(CounterValue, val, c.labelPairs, out)
func (c *counter) Write(out *dto.Metric) error {
val := c.get()
var exemplar *dto.Exemplar
if e := c.exemplar.Load(); e != nil {
exemplar = e.(*dto.Exemplar)
}
return populateMetric(CounterValue, val, c.labelPairs, exemplar, out)
}
func (c *counter) updateExemplar(v float64, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, c.now(), l)
if err != nil {
panic(err)
}
c.exemplar.Store(e)
}
// CounterVec is a Collector that bundles a set of Counters that all share the
@ -121,7 +167,7 @@ func (c *counter) Write(out *dto.Metric) error {
// (e.g. number of HTTP requests, partitioned by response code and
// method). Create instances with NewCounterVec.
type CounterVec struct {
*metricVec
*MetricVec
}
// NewCounterVec creates a new CounterVec based on the provided CounterOpts and
@ -134,11 +180,11 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
opts.ConstLabels,
)
return &CounterVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, lvs))
}
result := &counter{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result := &counter{desc: desc, labelPairs: MakeLabelPairs(desc, lvs), now: time.Now}
result.init(result) // Init self-collection.
return result
}),
@ -146,7 +192,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
}
// GetMetricWithLabelValues returns the Counter for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Counter is created.
//
// It is possible to call this method without using the returned Counter to only
@ -160,7 +206,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
// Counter with the same label values is created later.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
@ -169,7 +215,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Counter), err
}
@ -177,19 +223,19 @@ func (v *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
}
// GetMetricWith returns the Counter for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Counter is created. Implications of
// creating a Counter without using it and keeping the Counter for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *CounterVec) GetMetricWith(labels Labels) (Counter, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Counter), err
}
@ -233,7 +279,7 @@ func (v *CounterVec) With(labels Labels) Counter {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *CounterVec) CurryWith(labels Labels) (*CounterVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &CounterVec{vec}, err
}
@ -267,6 +313,8 @@ type CounterFunc interface {
// provided function must be concurrency-safe. The function should also honor
// the contract for a Counter (values only go up, not down), but compliance will
// not be checked.
//
// Check out the ExampleGaugeFunc examples for the similar GaugeFunc.
func NewCounterFunc(opts CounterOpts, function func() float64) CounterFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),

View file

@ -19,6 +19,8 @@ import (
"sort"
"strings"
"github.com/cespare/xxhash/v2"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
@ -49,7 +51,7 @@ type Desc struct {
// constLabelPairs contains precalculated DTO label pairs based on
// the constant labels.
constLabelPairs []*dto.LabelPair
// VariableLabels contains names of labels for which the metric
// variableLabels contains names of labels for which the metric
// maintains variable values.
variableLabels []string
// id is a hash of the values of the ConstLabels and fqName. This
@ -126,24 +128,24 @@ func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *
return d
}
vh := hashNew()
xxh := xxhash.New()
for _, val := range labelValues {
vh = hashAdd(vh, val)
vh = hashAddByte(vh, separatorByte)
xxh.WriteString(val)
xxh.Write(separatorByteSlice)
}
d.id = vh
d.id = xxh.Sum64()
// Sort labelNames so that order doesn't matter for the hash.
sort.Strings(labelNames)
// Now hash together (in this order) the help string and the sorted
// label names.
lh := hashNew()
lh = hashAdd(lh, help)
lh = hashAddByte(lh, separatorByte)
xxh.Reset()
xxh.WriteString(help)
xxh.Write(separatorByteSlice)
for _, labelName := range labelNames {
lh = hashAdd(lh, labelName)
lh = hashAddByte(lh, separatorByte)
xxh.WriteString(labelName)
xxh.Write(separatorByteSlice)
}
d.dimHash = lh
d.dimHash = xxh.Sum64()
d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels))
for n, v := range constLabels {

View file

@ -84,25 +84,21 @@
// of those four metric types can be found in the Prometheus docs:
// https://prometheus.io/docs/concepts/metric_types/
//
// A fifth "type" of metric is Untyped. It behaves like a Gauge, but signals the
// Prometheus server not to assume anything about its type.
//
// In addition to the fundamental metric types Gauge, Counter, Summary,
// Histogram, and Untyped, a very important part of the Prometheus data model is
// the partitioning of samples along dimensions called labels, which results in
// In addition to the fundamental metric types Gauge, Counter, Summary, and
// Histogram, a very important part of the Prometheus data model is the
// partitioning of samples along dimensions called labels, which results in
// metric vectors. The fundamental types are GaugeVec, CounterVec, SummaryVec,
// HistogramVec, and UntypedVec.
// and HistogramVec.
//
// While only the fundamental metric types implement the Metric interface, both
// the metrics and their vector versions implement the Collector interface. A
// Collector manages the collection of a number of Metrics, but for convenience,
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary,
// Histogram, and Untyped are interfaces themselves while GaugeVec, CounterVec,
// SummaryVec, HistogramVec, and UntypedVec are not.
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary, and
// Histogram are interfaces themselves while GaugeVec, CounterVec, SummaryVec,
// and HistogramVec are not.
//
// To create instances of Metrics and their vector versions, you need a suitable
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, HistogramOpts, or
// UntypedOpts.
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, or HistogramOpts.
//
// Custom Collectors and constant Metrics
//
@ -118,13 +114,16 @@
// existing numbers into Prometheus Metrics during collection. An own
// implementation of the Collector interface is perfect for that. You can create
// Metric instances “on the fly” using NewConstMetric, NewConstHistogram, and
// NewConstSummary (and their respective Must… versions). That will happen in
// the Collect method. The Describe method has to return separate Desc
// instances, representative of the “throw-away” metrics to be created later.
// NewDesc comes in handy to create those Desc instances. Alternatively, you
// could return no Desc at all, which will mark the Collector “unchecked”. No
// checks are performed at registration time, but metric consistency will still
// be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// NewConstSummary (and their respective Must… versions). NewConstMetric is used
// for all metric types with just a float64 as their value: Counter, Gauge, and
// a special “type” called Untyped. Use the latter if you are not sure if the
// mirrored metric is a Counter or a Gauge. Creation of the Metric instance
// happens in the Collect method. The Describe method has to return separate
// Desc instances, representative of the “throw-away” metrics to be created
// later. NewDesc comes in handy to create those Desc instances. Alternatively,
// you could return no Desc at all, which will mark the Collector “unchecked”.
// No checks are performed at registration time, but metric consistency will
// still be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// errors. Thus, with unchecked Collectors, the responsibility to not collect
// metrics that lead to inconsistencies in the total scrape result lies with the
// implementer of the Collector. While this is not a desirable state, it is

View file

@ -22,43 +22,10 @@ type expvarCollector struct {
exports map[string]*Desc
}
// NewExpvarCollector returns a newly allocated expvar Collector that still has
// to be registered with a Prometheus registry.
// NewExpvarCollector is the obsolete version of collectors.NewExpvarCollector.
// See there for documentation.
//
// An expvar Collector collects metrics from the expvar interface. It provides a
// quick way to expose numeric values that are already exported via expvar as
// Prometheus metrics. Note that the data models of expvar and Prometheus are
// fundamentally different, and that the expvar Collector is inherently slower
// than native Prometheus metrics. Thus, the expvar Collector is probably great
// for experiments and prototying, but you should seriously consider a more
// direct implementation of Prometheus metrics for monitoring production
// systems.
//
// The exports map has the following meaning:
//
// The keys in the map correspond to expvar keys, i.e. for every expvar key you
// want to export as Prometheus metric, you need an entry in the exports
// map. The descriptor mapped to each key describes how to export the expvar
// value. It defines the name and the help string of the Prometheus metric
// proxying the expvar value. The type will always be Untyped.
//
// For descriptors without variable labels, the expvar value must be a number or
// a bool. The number is then directly exported as the Prometheus sample
// value. (For a bool, 'false' translates to 0 and 'true' to 1). Expvar values
// that are not numbers or bools are silently ignored.
//
// If the descriptor has one variable label, the expvar value must be an expvar
// map. The keys in the expvar map become the various values of the one
// Prometheus label. The values in the expvar map must be numbers or bools again
// as above.
//
// For descriptors with more than one variable label, the expvar must be a
// nested expvar map, i.e. where the values of the topmost map are maps again
// etc. until a depth is reached that corresponds to the number of labels. The
// leaves of that structure must be numbers or bools as above to serve as the
// sample values.
//
// Anything that does not fit into the scheme above is silently ignored.
// Deprecated: Use collectors.NewExpvarCollector instead.
func NewExpvarCollector(exports map[string]*Desc) Collector {
return &expvarCollector{
exports: exports,

View file

@ -123,7 +123,7 @@ func (g *gauge) Sub(val float64) {
func (g *gauge) Write(out *dto.Metric) error {
val := math.Float64frombits(atomic.LoadUint64(&g.valBits))
return populateMetric(GaugeValue, val, g.labelPairs, out)
return populateMetric(GaugeValue, val, g.labelPairs, nil, out)
}
// GaugeVec is a Collector that bundles a set of Gauges that all share the same
@ -132,7 +132,7 @@ func (g *gauge) Write(out *dto.Metric) error {
// (e.g. number of operations queued, partitioned by user and operation
// type). Create instances with NewGaugeVec.
type GaugeVec struct {
*metricVec
*MetricVec
}
// NewGaugeVec creates a new GaugeVec based on the provided GaugeOpts and
@ -145,11 +145,11 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
opts.ConstLabels,
)
return &GaugeVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, lvs))
}
result := &gauge{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result := &gauge{desc: desc, labelPairs: MakeLabelPairs(desc, lvs)}
result.init(result) // Init self-collection.
return result
}),
@ -157,7 +157,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
}
// GetMetricWithLabelValues returns the Gauge for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Gauge is created.
//
// It is possible to call this method without using the returned Gauge to only
@ -172,7 +172,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
@ -180,7 +180,7 @@ func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
func (v *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Gauge), err
}
@ -188,19 +188,19 @@ func (v *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
}
// GetMetricWith returns the Gauge for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Gauge is created. Implications of
// creating a Gauge without using it and keeping the Gauge for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *GaugeVec) GetMetricWith(labels Labels) (Gauge, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Gauge), err
}
@ -244,7 +244,7 @@ func (v *GaugeVec) With(labels Labels) Gauge {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *GaugeVec) CurryWith(labels Labels) (*GaugeVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &GaugeVec{vec}, err
}
@ -273,9 +273,12 @@ type GaugeFunc interface {
// NewGaugeFunc creates a new GaugeFunc based on the provided GaugeOpts. The
// value reported is determined by calling the given function from within the
// Write method. Take into account that metric collection may happen
// concurrently. If that results in concurrent calls to Write, like in the case
// where a GaugeFunc is directly registered with Prometheus, the provided
// function must be concurrency-safe.
// concurrently. Therefore, it must be safe to call the provided function
// concurrently.
//
// NewGaugeFunc is a good way to create an “info” style metric with a constant
// value of 1. Example:
// https://github.com/prometheus/common/blob/8558a5b7db3c84fa38b4766966059a7bd5bfa2ee/version/info.go#L36-L56
func NewGaugeFunc(opts GaugeOpts, function func() float64) GaugeFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),

