vendor: update resumable dependency

Updates resumable hash implementation to Go 1.8 equivalent. This should
be a major speedup, since it includes a number of optimizations from Go
1.7.

Signed-off-by: Stephen J Day <stephen.day@docker.com>
pull/2206/head
Stephen J Day 2017-03-02 13:39:41 -08:00
parent 83f857ca12
commit f01bcc8f62
No known key found for this signature in database
GPG Key ID: 67B3DED84EDC823F
19 changed files with 1118 additions and 98 deletions

View File

@ -23,7 +23,7 @@ github.com/mitchellh/mapstructure 482a9fd5fa83e8c4e7817413b80f3eb8feec03ef
github.com/ncw/swift b964f2ca856aac39885e258ad25aec08d5f64ee6
github.com/spf13/cobra 312092086bed4968099259622145a0c9ae280064
github.com/spf13/pflag 5644820622454e71517561946e3d94b9f9db6842
github.com/stevvooe/resumable 51ad44105773cafcbe91927f70ac68e1bf78f8b4
github.com/stevvooe/resumable 2aaf90b2ceea5072cb503ef2a620b08ff3119870
github.com/xenolf/lego a9d8cec0e6563575e5868a005359ac97911b5985
github.com/yvasiyarov/go-metrics 57bccd1ccd43f94bb17fdd8bf3007059b802f85e
github.com/yvasiyarov/gorelic a9bba5b9ab508a086f9a12b8c51fab68478e2128

View File

@ -26,7 +26,15 @@
// functions.
package resumable
import "hash"
import (
"fmt"
"hash"
)
var (
// ErrBadState is returned if Restore fails post-unmarshaling validation.
ErrBadState = fmt.Errorf("bad hash state")
)
// Hash is the common interface implemented by all resumable hash functions.
type Hash interface {

View File

@ -2,8 +2,10 @@ package sha256
import (
"bytes"
"crypto"
"encoding/gob"
"github.com/stevvooe/resumable"
// import to ensure that our init function runs after the standard package
_ "crypto/sha256"
)
@ -18,10 +20,15 @@ func (d *digest) State() ([]byte, error) {
var buf bytes.Buffer
encoder := gob.NewEncoder(&buf)
function := crypto.SHA256
if d.is224 {
function = crypto.SHA224
}
// We encode this way so that we do not have
// to export these fields of the digest struct.
vals := []interface{}{
d.h, d.x, d.nx, d.len, d.is224,
d.h, d.x, d.nx, d.len, function,
}
for _, val := range vals {
@ -37,10 +44,12 @@ func (d *digest) State() ([]byte, error) {
func (d *digest) Restore(state []byte) error {
decoder := gob.NewDecoder(bytes.NewReader(state))
var function uint
// We decode this way so that we do not have
// to export these fields of the digest struct.
vals := []interface{}{
&d.h, &d.x, &d.nx, &d.len, &d.is224,
&d.h, &d.x, &d.nx, &d.len, &function,
}
for _, val := range vals {
@ -49,5 +58,14 @@ func (d *digest) Restore(state []byte) error {
}
}
switch crypto.Hash(function) {
case crypto.SHA224:
d.is224 = true
case crypto.SHA256:
d.is224 = false
default:
return resumable.ErrBadState
}
return nil
}

View File

@ -137,7 +137,7 @@ func (d0 *digest) Sum(in []byte) []byte {
func (d *digest) checkSum() [Size]byte {
len := d.len
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
// Padding. Add a 1 bit and 0 bits until 56 bytes mod 64.
var tmp [64]byte
tmp[0] = 0x80
if len%64 < 56 {

View File

@ -2,8 +2,6 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !386,!amd64
// SHA256 block step.
// In its own file so that a faster assembly or C version
// can be substituted easily.
@ -77,7 +75,7 @@ var _K = []uint32{
0xc67178f2,
}
func block(dig *digest, p []byte) {
func blockGeneric(dig *digest, p []byte) {
var w [64]uint32
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {

View File

@ -1,4 +1,4 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -141,7 +141,7 @@
MSGSCHEDULE1(index); \
SHA256ROUND(index, const, a, b, c, d, e, f, g, h)
TEXT ·block(SB),0,$296-12
TEXT ·block(SB),0,$296-16
MOVL p_base+4(FP), SI
MOVL p_len+8(FP), DX
SHRL $6, DX