View file

@ -16,53 +16,209 @@ package prometheus
import (
"runtime"
"runtime/debug"
"sync"
"time"
)
type goCollector struct {
func goRuntimeMemStats() memStatsMetrics {
return memStatsMetrics{
{
desc: NewDesc(
memstatNamespace("alloc_bytes"),
"Number of bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Alloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("alloc_bytes_total"),
"Total number of bytes allocated, even if freed.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.TotalAlloc) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("sys_bytes"),
"Number of bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Sys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("lookups_total"),
"Total number of pointer lookups.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Lookups) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("mallocs_total"),
"Total number of mallocs.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Mallocs) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("frees_total"),
"Total number of frees.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Frees) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("heap_alloc_bytes"),
"Number of heap bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapAlloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_sys_bytes"),
"Number of heap bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_idle_bytes"),
"Number of heap bytes waiting to be used.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapIdle) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_inuse_bytes"),
"Number of heap bytes that are in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_released_bytes"),
"Number of heap bytes released to OS.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapReleased) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_objects"),
"Number of allocated objects.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapObjects) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_inuse_bytes"),
"Number of bytes in use by the stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_sys_bytes"),
"Number of bytes obtained from system for stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_inuse_bytes"),
"Number of bytes in use by mspan structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_sys_bytes"),
"Number of bytes used for mspan structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_inuse_bytes"),
"Number of bytes in use by mcache structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_sys_bytes"),
"Number of bytes used for mcache structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("buck_hash_sys_bytes"),
"Number of bytes used by the profiling bucket hash table.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.BuckHashSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_sys_bytes"),
"Number of bytes used for garbage collection system metadata.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.GCSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("other_sys_bytes"),
"Number of bytes used for other system allocations.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.OtherSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("next_gc_bytes"),
"Number of heap bytes when next garbage collection will take place.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.NextGC) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_cpu_fraction"),
"The fraction of this program's available CPU time used by the GC since the program started.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return ms.GCCPUFraction },
valType: GaugeValue,
},
}
}
type baseGoCollector struct {
goroutinesDesc *Desc
threadsDesc *Desc
gcDesc *Desc
gcLastTimeDesc *Desc
goInfoDesc *Desc
// ms... are memstats related.
msLast *runtime.MemStats // Previously collected memstats.
msLastTimestamp time.Time
msMtx sync.Mutex // Protects msLast and msLastTimestamp.
msMetrics memStatsMetrics
msRead func(*runtime.MemStats) // For mocking in tests.
msMaxWait time.Duration // Wait time for fresh memstats.
msMaxAge time.Duration // Maximum allowed age of old memstats.
}
// NewGoCollector returns a collector that exports metrics about the current Go
// process. This includes memory stats. To collect those, runtime.ReadMemStats
// is called. This requires to “stop the world”, which usually only happens for
// garbage collection (GC). Take the following implications into account when
// deciding whether to use the Go collector:
//
// 1. The performance impact of stopping the world is the more relevant the more
// frequently metrics are collected. However, with Go1.9 or later the
// stop-the-world time per metrics collection is very short (~25µs) so that the
// performance impact will only matter in rare cases. However, with older Go
// versions, the stop-the-world duration depends on the heap size and can be
// quite significant (~1.7 ms/GiB as per
// https://go-review.googlesource.com/c/go/+/34937).
//
// 2. During an ongoing GC, nothing else can stop the world. Therefore, if the
// metrics collection happens to coincide with GC, it will only complete after
// GC has finished. Usually, GC is fast enough to not cause problems. However,
// with a very large heap, GC might take multiple seconds, which is enough to
// cause scrape timeouts in common setups. To avoid this problem, the Go
// collector will use the memstats from a previous collection if
// runtime.ReadMemStats takes more than 1s. However, if there are no previously
// collected memstats, or their collection is more than 5m ago, the collection
// will block until runtime.ReadMemStats succeeds. (The problem might be solved
// in Go1.13, see https://github.com/golang/go/issues/19812 for the related Go
// issue.)
func NewGoCollector() Collector {
return &goCollector{
func newBaseGoCollector() baseGoCollector {
return baseGoCollector{
goroutinesDesc: NewDesc(
"go_goroutines",
"Number of goroutines that currently exist.",
@ -73,245 +229,30 @@ func NewGoCollector() Collector {
nil, nil),
gcDesc: NewDesc(
"go_gc_duration_seconds",
"A summary of the GC invocation durations.",
"A summary of the pause duration of garbage collection cycles.",
nil, nil),
gcLastTimeDesc: NewDesc(
memstatNamespace("last_gc_time_seconds"),
"Number of seconds since 1970 of last garbage collection.",
nil, nil),
goInfoDesc: NewDesc(
"go_info",
"Information about the Go environment.",
nil, Labels{"version": runtime.Version()}),
msLast: &runtime.MemStats{},
msRead: runtime.ReadMemStats,
msMaxWait: time.Second,
msMaxAge: 5 * time.Minute,
msMetrics: memStatsMetrics{
{
desc: NewDesc(
memstatNamespace("alloc_bytes"),
"Number of bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Alloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("alloc_bytes_total"),
"Total number of bytes allocated, even if freed.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.TotalAlloc) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("sys_bytes"),
"Number of bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Sys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("lookups_total"),
"Total number of pointer lookups.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Lookups) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("mallocs_total"),
"Total number of mallocs.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Mallocs) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("frees_total"),
"Total number of frees.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Frees) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("heap_alloc_bytes"),
"Number of heap bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapAlloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_sys_bytes"),
"Number of heap bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_idle_bytes"),
"Number of heap bytes waiting to be used.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapIdle) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_inuse_bytes"),
"Number of heap bytes that are in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_released_bytes"),
"Number of heap bytes released to OS.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapReleased) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_objects"),
"Number of allocated objects.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapObjects) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_inuse_bytes"),
"Number of bytes in use by the stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_sys_bytes"),
"Number of bytes obtained from system for stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_inuse_bytes"),
"Number of bytes in use by mspan structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_sys_bytes"),
"Number of bytes used for mspan structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_inuse_bytes"),
"Number of bytes in use by mcache structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_sys_bytes"),
"Number of bytes used for mcache structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("buck_hash_sys_bytes"),
"Number of bytes used by the profiling bucket hash table.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.BuckHashSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_sys_bytes"),
"Number of bytes used for garbage collection system metadata.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.GCSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("other_sys_bytes"),
"Number of bytes used for other system allocations.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.OtherSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("next_gc_bytes"),
"Number of heap bytes when next garbage collection will take place.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.NextGC) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("last_gc_time_seconds"),
"Number of seconds since 1970 of last garbage collection.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.LastGC) / 1e9 },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_cpu_fraction"),
"The fraction of this program's available CPU time used by the GC since the program started.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return ms.GCCPUFraction },
valType: GaugeValue,
},
},
}
}
func memstatNamespace(s string) string {
return "go_memstats_" + s
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
func (c *baseGoCollector) Describe(ch chan<- *Desc) {
ch <- c.goroutinesDesc
ch <- c.threadsDesc
ch <- c.gcDesc
ch <- c.gcLastTimeDesc
ch <- c.goInfoDesc
for _, i := range c.msMetrics {
ch <- i.desc
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
var (
ms = &runtime.MemStats{}
done = make(chan struct{})
)
// Start reading memstats first as it might take a while.
go func() {
c.msRead(ms)
c.msMtx.Lock()
c.msLast = ms
c.msLastTimestamp = time.Now()
c.msMtx.Unlock()
close(done)
}()
func (c *baseGoCollector) Collect(ch chan<- Metric) {
ch <- MustNewConstMetric(c.goroutinesDesc, GaugeValue, float64(runtime.NumGoroutine()))
n, _ := runtime.ThreadCreateProfile(nil)
ch <- MustNewConstMetric(c.threadsDesc, GaugeValue, float64(n))
@ -326,71 +267,19 @@ func (c *goCollector) Collect(ch chan<- Metric) {
}
quantiles[0.0] = stats.PauseQuantiles[0].Seconds()
ch <- MustNewConstSummary(c.gcDesc, uint64(stats.NumGC), stats.PauseTotal.Seconds(), quantiles)
ch <- MustNewConstMetric(c.gcLastTimeDesc, GaugeValue, float64(stats.LastGC.UnixNano())/1e9)
ch <- MustNewConstMetric(c.goInfoDesc, GaugeValue, 1)
timer := time.NewTimer(c.msMaxWait)
select {
case <-done: // Our own ReadMemStats succeeded in time. Use it.
timer.Stop() // Important for high collection frequencies to not pile up timers.
c.msCollect(ch, ms)
return
case <-timer.C: // Time out, use last memstats if possible. Continue below.
}
c.msMtx.Lock()
if time.Since(c.msLastTimestamp) < c.msMaxAge {
// Last memstats are recent enough. Collect from them under the lock.
c.msCollect(ch, c.msLast)
c.msMtx.Unlock()
return
}
// If we are here, the last memstats are too old or don't exist. We have
// to wait until our own ReadMemStats finally completes. For that to
// happen, we have to release the lock.
c.msMtx.Unlock()
<-done
c.msCollect(ch, ms)
}
func (c *goCollector) msCollect(ch chan<- Metric, ms *runtime.MemStats) {
for _, i := range c.msMetrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(ms))
}
func memstatNamespace(s string) string {
return "go_memstats_" + s
}
// memStatsMetrics provide description, value, and value type for memstat metrics.
// memStatsMetrics provide description, evaluator, runtime/metrics name, and
// value type for memstat metrics.
type memStatsMetrics []struct {
desc *Desc
eval func(*runtime.MemStats) float64
valType ValueType
}
// NewBuildInfoCollector returns a collector collecting a single metric
// "go_build_info" with the constant value 1 and three labels "path", "version",
// and "checksum". Their label values contain the main module path, version, and
// checksum, respectively. The labels will only have meaningful values if the
// binary is built with Go module support and from source code retrieved from
// the source repository (rather than the local file system). This is usually
// accomplished by building from outside of GOPATH, specifying the full address
// of the main package, e.g. "GO111MODULE=on go run
// github.com/prometheus/client_golang/examples/random". If built without Go
// module support, all label values will be "unknown". If built with Go module
// support but using the source code from the local file system, the "path" will
// be set appropriately, but "checksum" will be empty and "version" will be
// "(devel)".
//
// This collector uses only the build information for the main module. See
// https://github.com/povilasv/prommod for an example of a collector for the
// module dependencies.
func NewBuildInfoCollector() Collector {
path, version, sum := readBuildInfo()
c := &selfCollector{MustNewConstMetric(
NewDesc(
"go_build_info",
"Build information about the main Go module.",
nil, Labels{"path": path, "version": version, "checksum": sum},
),
GaugeValue, 1)}
c.init(c.self)
return c
}

View file

@ -0,0 +1,107 @@
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build !go1.17
// +build !go1.17
package prometheus
import (
"runtime"
"sync"
"time"
)
type goCollector struct {
base baseGoCollector
// ms... are memstats related.
msLast *runtime.MemStats // Previously collected memstats.
msLastTimestamp time.Time
msMtx sync.Mutex // Protects msLast and msLastTimestamp.
msMetrics memStatsMetrics
msRead func(*runtime.MemStats) // For mocking in tests.
msMaxWait time.Duration // Wait time for fresh memstats.
msMaxAge time.Duration // Maximum allowed age of old memstats.
}
// NewGoCollector is the obsolete version of collectors.NewGoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewGoCollector instead.
func NewGoCollector() Collector {
return &goCollector{
base: newBaseGoCollector(),
msLast: &runtime.MemStats{},
msRead: runtime.ReadMemStats,
msMaxWait: time.Second,
msMaxAge: 5 * time.Minute,
msMetrics: goRuntimeMemStats(),
}
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
c.base.Describe(ch)
for _, i := range c.msMetrics {
ch <- i.desc
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
var (
ms = &runtime.MemStats{}
done = make(chan struct{})
)
// Start reading memstats first as it might take a while.
go func() {
c.msRead(ms)
c.msMtx.Lock()
c.msLast = ms
c.msLastTimestamp = time.Now()
c.msMtx.Unlock()
close(done)
}()
// Collect base non-memory metrics.
c.base.Collect(ch)
timer := time.NewTimer(c.msMaxWait)
select {
case <-done: // Our own ReadMemStats succeeded in time. Use it.
timer.Stop() // Important for high collection frequencies to not pile up timers.
c.msCollect(ch, ms)
return
case <-timer.C: // Time out, use last memstats if possible. Continue below.
}
c.msMtx.Lock()
if time.Since(c.msLastTimestamp) < c.msMaxAge {
// Last memstats are recent enough. Collect from them under the lock.
c.msCollect(ch, c.msLast)
c.msMtx.Unlock()
return
}
// If we are here, the last memstats are too old or don't exist. We have
// to wait until our own ReadMemStats finally completes. For that to
// happen, we have to release the lock.
c.msMtx.Unlock()
<-done
c.msCollect(ch, ms)
}
func (c *goCollector) msCollect(ch chan<- Metric, ms *runtime.MemStats) {
for _, i := range c.msMetrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(ms))
}
}

View file

@ -0,0 +1,408 @@
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.17
// +build go1.17
package prometheus
import (
"math"
"runtime"
"runtime/metrics"
"strings"
"sync"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/client_golang/prometheus/internal"
dto "github.com/prometheus/client_model/go"
)
type goCollector struct {
base baseGoCollector
// mu protects updates to all fields ensuring a consistent
// snapshot is always produced by Collect.
mu sync.Mutex
// rm... fields all pertain to the runtime/metrics package.
rmSampleBuf []metrics.Sample
rmSampleMap map[string]*metrics.Sample
rmMetrics []collectorMetric
// With Go 1.17, the runtime/metrics package was introduced.
// From that point on, metric names produced by the runtime/metrics
// package could be generated from runtime/metrics names. However,
// these differ from the old names for the same values.
//
// This field exist to export the same values under the old names
// as well.
msMetrics memStatsMetrics
}
// NewGoCollector is the obsolete version of collectors.NewGoCollector.
// See there for documentation.
//
// Deprecated: Use collectors.NewGoCollector instead.
func NewGoCollector() Collector {
descriptions := metrics.All()
// Collect all histogram samples so that we can get their buckets.
// The API guarantees that the buckets are always fixed for the lifetime
// of the process.
var histograms []metrics.Sample
for _, d := range descriptions {
if d.Kind == metrics.KindFloat64Histogram {
histograms = append(histograms, metrics.Sample{Name: d.Name})
}
}
metrics.Read(histograms)
bucketsMap := make(map[string][]float64)
for i := range histograms {
bucketsMap[histograms[i].Name] = histograms[i].Value.Float64Histogram().Buckets
}
// Generate a Desc and ValueType for each runtime/metrics metric.
metricSet := make([]collectorMetric, 0, len(descriptions))
sampleBuf := make([]metrics.Sample, 0, len(descriptions))
sampleMap := make(map[string]*metrics.Sample, len(descriptions))
for i := range descriptions {
d := &descriptions[i]
namespace, subsystem, name, ok := internal.RuntimeMetricsToProm(d)
if !ok {
// Just ignore this metric; we can't do anything with it here.
// If a user decides to use the latest version of Go, we don't want
// to fail here. This condition is tested elsewhere.
continue
}
// Set up sample buffer for reading, and a map
// for quick lookup of sample values.
sampleBuf = append(sampleBuf, metrics.Sample{Name: d.Name})
sampleMap[d.Name] = &sampleBuf[len(sampleBuf)-1]
var m collectorMetric
if d.Kind == metrics.KindFloat64Histogram {
_, hasSum := rmExactSumMap[d.Name]
unit := d.Name[strings.IndexRune(d.Name, ':')+1:]
m = newBatchHistogram(
NewDesc(
BuildFQName(namespace, subsystem, name),
d.Description,
nil,
nil,
),
internal.RuntimeMetricsBucketsForUnit(bucketsMap[d.Name], unit),
hasSum,
)
} else if d.Cumulative {
m = NewCounter(CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: name,
Help: d.Description,
})
} else {
m = NewGauge(GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: name,
Help: d.Description,
})
}
metricSet = append(metricSet, m)
}
return &goCollector{
base: newBaseGoCollector(),
rmSampleBuf: sampleBuf,
rmSampleMap: sampleMap,
rmMetrics: metricSet,
msMetrics: goRuntimeMemStats(),
}
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
c.base.Describe(ch)
for _, i := range c.msMetrics {
ch <- i.desc
}
for _, m := range c.rmMetrics {
ch <- m.Desc()
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
// Collect base non-memory metrics.
c.base.Collect(ch)
// Collect must be thread-safe, so prevent concurrent use of
// rmSampleBuf. Just read into rmSampleBuf but write all the data
// we get into our Metrics or MemStats.
//
// This lock also ensures that the Metrics we send out are all from
// the same updates, ensuring their mutual consistency insofar as
// is guaranteed by the runtime/metrics package.
//
// N.B. This locking is heavy-handed, but Collect is expected to be called
// relatively infrequently. Also the core operation here, metrics.Read,
// is fast (O(tens of microseconds)) so contention should certainly be
// low, though channel operations and any allocations may add to that.
c.mu.Lock()
defer c.mu.Unlock()
// Populate runtime/metrics sample buffer.
metrics.Read(c.rmSampleBuf)
// Update all our metrics from rmSampleBuf.
for i, sample := range c.rmSampleBuf {
// N.B. switch on concrete type because it's significantly more efficient
// than checking for the Counter and Gauge interface implementations. In
// this case, we control all the types here.
switch m := c.rmMetrics[i].(type) {
case *counter:
// Guard against decreases. This should never happen, but a failure
// to do so will result in a panic, which is a harsh consequence for
// a metrics collection bug.
v0, v1 := m.get(), unwrapScalarRMValue(sample.Value)
if v1 > v0 {
m.Add(unwrapScalarRMValue(sample.Value) - m.get())
}
m.Collect(ch)
case *gauge:
m.Set(unwrapScalarRMValue(sample.Value))
m.Collect(ch)
case *batchHistogram:
m.update(sample.Value.Float64Histogram(), c.exactSumFor(sample.Name))
m.Collect(ch)
default:
panic("unexpected metric type")
}
}
// ms is a dummy MemStats that we populate ourselves so that we can
// populate the old metrics from it.
var ms runtime.MemStats
memStatsFromRM(&ms, c.rmSampleMap)
for _, i := range c.msMetrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(&ms))
}
}
// unwrapScalarRMValue unwraps a runtime/metrics value that is assumed
// to be scalar and returns the equivalent float64 value. Panics if the
// value is not scalar.
func unwrapScalarRMValue(v metrics.Value) float64 {
switch v.Kind() {
case metrics.KindUint64:
return float64(v.Uint64())
case metrics.KindFloat64:
return v.Float64()
case metrics.KindBad:
// Unsupported metric.
//
// This should never happen because we always populate our metric
// set from the runtime/metrics package.
panic("unexpected unsupported metric")
default:
// Unsupported metric kind.
//
// This should never happen because we check for this during initialization
// and flag and filter metrics whose kinds we don't understand.
panic("unexpected unsupported metric kind")
}
}
var rmExactSumMap = map[string]string{
"/gc/heap/allocs-by-size:bytes": "/gc/heap/allocs:bytes",
"/gc/heap/frees-by-size:bytes": "/gc/heap/frees:bytes",
}
// exactSumFor takes a runtime/metrics metric name (that is assumed to
// be of kind KindFloat64Histogram) and returns its exact sum and whether
// its exact sum exists.
//
// The runtime/metrics API for histograms doesn't currently expose exact
// sums, but some of the other metrics are in fact exact sums of histograms.
func (c *goCollector) exactSumFor(rmName string) float64 {
sumName, ok := rmExactSumMap[rmName]
if !ok {
return 0
}
s, ok := c.rmSampleMap[sumName]
if !ok {
return 0
}
return unwrapScalarRMValue(s.Value)
}
func memStatsFromRM(ms *runtime.MemStats, rm map[string]*metrics.Sample) {
lookupOrZero := func(name string) uint64 {
if s, ok := rm[name]; ok {
return s.Value.Uint64()
}
return 0
}
// Currently, MemStats adds tiny alloc count to both Mallocs AND Frees.
// The reason for this is because MemStats couldn't be extended at the time
// but there was a desire to have Mallocs at least be a little more representative,
// while having Mallocs - Frees still represent a live object count.
// Unfortunately, MemStats doesn't actually export a large allocation count,
// so it's impossible to pull this number out directly.
tinyAllocs := lookupOrZero("/gc/heap/tiny/allocs:objects")
ms.Mallocs = lookupOrZero("/gc/heap/allocs:objects") + tinyAllocs
ms.Frees = lookupOrZero("/gc/heap/frees:objects") + tinyAllocs
ms.TotalAlloc = lookupOrZero("/gc/heap/allocs:bytes")
ms.Sys = lookupOrZero("/memory/classes/total:bytes")
ms.Lookups = 0 // Already always zero.
ms.HeapAlloc = lookupOrZero("/memory/classes/heap/objects:bytes")
ms.Alloc = ms.HeapAlloc
ms.HeapInuse = ms.HeapAlloc + lookupOrZero("/memory/classes/heap/unused:bytes")
ms.HeapReleased = lookupOrZero("/memory/classes/heap/released:bytes")
ms.HeapIdle = ms.HeapReleased + lookupOrZero("/memory/classes/heap/free:bytes")
ms.HeapSys = ms.HeapInuse + ms.HeapIdle
ms.HeapObjects = lookupOrZero("/gc/heap/objects:objects")
ms.StackInuse = lookupOrZero("/memory/classes/heap/stacks:bytes")
ms.StackSys = ms.StackInuse + lookupOrZero("/memory/classes/os-stacks:bytes")
ms.MSpanInuse = lookupOrZero("/memory/classes/metadata/mspan/inuse:bytes")
ms.MSpanSys = ms.MSpanInuse + lookupOrZero("/memory/classes/metadata/mspan/free:bytes")
ms.MCacheInuse = lookupOrZero("/memory/classes/metadata/mcache/inuse:bytes")
ms.MCacheSys = ms.MCacheInuse + lookupOrZero("/memory/classes/metadata/mcache/free:bytes")
ms.BuckHashSys = lookupOrZero("/memory/classes/profiling/buckets:bytes")
ms.GCSys = lookupOrZero("/memory/classes/metadata/other:bytes")
ms.OtherSys = lookupOrZero("/memory/classes/other:bytes")
ms.NextGC = lookupOrZero("/gc/heap/goal:bytes")
// N.B. LastGC is omitted because runtime.GCStats already has this.
// See https://github.com/prometheus/client_golang/issues/842#issuecomment-861812034
// for more details.
ms.LastGC = 0
// N.B. GCCPUFraction is intentionally omitted. This metric is not useful,
// and often misleading due to the fact that it's an average over the lifetime
// of the process.
// See https://github.com/prometheus/client_golang/issues/842#issuecomment-861812034
// for more details.
ms.GCCPUFraction = 0
}
// batchHistogram is a mutable histogram that is updated
// in batches.
type batchHistogram struct {
selfCollector
// Static fields updated only once.
desc *Desc
hasSum bool
// Because this histogram operates in batches, it just uses a
// single mutex for everything. updates are always serialized
// but Write calls may operate concurrently with updates.
// Contention between these two sources should be rare.
mu sync.Mutex
buckets []float64 // Inclusive lower bounds, like runtime/metrics.
counts []uint64
sum float64 // Used if hasSum is true.
}
// newBatchHistogram creates a new batch histogram value with the given
// Desc, buckets, and whether or not it has an exact sum available.
//
// buckets must always be from the runtime/metrics package, following
// the same conventions.
func newBatchHistogram(desc *Desc, buckets []float64, hasSum bool) *batchHistogram {
h := &batchHistogram{
desc: desc,
buckets: buckets,
// Because buckets follows runtime/metrics conventions, there's
// 1 more value in the buckets list than there are buckets represented,
// because in runtime/metrics, the bucket values represent *boundaries*,
// and non-Inf boundaries are inclusive lower bounds for that bucket.
counts: make([]uint64, len(buckets)-1),
hasSum: hasSum,
}
h.init(h)
return h
}
// update updates the batchHistogram from a runtime/metrics histogram.
//
// sum must be provided if the batchHistogram was created to have an exact sum.
// h.buckets must be a strict subset of his.Buckets.
func (h *batchHistogram) update(his *metrics.Float64Histogram, sum float64) {
counts, buckets := his.Counts, his.Buckets
h.mu.Lock()
defer h.mu.Unlock()
// Clear buckets.
for i := range h.counts {
h.counts[i] = 0
}
// Copy and reduce buckets.
var j int
for i, count := range counts {
h.counts[j] += count
if buckets[i+1] == h.buckets[j+1] {
j++
}
}
if h.hasSum {
h.sum = sum
}
}
func (h *batchHistogram) Desc() *Desc {
return h.desc
}
func (h *batchHistogram) Write(out *dto.Metric) error {
h.mu.Lock()
defer h.mu.Unlock()
sum := float64(0)
if h.hasSum {
sum = h.sum
}
dtoBuckets := make([]*dto.Bucket, 0, len(h.counts))
totalCount := uint64(0)
for i, count := range h.counts {
totalCount += count
if !h.hasSum {
// N.B. This computed sum is an underestimate.
sum += h.buckets[i] * float64(count)
}
// Skip the +Inf bucket, but only for the bucket list.
// It must still count for sum and totalCount.
if math.IsInf(h.buckets[i+1], 1) {
break
}
// Float64Histogram's upper bound is exclusive, so make it inclusive
// by obtaining the next float64 value down, in order.
upperBound := math.Nextafter(h.buckets[i+1], h.buckets[i])
dtoBuckets = append(dtoBuckets, &dto.Bucket{
CumulativeCount: proto.Uint64(totalCount),
UpperBound: proto.Float64(upperBound),
})
}
out.Histogram = &dto.Histogram{
Bucket: dtoBuckets,
SampleCount: proto.Uint64(totalCount),
SampleSum: proto.Float64(sum),
}
return nil
}

View file

@ -20,7 +20,9 @@ import (
"sort"
"sync"
"sync/atomic"
"time"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
@ -45,7 +47,12 @@ type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram.
// Observe adds a single observation to the histogram. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
@ -109,6 +116,34 @@ func ExponentialBuckets(start, factor float64, count int) []float64 {
return buckets
}
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(min, max float64, count int) []float64 {
if count < 1 {
panic("ExponentialBucketsRange count needs a positive count")
}
if min <= 0 {
panic("ExponentialBucketsRange min needs to be greater than 0")
}
// Formula for exponential buckets.
// max = min*growthFactor^(bucketCount-1)
// We know max/min and highest bucket. Solve for growthFactor.
growthFactor := math.Pow(max/min, 1.0/float64(count-1))
// Now that we know growthFactor, solve for each bucket.
buckets := make([]float64, count)
for i := 1; i <= count; i++ {
buckets[i-1] = min * math.Pow(growthFactor, float64(i-1))
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
@ -138,7 +173,7 @@ type HistogramOpts struct {
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
@ -151,6 +186,10 @@ type HistogramOpts struct {
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
@ -186,8 +225,9 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: makeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{&histogramCounts{}, &histogramCounts{}},
labelPairs: MakeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{{}, {}},
now: time.Now,
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
@ -205,9 +245,10 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
}
}
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts:
// for both counts as well as exemplars:
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
@ -254,6 +295,9 @@ type histogram struct {
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (h *histogram) Desc() *Desc {
@ -261,36 +305,13 @@ func (h *histogram) Desc() *Desc {
}
func (h *histogram) Observe(v float64) {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
i := sort.SearchFloat64s(h.upperBounds, v)
h.observe(v, h.findBucket(v))
}
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
if i < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[i], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
@ -329,6 +350,18 @@ func (h *histogram) Write(out *dto.Metric) error {
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
out.Histogram = his
@ -352,13 +385,64 @@ func (h *histogram) Write(out *dto.Metric) error {
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
if bucket < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[bucket], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
}
// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, h.now(), l)
if err != nil {
panic(err)
}
h.exemplars[bucket].Store(e)
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
*metricVec
*MetricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
@ -371,14 +455,14 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
opts.ConstLabels,
)
return &HistogramVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newHistogram(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
@ -393,7 +477,7 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
@ -402,7 +486,7 @@ func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
@ -410,19 +494,19 @@ func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error)
}
// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
@ -466,7 +550,7 @@ func (v *HistogramVec) With(labels Labels) Observer {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &HistogramVec{vec}, err
}
@ -551,12 +635,12 @@ func NewConstHistogram(
count: count,
sum: sum,
buckets: buckets,
labelPairs: makeLabelPairs(desc, labelValues),
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstMetric would have returned an error.
// NewConstHistogram would have returned an error.
func MustNewConstHistogram(
desc *Desc,
count uint64,

View file

@ -0,0 +1,142 @@
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.17
// +build go1.17
package internal
import (
"math"
"path"
"runtime/metrics"
"strings"
"github.com/prometheus/common/model"
)
// RuntimeMetricsToProm produces a Prometheus metric name from a runtime/metrics
// metric description and validates whether the metric is suitable for integration
// with Prometheus.
//
// Returns false if a name could not be produced, or if Prometheus does not understand
// the runtime/metrics Kind.
//
// Note that the main reason a name couldn't be produced is if the runtime/metrics
// package exports a name with characters outside the valid Prometheus metric name
// character set. This is theoretically possible, but should never happen in practice.
// Still, don't rely on it.
func RuntimeMetricsToProm(d *metrics.Description) (string, string, string, bool) {
namespace := "go"
comp := strings.SplitN(d.Name, ":", 2)
key := comp[0]
unit := comp[1]
// The last path element in the key is the name,
// the rest is the subsystem.
subsystem := path.Dir(key[1:] /* remove leading / */)
name := path.Base(key)
// subsystem is translated by replacing all / and - with _.
subsystem = strings.ReplaceAll(subsystem, "/", "_")
subsystem = strings.ReplaceAll(subsystem, "-", "_")
// unit is translated assuming that the unit contains no
// non-ASCII characters.
unit = strings.ReplaceAll(unit, "-", "_")
unit = strings.ReplaceAll(unit, "*", "_")
unit = strings.ReplaceAll(unit, "/", "_per_")
// name has - replaced with _ and is concatenated with the unit and
// other data.
name = strings.ReplaceAll(name, "-", "_")
name = name + "_" + unit
if d.Cumulative {
name = name + "_total"
}
valid := model.IsValidMetricName(model.LabelValue(namespace + "_" + subsystem + "_" + name))
switch d.Kind {
case metrics.KindUint64:
case metrics.KindFloat64:
case metrics.KindFloat64Histogram:
default:
valid = false
}
return namespace, subsystem, name, valid
}
// RuntimeMetricsBucketsForUnit takes a set of buckets obtained for a runtime/metrics histogram
// type (so, lower-bound inclusive) and a unit from a runtime/metrics name, and produces
// a reduced set of buckets. This function always removes any -Inf bucket as it's represented
// as the bottom-most upper-bound inclusive bucket in Prometheus.
func RuntimeMetricsBucketsForUnit(buckets []float64, unit string) []float64 {
switch unit {
case "bytes":
// Rebucket as powers of 2.
return rebucketExp(buckets, 2)
case "seconds":
// Rebucket as powers of 10 and then merge all buckets greater
// than 1 second into the +Inf bucket.
b := rebucketExp(buckets, 10)
for i := range b {
if b[i] <= 1 {
continue
}
b[i] = math.Inf(1)
b = b[:i+1]
break
}
return b
}
return buckets
}
// rebucketExp takes a list of bucket boundaries (lower bound inclusive) and
// downsamples the buckets to those a multiple of base apart. The end result
// is a roughly exponential (in many cases, perfectly exponential) bucketing
// scheme.
func rebucketExp(buckets []float64, base float64) []float64 {
bucket := buckets[0]
var newBuckets []float64
// We may see a -Inf here, in which case, add it and skip it
// since we risk producing NaNs otherwise.
//
// We need to preserve -Inf values to maintain runtime/metrics
// conventions. We'll strip it out later.
if bucket == math.Inf(-1) {
newBuckets = append(newBuckets, bucket)
buckets = buckets[1:]
bucket = buckets[0]
}
// From now on, bucket should always have a non-Inf value because
// Infs are only ever at the ends of the bucket lists, so
// arithmetic operations on it are non-NaN.
for i := 1; i < len(buckets); i++ {
if bucket >= 0 && buckets[i] < bucket*base {
// The next bucket we want to include is at least bucket*base.
continue
} else if bucket < 0 && buckets[i] < bucket/base {
// In this case the bucket we're targeting is negative, and since
// we're ascending through buckets here, we need to divide to get
// closer to zero exponentially.
continue
}
// The +Inf bucket will always be the last one, and we'll always
// end up including it here because bucket
newBuckets = append(newBuckets, bucket)
bucket = buckets[i]
}
return append(newBuckets, bucket)
}

View file

@ -17,12 +17,14 @@ import (
"strings"
"time"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
dto "github.com/prometheus/client_model/go"
)
const separatorByte byte = 255
var separatorByteSlice = []byte{model.SeparatorByte} // For convenient use with xxhash.
// A Metric models a single sample value with its meta data being exported to
// Prometheus. Implementations of Metric in this package are Gauge, Counter,
@ -56,7 +58,7 @@ type Metric interface {
}
// Opts bundles the options for creating most Metric types. Each metric
// implementation XXX has its own XXXOpts type, but in most cases, it is just be
// implementation XXX has its own XXXOpts type, but in most cases, it is just
// an alias of this type (which might change when the requirement arises.)
//
// It is mandatory to set Name to a non-empty string. All other fields are
@ -87,7 +89,7 @@ type Opts struct {
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
}

View file

@ -50,3 +50,15 @@ type ObserverVec interface {
Collector
}
// ExemplarObserver is implemented by Observers that offer the option of
// observing a value together with an exemplar. Its ObserveWithExemplar method
// works like the Observe method of an Observer but also replaces the currently
// saved exemplar (if any) with a new one, created from the provided value, the
// current time as timestamp, and the provided Labels. Empty Labels will lead to
// a valid (label-less) exemplar. But if Labels is nil, the current exemplar is
// left in place. ObserveWithExemplar panics if any of the provided labels are
// invalid or if the provided labels contain more than 64 runes in total.
type ExemplarObserver interface {
ObserveWithExemplar(value float64, exemplar Labels)
}

View file

@ -15,7 +15,11 @@ package prometheus
import (
"errors"
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
)
type processCollector struct {
@ -50,16 +54,10 @@ type ProcessCollectorOpts struct {
ReportErrors bool
}
// NewProcessCollector returns a collector which exports the current state of
// process metrics including CPU, memory and file descriptor usage as well as
// the process start time. The detailed behavior is defined by the provided
// ProcessCollectorOpts. The zero value of ProcessCollectorOpts creates a
// collector for the current process with an empty namespace string and no error
// reporting.
// NewProcessCollector is the obsolete version of collectors.NewProcessCollector.
// See there for documentation.
//
// The collector only works on operating systems with a Linux-style proc
// filesystem and on Microsoft Windows. On other operating systems, it will not
// collect any metrics.
// Deprecated: Use collectors.NewProcessCollector instead.
func NewProcessCollector(opts ProcessCollectorOpts) Collector {
ns := ""
if len(opts.Namespace) > 0 {
@ -149,3 +147,20 @@ func (c *processCollector) reportError(ch chan<- Metric, desc *Desc, err error)
}
ch <- NewInvalidMetric(desc, err)
}
// NewPidFileFn returns a function that retrieves a pid from the specified file.
// It is meant to be used for the PidFn field in ProcessCollectorOpts.
func NewPidFileFn(pidFilePath string) func() (int, error) {
return func() (int, error) {
content, err := ioutil.ReadFile(pidFilePath)
if err != nil {
return 0, fmt.Errorf("can't read pid file %q: %+v", pidFilePath, err)
}
pid, err := strconv.Atoi(strings.TrimSpace(string(content)))
if err != nil {
return 0, fmt.Errorf("can't parse pid file %q: %+v", pidFilePath, err)
}
return pid, nil
}
}

View file

@ -11,6 +11,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build !windows
// +build !windows
package prometheus

View file

@ -33,18 +33,22 @@ var (
)
type processMemoryCounters struct {
// https://docs.microsoft.com/en-us/windows/desktop/api/psapi/ns-psapi-_process_memory_counters_ex
// System interface description
// https://docs.microsoft.com/en-us/windows/desktop/api/psapi/ns-psapi-process_memory_counters_ex
// Refer to the Golang internal implementation
// https://golang.org/src/internal/syscall/windows/psapi_windows.go
_ uint32
PageFaultCount uint32
PeakWorkingSetSize uint64
WorkingSetSize uint64
QuotaPeakPagedPoolUsage uint64
QuotaPagedPoolUsage uint64
QuotaPeakNonPagedPoolUsage uint64
QuotaNonPagedPoolUsage uint64
PagefileUsage uint64
PeakPagefileUsage uint64
PrivateUsage uint64
PeakWorkingSetSize uintptr
WorkingSetSize uintptr
QuotaPeakPagedPoolUsage uintptr
QuotaPagedPoolUsage uintptr
QuotaPeakNonPagedPoolUsage uintptr
QuotaNonPagedPoolUsage uintptr
PagefileUsage uintptr
PeakPagefileUsage uintptr
PrivateUsage uintptr
}
func getProcessMemoryInfo(handle windows.Handle) (processMemoryCounters, error) {

View file

@ -53,15 +53,21 @@ func (r *responseWriterDelegator) Written() int64 {
}
func (r *responseWriterDelegator) WriteHeader(code int) {
if r.observeWriteHeader != nil && !r.wroteHeader {
// Only call observeWriteHeader for the 1st time. It's a bug if
// WriteHeader is called more than once, but we want to protect
// against it here. Note that we still delegate the WriteHeader
// to the original ResponseWriter to not mask the bug from it.
r.observeWriteHeader(code)
}
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
if r.observeWriteHeader != nil {
r.observeWriteHeader(code)
}
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {
// If applicable, call WriteHeader here so that observeWriteHeader is
// handled appropriately.
if !r.wroteHeader {
r.WriteHeader(http.StatusOK)
}
@ -77,17 +83,23 @@ type readerFromDelegator struct{ *responseWriterDelegator }
type pusherDelegator struct{ *responseWriterDelegator }
func (d closeNotifierDelegator) CloseNotify() <-chan bool {
//lint:ignore SA1019 http.CloseNotifier is deprecated but we don't want to
//remove support from client_golang yet.
//nolint:staticcheck // Ignore SA1019. http.CloseNotifier is deprecated but we keep it here to not break existing users.
return d.ResponseWriter.(http.CloseNotifier).CloseNotify()
}
func (d flusherDelegator) Flush() {
// If applicable, call WriteHeader here so that observeWriteHeader is
// handled appropriately.
if !d.wroteHeader {
d.WriteHeader(http.StatusOK)
}
d.ResponseWriter.(http.Flusher).Flush()
}
func (d hijackerDelegator) Hijack() (net.Conn, *bufio.ReadWriter, error) {
return d.ResponseWriter.(http.Hijacker).Hijack()
}
func (d readerFromDelegator) ReadFrom(re io.Reader) (int64, error) {
// If applicable, call WriteHeader here so that observeWriteHeader is
// handled appropriately.
if !d.wroteHeader {
d.WriteHeader(http.StatusOK)
}
@ -335,8 +347,7 @@ func newDelegator(w http.ResponseWriter, observeWriteHeaderFunc func(int)) deleg
}
id := 0
//lint:ignore SA1019 http.CloseNotifier is deprecated but we don't want to
//remove support from client_golang yet.
//nolint:staticcheck // Ignore SA1019. http.CloseNotifier is deprecated but we keep it here to not break existing users.
if _, ok := w.(http.CloseNotifier); ok {
id += closeNotifier
}

View file

@ -99,7 +99,7 @@ func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
inFlightSem = make(chan struct{}, opts.MaxRequestsInFlight)
}
if opts.Registry != nil {
// Initialize all possibilites that can occur below.
// Initialize all possibilities that can occur below.
errCnt.WithLabelValues("gathering")
errCnt.WithLabelValues("encoding")
if err := opts.Registry.Register(errCnt); err != nil {
@ -144,7 +144,12 @@ func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
}
}
contentType := expfmt.Negotiate(req.Header)
var contentType expfmt.Format
if opts.EnableOpenMetrics {
contentType = expfmt.NegotiateIncludingOpenMetrics(req.Header)
} else {
contentType = expfmt.Negotiate(req.Header)
}
header := rsp.Header()
header.Set(contentTypeHeader, string(contentType))
@ -162,28 +167,40 @@ func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
enc := expfmt.NewEncoder(w, contentType)
var lastErr error
for _, mf := range mfs {
if err := enc.Encode(mf); err != nil {
lastErr = err
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error encoding and sending metric family:", err)
}
errCnt.WithLabelValues("encoding").Inc()
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case ContinueOnError:
// Handled later.
case HTTPErrorOnError:
httpError(rsp, err)
return
}
// handleError handles the error according to opts.ErrorHandling
// and returns true if we have to abort after the handling.
handleError := func(err error) bool {
if err == nil {
return false
}
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error encoding and sending metric family:", err)
}
errCnt.WithLabelValues("encoding").Inc()
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case HTTPErrorOnError:
// We cannot really send an HTTP error at this
// point because we most likely have written
// something to rsp already. But at least we can
// stop sending.
return true
}
// Do nothing in all other cases, including ContinueOnError.
return false
}
if lastErr != nil {
httpError(rsp, lastErr)
for _, mf := range mfs {
if handleError(enc.Encode(mf)) {
return
}
}
if closer, ok := enc.(expfmt.Closer); ok {
// This in particular takes care of the final "# EOF\n" line for OpenMetrics.
if handleError(closer.Close()) {
return
}
}
})
@ -255,7 +272,12 @@ type HandlerErrorHandling int
// errors are encountered.
const (
// Serve an HTTP status code 500 upon the first error
// encountered. Report the error message in the body.
// encountered. Report the error message in the body. Note that HTTP
// errors cannot be served anymore once the beginning of a regular
// payload has been sent. Thus, in the (unlikely) case that encoding the
// payload into the negotiated wire format fails, serving the response
// will simply be aborted. Set an ErrorLog in HandlerOpts to detect
// those errors.
HTTPErrorOnError HandlerErrorHandling = iota
// Ignore errors and try to serve as many metrics as possible. However,
// if no metrics can be served, serve an HTTP status code 500 and the
@ -281,8 +303,12 @@ type Logger interface {
// HandlerOpts specifies options how to serve metrics via an http.Handler. The
// zero value of HandlerOpts is a reasonable default.
type HandlerOpts struct {
// ErrorLog specifies an optional logger for errors collecting and
// serving metrics. If nil, errors are not logged at all.
// ErrorLog specifies an optional Logger for errors collecting and
// serving metrics. If nil, errors are not logged at all. Note that the
// type of a reported error is often prometheus.MultiError, which
// formats into a multi-line error string. If you want to avoid the
// latter, create a Logger implementation that detects a
// prometheus.MultiError and formats the contained errors into one line.
ErrorLog Logger
// ErrorHandling defines how errors are handled. Note that errors are
// logged regardless of the configured ErrorHandling provided ErrorLog
@ -318,6 +344,16 @@ type HandlerOpts struct {
// away). Until the implementation is improved, it is recommended to
// implement a separate timeout in potentially slow Collectors.
Timeout time.Duration
// If true, the experimental OpenMetrics encoding is added to the
// possible options during content negotiation. Note that Prometheus
// 2.5.0+ will negotiate OpenMetrics as first priority. OpenMetrics is
// the only way to transmit exemplars. However, the move to OpenMetrics
// is not completely transparent. Most notably, the values of "quantile"
// labels of Summaries and "le" labels of Histograms are formatted with
// a trailing ".0" if they would otherwise look like integer numbers
// (which changes the identity of the resulting series on the Prometheus
// server).
EnableOpenMetrics bool
}
// gzipAccepted returns whether the client will accept gzip-encoded content.
@ -334,11 +370,9 @@ func gzipAccepted(header http.Header) bool {
}
// httpError removes any content-encoding header and then calls http.Error with
// the provided error and http.StatusInternalServerErrer. Error contents is
// supposed to be uncompressed plain text. However, same as with a plain
// http.Error, any header settings will be void if the header has already been
// sent. The error message will still be written to the writer, but it will
// probably be of limited use.
// the provided error and http.StatusInternalServerError. Error contents is
// supposed to be uncompressed plain text. Same as with a plain http.Error, this
// must not be called if the header or any payload has already been sent.
func httpError(rsp http.ResponseWriter, err error) {
rsp.Header().Del(contentEncodingHeader)
http.Error(

View file

@ -49,7 +49,10 @@ func InstrumentRoundTripperInFlight(gauge prometheus.Gauge, next http.RoundTripp
// http.RoundTripper to observe the request result with the provided CounterVec.
// The CounterVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. Partitioning of the CounterVec happens by HTTP status code
// panics otherwise. For the "method" label a predefined default label value set
// is used to filter given values. Values besides predefined values will count
// as `unknown` method.`WithExtraMethods` can be used to add more
// methods to the set. Partitioning of the CounterVec happens by HTTP status code
// and/or HTTP method if the respective instance label names are present in the
// CounterVec. For unpartitioned counting, use a CounterVec with zero labels.
//
@ -57,13 +60,18 @@ func InstrumentRoundTripperInFlight(gauge prometheus.Gauge, next http.RoundTripp
// is not incremented.
//
// See the example for ExampleInstrumentRoundTripperDuration for example usage.
func InstrumentRoundTripperCounter(counter *prometheus.CounterVec, next http.RoundTripper) RoundTripperFunc {
func InstrumentRoundTripperCounter(counter *prometheus.CounterVec, next http.RoundTripper, opts ...Option) RoundTripperFunc {
rtOpts := &option{}
for _, o := range opts {
o(rtOpts)
}
code, method := checkLabels(counter)
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
resp, err := next.RoundTrip(r)
if err == nil {
counter.With(labels(code, method, r.Method, resp.StatusCode)).Inc()
counter.With(labels(code, method, r.Method, resp.StatusCode, rtOpts.extraMethods...)).Inc()
}
return resp, err
})
@ -73,7 +81,10 @@ func InstrumentRoundTripperCounter(counter *prometheus.CounterVec, next http.Rou
// http.RoundTripper to observe the request duration with the provided
// ObserverVec. The ObserverVec must have zero, one, or two non-const
// non-curried labels. For those, the only allowed label names are "code" and
// "method". The function panics otherwise. The Observe method of the Observer
// "method". The function panics otherwise. For the "method" label a predefined
// default label value set is used to filter given values. Values besides
// predefined values will count as `unknown` method. `WithExtraMethods`
// can be used to add more methods to the set. The Observe method of the Observer
// in the ObserverVec is called with the request duration in
// seconds. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
@ -85,14 +96,19 @@ func InstrumentRoundTripperCounter(counter *prometheus.CounterVec, next http.Rou
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
func InstrumentRoundTripperDuration(obs prometheus.ObserverVec, next http.RoundTripper) RoundTripperFunc {
func InstrumentRoundTripperDuration(obs prometheus.ObserverVec, next http.RoundTripper, opts ...Option) RoundTripperFunc {
rtOpts := &option{}
for _, o := range opts {
o(rtOpts)
}
code, method := checkLabels(obs)
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
start := time.Now()
resp, err := next.RoundTrip(r)
if err == nil {
obs.With(labels(code, method, r.Method, resp.StatusCode)).Observe(time.Since(start).Seconds())
obs.With(labels(code, method, r.Method, resp.StatusCode, rtOpts.extraMethods...)).Observe(time.Since(start).Seconds())
}
return resp, err
})

View file

@ -43,14 +43,17 @@ func InstrumentHandlerInFlight(g prometheus.Gauge, next http.Handler) http.Handl
// InstrumentHandlerDuration is a middleware that wraps the provided
// http.Handler to observe the request duration with the provided ObserverVec.
// The ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the request duration in seconds. Partitioning happens by HTTP
// status code and/or HTTP method if the respective instance label names are
// present in the ObserverVec. For unpartitioned observations, use an
// ObserverVec with zero labels. Note that partitioning of Histograms is
// expensive and should be used judiciously.
// The ObserverVec must have valid metric and label names and must have zero,
// one, or two non-const non-curried labels. For those, the only allowed label
// names are "code" and "method". The function panics otherwise. For the "method"
// label a predefined default label value set is used to filter given values.
// Values besides predefined values will count as `unknown` method.
//`WithExtraMethods` can be used to add more methods to the set. The Observe
// method of the Observer in the ObserverVec is called with the request duration
// in seconds. Partitioning happens by HTTP status code and/or HTTP method if
// the respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
@ -58,7 +61,12 @@ func InstrumentHandlerInFlight(g prometheus.Gauge, next http.Handler) http.Handl
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
func InstrumentHandlerDuration(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
func InstrumentHandlerDuration(obs prometheus.ObserverVec, next http.Handler, opts ...Option) http.HandlerFunc {
mwOpts := &option{}
for _, o := range opts {
o(mwOpts)
}
code, method := checkLabels(obs)
if code {
@ -67,57 +75,70 @@ func InstrumentHandlerDuration(obs prometheus.ObserverVec, next http.Handler) ht
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(time.Since(now).Seconds())
obs.With(labels(code, method, r.Method, d.Status(), mwOpts.extraMethods...)).Observe(time.Since(now).Seconds())
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
next.ServeHTTP(w, r)
obs.With(labels(code, method, r.Method, 0)).Observe(time.Since(now).Seconds())
obs.With(labels(code, method, r.Method, 0, mwOpts.extraMethods...)).Observe(time.Since(now).Seconds())
})
}
// InstrumentHandlerCounter is a middleware that wraps the provided http.Handler
// to observe the request result with the provided CounterVec. The CounterVec
// must have zero, one, or two non-const non-curried labels. For those, the only
// allowed label names are "code" and "method". The function panics
// otherwise. Partitioning of the CounterVec happens by HTTP status code and/or
// HTTP method if the respective instance label names are present in the
// CounterVec. For unpartitioned counting, use a CounterVec with zero labels.
// to observe the request result with the provided CounterVec. The CounterVec
// must have valid metric and label names and must have zero, one, or two
// non-const non-curried labels. For those, the only allowed label names are
// "code" and "method". The function panics otherwise. For the "method"
// label a predefined default label value set is used to filter given values.
// Values besides predefined values will count as `unknown` method.
// `WithExtraMethods` can be used to add more methods to the set. Partitioning of the
// CounterVec happens by HTTP status code and/or HTTP method if the respective
// instance label names are present in the CounterVec. For unpartitioned
// counting, use a CounterVec with zero labels.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, the Counter is not incremented.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerCounter(counter *prometheus.CounterVec, next http.Handler) http.HandlerFunc {
func InstrumentHandlerCounter(counter *prometheus.CounterVec, next http.Handler, opts ...Option) http.HandlerFunc {
mwOpts := &option{}
for _, o := range opts {
o(mwOpts)
}
code, method := checkLabels(counter)
if code {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
counter.With(labels(code, method, r.Method, d.Status())).Inc()
counter.With(labels(code, method, r.Method, d.Status(), mwOpts.extraMethods...)).Inc()
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
next.ServeHTTP(w, r)
counter.With(labels(code, method, r.Method, 0)).Inc()
counter.With(labels(code, method, r.Method, 0, mwOpts.extraMethods...)).Inc()
})
}
// InstrumentHandlerTimeToWriteHeader is a middleware that wraps the provided
// http.Handler to observe with the provided ObserverVec the request duration
// until the response headers are written. The ObserverVec must have zero, one,
// or two non-const non-curried labels. For those, the only allowed label names
// are "code" and "method". The function panics otherwise. The Observe method of
// the Observer in the ObserverVec is called with the request duration in
// seconds. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
// until the response headers are written. The ObserverVec must have valid
// metric and label names and must have zero, one, or two non-const non-curried
// labels. For those, the only allowed label names are "code" and "method". The
// function panics otherwise. For the "method" label a predefined default label
// value set is used to filter given values. Values besides predefined values
// will count as `unknown` method.`WithExtraMethods` can be used to add more
// methods to the set. The Observe method of the Observer in the
// ObserverVec is called with the request duration in seconds. Partitioning
// happens by HTTP status code and/or HTTP method if the respective instance
// label names are present in the ObserverVec. For unpartitioned observations,
// use an ObserverVec with zero labels. Note that partitioning of Histograms is
// expensive and should be used judiciously.
//
// If the wrapped Handler panics before calling WriteHeader, no value is
// reported.
@ -126,35 +147,48 @@ func InstrumentHandlerCounter(counter *prometheus.CounterVec, next http.Handler)
// if used with Go1.9+.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerTimeToWriteHeader(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
func InstrumentHandlerTimeToWriteHeader(obs prometheus.ObserverVec, next http.Handler, opts ...Option) http.HandlerFunc {
mwOpts := &option{}
for _, o := range opts {
o(mwOpts)
}
code, method := checkLabels(obs)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
d := newDelegator(w, func(status int) {
obs.With(labels(code, method, r.Method, status)).Observe(time.Since(now).Seconds())
obs.With(labels(code, method, r.Method, status, mwOpts.extraMethods...)).Observe(time.Since(now).Seconds())
})
next.ServeHTTP(d, r)
})
}
// InstrumentHandlerRequestSize is a middleware that wraps the provided
// http.Handler to observe the request size with the provided ObserverVec. The
// ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the request size in bytes. Partitioning happens by HTTP status
// code and/or HTTP method if the respective instance label names are present in
// the ObserverVec. For unpartitioned observations, use an ObserverVec with zero
// labels. Note that partitioning of Histograms is expensive and should be used
// judiciously.
// http.Handler to observe the request size with the provided ObserverVec. The
// ObserverVec must have valid metric and label names and must have zero, one,
// or two non-const non-curried labels. For those, the only allowed label names
// are "code" and "method". The function panics otherwise. For the "method"
// label a predefined default label value set is used to filter given values.
// Values besides predefined values will count as `unknown` method.
// `WithExtraMethods` can be used to add more methods to the set. The Observe
// method of the Observer in the ObserverVec is called with the request size in
// bytes. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, no values are reported.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerRequestSize(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
func InstrumentHandlerRequestSize(obs prometheus.ObserverVec, next http.Handler, opts ...Option) http.HandlerFunc {
mwOpts := &option{}
for _, o := range opts {
o(mwOpts)
}
code, method := checkLabels(obs)
if code {
@ -162,42 +196,56 @@ func InstrumentHandlerRequestSize(obs prometheus.ObserverVec, next http.Handler)
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
size := computeApproximateRequestSize(r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(float64(size))
obs.With(labels(code, method, r.Method, d.Status(), mwOpts.extraMethods...)).Observe(float64(size))
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
next.ServeHTTP(w, r)
size := computeApproximateRequestSize(r)
obs.With(labels(code, method, r.Method, 0)).Observe(float64(size))
obs.With(labels(code, method, r.Method, 0, mwOpts.extraMethods...)).Observe(float64(size))
})
}
// InstrumentHandlerResponseSize is a middleware that wraps the provided
// http.Handler to observe the response size with the provided ObserverVec. The
// ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the response size in bytes. Partitioning happens by HTTP status
// code and/or HTTP method if the respective instance label names are present in
// the ObserverVec. For unpartitioned observations, use an ObserverVec with zero
// labels. Note that partitioning of Histograms is expensive and should be used
// judiciously.
// http.Handler to observe the response size with the provided ObserverVec. The
// ObserverVec must have valid metric and label names and must have zero, one,
// or two non-const non-curried labels. For those, the only allowed label names
// are "code" and "method". The function panics otherwise. For the "method"
// label a predefined default label value set is used to filter given values.
// Values besides predefined values will count as `unknown` method.
// `WithExtraMethods` can be used to add more methods to the set. The Observe
// method of the Observer in the ObserverVec is called with the response size in
// bytes. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, no values are reported.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerResponseSize(obs prometheus.ObserverVec, next http.Handler) http.Handler {
func InstrumentHandlerResponseSize(obs prometheus.ObserverVec, next http.Handler, opts ...Option) http.Handler {
mwOpts := &option{}
for _, o := range opts {
o(mwOpts)
}
code, method := checkLabels(obs)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(float64(d.Written()))
obs.With(labels(code, method, r.Method, d.Status(), mwOpts.extraMethods...)).Observe(float64(d.Written()))
})
}
// checkLabels returns whether the provided Collector has a non-const,
// non-curried label named "code" and/or "method". It panics if the provided
// Collector does not have a Desc or has more than one Desc or its Desc is
// invalid. It also panics if the Collector has any non-const, non-curried
// labels that are not named "code" or "method".
func checkLabels(c prometheus.Collector) (code bool, method bool) {
// TODO(beorn7): Remove this hacky way to check for instance labels
// once Descriptors can have their dimensionality queried.
@ -225,6 +273,10 @@ func checkLabels(c prometheus.Collector) (code bool, method bool) {
close(descc)
// Make sure the Collector has a valid Desc by registering it with a
// temporary registry.
prometheus.NewRegistry().MustRegister(c)
// Create a ConstMetric with the Desc. Since we don't know how many
// variable labels there are, try for as long as it needs.
for err := errors.New("dummy"); err != nil; lvs = append(lvs, magicString) {
@ -279,7 +331,7 @@ func isLabelCurried(c prometheus.Collector, label string) bool {
// unnecessary allocations on each request.
var emptyLabels = prometheus.Labels{}
func labels(code, method bool, reqMethod string, status int) prometheus.Labels {
func labels(code, method bool, reqMethod string, status int, extraMethods ...string) prometheus.Labels {
if !(code || method) {
return emptyLabels
}
@ -289,7 +341,7 @@ func labels(code, method bool, reqMethod string, status int) prometheus.Labels {
labels["code"] = sanitizeCode(status)
}
if method {
labels["method"] = sanitizeMethod(reqMethod)
labels["method"] = sanitizeMethod(reqMethod, extraMethods...)
}
return labels
@ -319,7 +371,12 @@ func computeApproximateRequestSize(r *http.Request) int {
return s
}
func sanitizeMethod(m string) string {
// If the wrapped http.Handler has a known method, it will be sanitized and returned.
// Otherwise, "unknown" will be returned. The known method list can be extended
// as needed by using extraMethods parameter.
func sanitizeMethod(m string, extraMethods ...string) string {
// See https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods for
// the methods chosen as default.
switch m {
case "GET", "get":
return "get"
@ -337,15 +394,25 @@ func sanitizeMethod(m string) string {
return "options"
case "NOTIFY", "notify":
return "notify"
case "TRACE", "trace":
return "trace"
case "PATCH", "patch":
return "patch"
default:
return strings.ToLower(m)
for _, method := range extraMethods {
if strings.EqualFold(m, method) {
return strings.ToLower(m)
}
}
return "unknown"
}
}
// If the wrapped http.Handler has not set a status code, i.e. the value is
// currently 0, santizeCode will return 200, for consistency with behavior in
// currently 0, sanitizeCode will return 200, for consistency with behavior in
// the stdlib.
func sanitizeCode(s int) string {
// See for accepted codes https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
switch s {
case 100:
return "100"
@ -442,6 +509,9 @@ func sanitizeCode(s int) string {
return "511"
default:
return strconv.Itoa(s)
if s >= 100 && s <= 599 {
return strconv.Itoa(s)
}
return "unknown"
}
}

View file

@ -1,4 +1,4 @@
// Copyright 2019 The Prometheus Authors
// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
@ -11,12 +11,21 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !go1.12
package promhttp
package prometheus
// Option are used to configure a middleware or round tripper..
type Option func(*option)
// readBuildInfo is a wrapper around debug.ReadBuildInfo for Go versions before
// 1.12. Remove this whole file once the minimum supported Go version is 1.12.
func readBuildInfo() (path, version, sum string) {
return "unknown", "unknown", "unknown"
type option struct {
extraMethods []string
}
// WithExtraMethods adds additional HTTP methods to the list of allowed methods.
// See https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods for the default list.
//
// See the example for ExampleInstrumentHandlerWithExtraMethods for example usage.
func WithExtraMethods(methods ...string) Option {
return func(o *option) {
o.extraMethods = methods
}
}

View file

@ -25,6 +25,8 @@ import (
"sync"
"unicode/utf8"
"github.com/cespare/xxhash/v2"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/expfmt"
@ -74,7 +76,7 @@ func NewRegistry() *Registry {
// NewPedanticRegistry returns a registry that checks during collection if each
// collected Metric is consistent with its reported Desc, and if the Desc has
// actually been registered with the registry. Unchecked Collectors (those whose
// Describe methed does not yield any descriptors) are excluded from the check.
// Describe method does not yield any descriptors) are excluded from the check.
//
// Usually, a Registry will be happy as long as the union of all collected
// Metrics is consistent and valid even if some metrics are not consistent with
@ -213,6 +215,8 @@ func (err AlreadyRegisteredError) Error() string {
// by a Gatherer to report multiple errors during MetricFamily gathering.
type MultiError []error
// Error formats the contained errors as a bullet point list, preceded by the
// total number of errors. Note that this results in a multi-line string.
func (errs MultiError) Error() string {
if len(errs) == 0 {
return ""
@ -266,7 +270,7 @@ func (r *Registry) Register(c Collector) error {
descChan = make(chan *Desc, capDescChan)
newDescIDs = map[uint64]struct{}{}
newDimHashesByName = map[string]uint64{}
collectorID uint64 // Just a sum of all desc IDs.
collectorID uint64 // All desc IDs XOR'd together.
duplicateDescErr error
)
go func() {
@ -293,12 +297,12 @@ func (r *Registry) Register(c Collector) error {
if _, exists := r.descIDs[desc.id]; exists {
duplicateDescErr = fmt.Errorf("descriptor %s already exists with the same fully-qualified name and const label values", desc)
}
// If it is not a duplicate desc in this collector, add it to
// If it is not a duplicate desc in this collector, XOR it to
// the collectorID. (We allow duplicate descs within the same
// collector, but their existence must be a no-op.)
if _, exists := newDescIDs[desc.id]; !exists {
newDescIDs[desc.id] = struct{}{}
collectorID += desc.id
collectorID ^= desc.id
}
// Are all the label names and the help string consistent with
@ -360,7 +364,7 @@ func (r *Registry) Unregister(c Collector) bool {
var (
descChan = make(chan *Desc, capDescChan)
descIDs = map[uint64]struct{}{}
collectorID uint64 // Just a sum of the desc IDs.
collectorID uint64 // All desc IDs XOR'd together.
)
go func() {
c.Describe(descChan)
@ -368,7 +372,7 @@ func (r *Registry) Unregister(c Collector) bool {
}()
for desc := range descChan {
if _, exists := descIDs[desc.id]; !exists {
collectorID += desc.id
collectorID ^= desc.id
descIDs[desc.id] = struct{}{}
}
}
@ -875,9 +879,9 @@ func checkMetricConsistency(
}
// Is the metric unique (i.e. no other metric with the same name and the same labels)?
h := hashNew()
h = hashAdd(h, name)
h = hashAddByte(h, separatorByte)
h := xxhash.New()
h.WriteString(name)
h.Write(separatorByteSlice)
// Make sure label pairs are sorted. We depend on it for the consistency
// check.
if !sort.IsSorted(labelPairSorter(dtoMetric.Label)) {
@ -888,18 +892,19 @@ func checkMetricConsistency(
dtoMetric.Label = copiedLabels
}
for _, lp := range dtoMetric.Label {
h = hashAdd(h, lp.GetName())
h = hashAddByte(h, separatorByte)
h = hashAdd(h, lp.GetValue())
h = hashAddByte(h, separatorByte)
h.WriteString(lp.GetName())
h.Write(separatorByteSlice)
h.WriteString(lp.GetValue())
h.Write(separatorByteSlice)
}
if _, exists := metricHashes[h]; exists {
hSum := h.Sum64()
if _, exists := metricHashes[hSum]; exists {
return fmt.Errorf(
"collected metric %q { %s} was collected before with the same name and label values",
name, dtoMetric,
)
}
metricHashes[h] = struct{}{}
metricHashes[hSum] = struct{}{}
return nil
}

View file

@ -23,6 +23,7 @@ import (
"time"
"github.com/beorn7/perks/quantile"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
@ -54,7 +55,12 @@ type Summary interface {
Metric
Collector
// Observe adds a single observation to the summary.
// Observe adds a single observation to the summary. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
@ -109,7 +115,7 @@ type SummaryOpts struct {
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Objectives defines the quantile rank estimates with their respective
@ -120,7 +126,9 @@ type SummaryOpts struct {
Objectives map[float64]float64
// MaxAge defines the duration for which an observation stays relevant
// for the summary. Must be positive. The default value is DefMaxAge.
// for the summary. Only applies to pre-calculated quantiles, does not
// apply to _sum and _count. Must be positive. The default value is
// DefMaxAge.
MaxAge time.Duration
// AgeBuckets is the number of buckets used to exclude observations that
@ -207,8 +215,8 @@ func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
// Use the lock-free implementation of a Summary without objectives.
s := &noObjectivesSummary{
desc: desc,
labelPairs: makeLabelPairs(desc, labelValues),
counts: [2]*summaryCounts{&summaryCounts{}, &summaryCounts{}},
labelPairs: MakeLabelPairs(desc, labelValues),
counts: [2]*summaryCounts{{}, {}},
}
s.init(s) // Init self-collection.
return s
@ -220,7 +228,7 @@ func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
objectives: opts.Objectives,
sortedObjectives: make([]float64, 0, len(opts.Objectives)),
labelPairs: makeLabelPairs(desc, labelValues),
labelPairs: MakeLabelPairs(desc, labelValues),
hotBuf: make([]float64, 0, opts.BufCap),
coldBuf: make([]float64, 0, opts.BufCap),
@ -512,7 +520,7 @@ func (s quantSort) Less(i, j int) bool {
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewSummaryVec.
type SummaryVec struct {
*metricVec
*MetricVec
}
// NewSummaryVec creates a new SummaryVec based on the provided SummaryOpts and
@ -534,14 +542,14 @@ func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
opts.ConstLabels,
)
return &SummaryVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newSummary(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Summary for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Summary is created.
//
// It is possible to call this method without using the returned Summary to only
@ -556,7 +564,7 @@ func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
@ -565,7 +573,7 @@ func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
@ -573,19 +581,19 @@ func (v *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
}
// GetMetricWith returns the Summary for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Summary is created. Implications of
// creating a Summary without using it and keeping the Summary for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *SummaryVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.metricVec.getMetricWith(labels)
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
@ -629,7 +637,7 @@ func (v *SummaryVec) With(labels Labels) Observer {
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *SummaryVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.curryWith(labels)
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &SummaryVec{vec}, err
}
@ -715,7 +723,7 @@ func NewConstSummary(
count: count,
sum: sum,
quantiles: quantiles,
labelPairs: makeLabelPairs(desc, labelValues),
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}

View file

@ -16,8 +16,12 @@ package prometheus
import (
"fmt"
"sort"
"time"
"unicode/utf8"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
"google.golang.org/protobuf/types/known/timestamppb"
dto "github.com/prometheus/client_model/go"
)
@ -25,7 +29,8 @@ import (
// ValueType is an enumeration of metric types that represent a simple value.
type ValueType int
// Possible values for the ValueType enum.
// Possible values for the ValueType enum. Use UntypedValue to mark a metric
// with an unknown type.
const (
_ ValueType = iota
CounterValue
@ -58,7 +63,7 @@ func newValueFunc(desc *Desc, valueType ValueType, function func() float64) *val
desc: desc,
valType: valueType,
function: function,
labelPairs: makeLabelPairs(desc, nil),
labelPairs: MakeLabelPairs(desc, nil),
}
result.init(result)
return result
@ -69,7 +74,7 @@ func (v *valueFunc) Desc() *Desc {
}
func (v *valueFunc) Write(out *dto.Metric) error {
return populateMetric(v.valType, v.function(), v.labelPairs, out)
return populateMetric(v.valType, v.function(), v.labelPairs, nil, out)
}
// NewConstMetric returns a metric with one fixed value that cannot be
@ -90,7 +95,7 @@ func NewConstMetric(desc *Desc, valueType ValueType, value float64, labelValues
desc: desc,
valType: valueType,
val: value,
labelPairs: makeLabelPairs(desc, labelValues),
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
@ -116,19 +121,20 @@ func (m *constMetric) Desc() *Desc {
}
func (m *constMetric) Write(out *dto.Metric) error {
return populateMetric(m.valType, m.val, m.labelPairs, out)
return populateMetric(m.valType, m.val, m.labelPairs, nil, out)
}
func populateMetric(
t ValueType,
v float64,
labelPairs []*dto.LabelPair,
e *dto.Exemplar,
m *dto.Metric,
) error {
m.Label = labelPairs
switch t {
case CounterValue:
m.Counter = &dto.Counter{Value: proto.Float64(v)}
m.Counter = &dto.Counter{Value: proto.Float64(v), Exemplar: e}
case GaugeValue:
m.Gauge = &dto.Gauge{Value: proto.Float64(v)}
case UntypedValue:
@ -139,7 +145,14 @@ func populateMetric(
return nil
}
func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
// MakeLabelPairs is a helper function to create protobuf LabelPairs from the
// variable and constant labels in the provided Desc. The values for the
// variable labels are defined by the labelValues slice, which must be in the
// same order as the corresponding variable labels in the Desc.
//
// This function is only needed for custom Metric implementations. See MetricVec
// example.
func MakeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
totalLen := len(desc.variableLabels) + len(desc.constLabelPairs)
if totalLen == 0 {
// Super fast path.
@ -160,3 +173,40 @@ func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
sort.Sort(labelPairSorter(labelPairs))
return labelPairs
}
// ExemplarMaxRunes is the max total number of runes allowed in exemplar labels.
const ExemplarMaxRunes = 64
// newExemplar creates a new dto.Exemplar from the provided values. An error is
// returned if any of the label names or values are invalid or if the total
// number of runes in the label names and values exceeds ExemplarMaxRunes.
func newExemplar(value float64, ts time.Time, l Labels) (*dto.Exemplar, error) {
e := &dto.Exemplar{}
e.Value = proto.Float64(value)
tsProto := timestamppb.New(ts)
if err := tsProto.CheckValid(); err != nil {
return nil, err
}
e.Timestamp = tsProto
labelPairs := make([]*dto.LabelPair, 0, len(l))
var runes int
for name, value := range l {
if !checkLabelName(name) {
return nil, fmt.Errorf("exemplar label name %q is invalid", name)
}
runes += utf8.RuneCountInString(name)
if !utf8.ValidString(value) {
return nil, fmt.Errorf("exemplar label value %q is not valid UTF-8", value)
}
runes += utf8.RuneCountInString(value)
labelPairs = append(labelPairs, &dto.LabelPair{
Name: proto.String(name),
Value: proto.String(value),
})
}
if runes > ExemplarMaxRunes {
return nil, fmt.Errorf("exemplar labels have %d runes, exceeding the limit of %d", runes, ExemplarMaxRunes)
}
e.Label = labelPairs
return e, nil
}

View file

@ -20,12 +20,20 @@ import (
"github.com/prometheus/common/model"
)
// metricVec is a Collector to bundle metrics of the same name that differ in
// their label values. metricVec is not used directly (and therefore
// unexported). It is used as a building block for implementations of vectors of
// a given metric type, like GaugeVec, CounterVec, SummaryVec, and HistogramVec.
// It also handles label currying. It uses basicMetricVec internally.
type metricVec struct {
// MetricVec is a Collector to bundle metrics of the same name that differ in
// their label values. MetricVec is not used directly but as a building block
// for implementations of vectors of a given metric type, like GaugeVec,
// CounterVec, SummaryVec, and HistogramVec. It is exported so that it can be
// used for custom Metric implementations.
//
// To create a FooVec for custom Metric Foo, embed a pointer to MetricVec in
// FooVec and initialize it with NewMetricVec. Implement wrappers for
// GetMetricWithLabelValues and GetMetricWith that return (Foo, error) rather
// than (Metric, error). Similarly, create a wrapper for CurryWith that returns
// (*FooVec, error) rather than (*MetricVec, error). It is recommended to also
// add the convenience methods WithLabelValues, With, and MustCurryWith, which
// panic instead of returning errors. See also the MetricVec example.
type MetricVec struct {
*metricMap
curry []curriedLabelValue
@ -35,9 +43,9 @@ type metricVec struct {
hashAddByte func(h uint64, b byte) uint64
}
// newMetricVec returns an initialized metricVec.
func newMetricVec(desc *Desc, newMetric func(lvs ...string) Metric) *metricVec {
return &metricVec{
// NewMetricVec returns an initialized metricVec.
func NewMetricVec(desc *Desc, newMetric func(lvs ...string) Metric) *MetricVec {
return &MetricVec{
metricMap: &metricMap{
metrics: map[uint64][]metricWithLabelValues{},
desc: desc,
@ -63,7 +71,7 @@ func newMetricVec(desc *Desc, newMetric func(lvs ...string) Metric) *metricVec {
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the CounterVec example.
func (m *metricVec) DeleteLabelValues(lvs ...string) bool {
func (m *MetricVec) DeleteLabelValues(lvs ...string) bool {
h, err := m.hashLabelValues(lvs)
if err != nil {
return false
@ -82,7 +90,7 @@ func (m *metricVec) DeleteLabelValues(lvs ...string) bool {
//
// This method is used for the same purpose as DeleteLabelValues(...string). See
// there for pros and cons of the two methods.
func (m *metricVec) Delete(labels Labels) bool {
func (m *MetricVec) Delete(labels Labels) bool {
h, err := m.hashLabels(labels)
if err != nil {
return false
@ -91,7 +99,36 @@ func (m *metricVec) Delete(labels Labels) bool {
return m.metricMap.deleteByHashWithLabels(h, labels, m.curry)
}
func (m *metricVec) curryWith(labels Labels) (*metricVec, error) {
// Without explicit forwarding of Describe, Collect, Reset, those methods won't
// show up in GoDoc.
// Describe implements Collector.
func (m *MetricVec) Describe(ch chan<- *Desc) { m.metricMap.Describe(ch) }
// Collect implements Collector.
func (m *MetricVec) Collect(ch chan<- Metric) { m.metricMap.Collect(ch) }
// Reset deletes all metrics in this vector.
func (m *MetricVec) Reset() { m.metricMap.Reset() }
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the MetricVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
//
// Note that CurryWith is usually not called directly but through a wrapper
// around MetricVec, implementing a vector for a specific Metric
// implementation, for example GaugeVec.
func (m *MetricVec) CurryWith(labels Labels) (*MetricVec, error) {
var (
newCurry []curriedLabelValue
oldCurry = m.curry
@ -116,7 +153,7 @@ func (m *metricVec) curryWith(labels Labels) (*metricVec, error) {
return nil, fmt.Errorf("%d unknown label(s) found during currying", l)
}
return &metricVec{
return &MetricVec{
metricMap: m.metricMap,
curry: newCurry,
hashAdd: m.hashAdd,
@ -124,7 +161,34 @@ func (m *metricVec) curryWith(labels Labels) (*metricVec, error) {
}, nil
}
func (m *metricVec) getMetricWithLabelValues(lvs ...string) (Metric, error) {
// GetMetricWithLabelValues returns the Metric for the given slice of label
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Metric is created (by
// calling the newMetric function provided during construction of the
// MetricVec).
//
// It is possible to call this method without using the returned Metric to only
// create the new Metric but leave it in its initial state.
//
// Keeping the Metric for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Metric from the MetricVec. In that case, the
// Metric will still exist, but it will not be exported anymore, even if a
// Metric with the same label values is created later.
//
// An error is returned if the number of label values is not the same as the
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
//
// Note that GetMetricWithLabelValues is usually not called directly but through
// a wrapper around MetricVec, implementing a vector for a specific Metric
// implementation, for example GaugeVec.
func (m *MetricVec) GetMetricWithLabelValues(lvs ...string) (Metric, error) {
h, err := m.hashLabelValues(lvs)
if err != nil {
return nil, err
@ -133,7 +197,23 @@ func (m *metricVec) getMetricWithLabelValues(lvs ...string) (Metric, error) {
return m.metricMap.getOrCreateMetricWithLabelValues(h, lvs, m.curry), nil
}
func (m *metricVec) getMetricWith(labels Labels) (Metric, error) {
// GetMetricWith returns the Metric for the given Labels map (the label names
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Metric is created. Implications of
// creating a Metric without using it and keeping the Metric for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
//
// Note that GetMetricWith is usually not called directly but through a wrapper
// around MetricVec, implementing a vector for a specific Metric implementation,
// for example GaugeVec.
func (m *MetricVec) GetMetricWith(labels Labels) (Metric, error) {
h, err := m.hashLabels(labels)
if err != nil {
return nil, err
@ -142,7 +222,7 @@ func (m *metricVec) getMetricWith(labels Labels) (Metric, error) {
return m.metricMap.getOrCreateMetricWithLabels(h, labels, m.curry), nil
}
func (m *metricVec) hashLabelValues(vals []string) (uint64, error) {
func (m *MetricVec) hashLabelValues(vals []string) (uint64, error) {
if err := validateLabelValues(vals, len(m.desc.variableLabels)-len(m.curry)); err != nil {
return 0, err
}
@ -165,7 +245,7 @@ func (m *metricVec) hashLabelValues(vals []string) (uint64, error) {
return h, nil
}
func (m *metricVec) hashLabels(labels Labels) (uint64, error) {
func (m *MetricVec) hashLabels(labels Labels) (uint64, error) {
if err := validateValuesInLabels(labels, len(m.desc.variableLabels)-len(m.curry)); err != nil {
return 0, err
}
@ -264,7 +344,9 @@ func (m *metricMap) deleteByHashWithLabelValues(
}
if len(metrics) > 1 {
old := metrics
m.metrics[h] = append(metrics[:i], metrics[i+1:]...)
old[len(old)-1] = metricWithLabelValues{}
} else {
delete(m.metrics, h)
}
@ -290,7 +372,9 @@ func (m *metricMap) deleteByHashWithLabels(
}
if len(metrics) > 1 {
old := metrics
m.metrics[h] = append(metrics[:i], metrics[i+1:]...)
old[len(old)-1] = metricWithLabelValues{}
} else {
delete(m.metrics, h)
}

View file

@ -17,6 +17,7 @@ import (
"fmt"
"sort"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
@ -27,10 +28,13 @@ import (
// registered with the wrapped Registerer in a modified way. The modified
// Collector adds the provided Labels to all Metrics it collects (as
// ConstLabels). The Metrics collected by the unmodified Collector must not
// duplicate any of those labels.
// duplicate any of those labels. Wrapping a nil value is valid, resulting
// in a no-op Registerer.
//
// WrapRegistererWith provides a way to add fixed labels to a subset of
// Collectors. It should not be used to add fixed labels to all metrics exposed.
// Collectors. It should not be used to add fixed labels to all metrics
// exposed. See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
//
// Conflicts between Collectors registered through the original Registerer with
// Collectors registered through the wrapping Registerer will still be
@ -50,6 +54,7 @@ func WrapRegistererWith(labels Labels, reg Registerer) Registerer {
// Registerer. Collectors registered with the returned Registerer will be
// registered with the wrapped Registerer in a modified way. The modified
// Collector adds the provided prefix to the name of all Metrics it collects.
// Wrapping a nil value is valid, resulting in a no-op Registerer.
//
// WrapRegistererWithPrefix is useful to have one place to prefix all metrics of
// a sub-system. To make this work, register metrics of the sub-system with the
@ -80,6 +85,9 @@ type wrappingRegisterer struct {
}
func (r *wrappingRegisterer) Register(c Collector) error {
if r.wrappedRegisterer == nil {
return nil
}
return r.wrappedRegisterer.Register(&wrappingCollector{
wrappedCollector: c,
prefix: r.prefix,
@ -88,6 +96,9 @@ func (r *wrappingRegisterer) Register(c Collector) error {
}
func (r *wrappingRegisterer) MustRegister(cs ...Collector) {
if r.wrappedRegisterer == nil {
return
}
for _, c := range cs {
if err := r.Register(c); err != nil {
panic(err)
@ -96,6 +107,9 @@ func (r *wrappingRegisterer) MustRegister(cs ...Collector) {
}
func (r *wrappingRegisterer) Unregister(c Collector) bool {
if r.wrappedRegisterer == nil {
return false
}
return r.wrappedRegisterer.Unregister(&wrappingCollector{
wrappedCollector: c,
prefix: r.prefix,