View File

@ -1,4 +1,4 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -9,7 +9,18 @@
// The algorithm is detailed in FIPS 180-4:
//
// http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
//
// The avx2-version is described in an Intel White-Paper:
// "Fast SHA-256 Implementations on Intel Architecture Processors"
// To find it, surf to http://www.intel.com/p/en_US/embedded
// and search for that title.
// AVX2 version by Intel, same algorithm as code in Linux kernel:
// https://github.com/torvalds/linux/blob/master/arch/x86/crypto/sha256-avx2-asm.S
// by
// James Guilford <james.guilford@intel.com>
// Kirk Yap <kirk.s.yap@intel.com>
// Tim Chen <tim.c.chen@linux.intel.com>
// Wt = Mt; for 0 <= t <= 15
// Wt = SIGMA1(Wt-2) + SIGMA0(Wt-15) + Wt-16; for 16 <= t <= 63
//
@ -140,29 +151,442 @@
MSGSCHEDULE1(index); \
SHA256ROUND(index, const, a, b, c, d, e, f, g, h)
TEXT ·block(SB),0,$264-32
MOVQ p_base+8(FP), SI
MOVQ p_len+16(FP), DX
SHRQ $6, DX
SHLQ $6, DX
LEAQ (SI)(DX*1), DI
MOVQ DI, 256(SP)
CMPQ SI, DI
JEQ end
// Definitions for AVX2 version
MOVQ dig+0(FP), BP
MOVL (0*4)(BP), R8 // a = H0
MOVL (1*4)(BP), R9 // b = H1
MOVL (2*4)(BP), R10 // c = H2
MOVL (3*4)(BP), R11 // d = H3
MOVL (4*4)(BP), R12 // e = H4
MOVL (5*4)(BP), R13 // f = H5
MOVL (6*4)(BP), R14 // g = H6
MOVL (7*4)(BP), R15 // h = H7
// addm (mem), reg
// Add reg to mem using reg-mem add and store
#define addm(P1, P2) \
ADDL P2, P1; \
MOVL P1, P2
#define XDWORD0 Y4
#define XDWORD1 Y5
#define XDWORD2 Y6
#define XDWORD3 Y7
#define XWORD0 X4
#define XWORD1 X5
#define XWORD2 X6
#define XWORD3 X7
#define XTMP0 Y0
#define XTMP1 Y1
#define XTMP2 Y2
#define XTMP3 Y3
#define XTMP4 Y8
#define XTMP5 Y11
#define XFER Y9
#define BYTE_FLIP_MASK Y13 // mask to convert LE -> BE
#define X_BYTE_FLIP_MASK X13
#define NUM_BYTES DX
#define INP DI
#define CTX SI // Beginning of digest in memory (a, b, c, ... , h)
#define a AX
#define b BX
#define c CX
#define d R8
#define e DX
#define f R9
#define g R10
#define h R11
#define old_h R11
#define TBL BP
#define SRND SI // SRND is same register as CTX
#define T1 R12
#define y0 R13
#define y1 R14
#define y2 R15
#define y3 DI
// Offsets
#define XFER_SIZE 2*64*4
#define INP_END_SIZE 8
#define INP_SIZE 8
#define TMP_SIZE 4
#define _XFER 0
#define _INP_END _XFER + XFER_SIZE
#define _INP _INP_END + INP_END_SIZE
#define _TMP _INP + INP_SIZE
#define STACK_SIZE _TMP + TMP_SIZE
#define ROUND_AND_SCHED_N_0(disp, a, b, c, d, e, f, g, h, XDWORD0, XDWORD1, XDWORD2, XDWORD3) \
; \ // ############################# RND N + 0 ############################//
MOVL a, y3; \ // y3 = a // MAJA
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
; \
ADDL (disp + 0*4)(SP)(SRND*1), h; \ // h = k + w + h // disp = k + w
ORL c, y3; \ // y3 = a|c // MAJA
VPALIGNR $4, XDWORD2, XDWORD3, XTMP0; \ // XTMP0 = W[-7]
MOVL f, y2; \ // y2 = f // CH
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
XORL g, y2; \ // y2 = f^g // CH
VPADDD XDWORD0, XTMP0, XTMP0; \ // XTMP0 = W[-7] + W[-16] // y1 = (e >> 6) // S1
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
; \
ANDL e, y2; \ // y2 = (f^g)&e // CH
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
ADDL h, d; \ // d = k + w + h + d // --
; \
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
VPALIGNR $4, XDWORD0, XDWORD1, XTMP1; \ // XTMP1 = W[-15]
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
; \
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
VPSRLD $7, XTMP1, XTMP2; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL c, T1; \ // T1 = a&c // MAJB
; \
ADDL y0, y2; \ // y2 = S1 + CH // --
VPSLLD $(32-7), XTMP1, XTMP3; \
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
; \
ADDL y2, d; \ // d = k + w + h + d + S1 + CH = d + t1 // --
VPOR XTMP2, XTMP3, XTMP3; \ // XTMP3 = W[-15] ror 7
; \
VPSRLD $18, XTMP1, XTMP2; \
ADDL y2, h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
ADDL y3, h // h = t1 + S0 + MAJ // --
#define ROUND_AND_SCHED_N_1(disp, a, b, c, d, e, f, g, h, XDWORD0, XDWORD1, XDWORD2, XDWORD3) \
; \ // ################################### RND N + 1 ############################
; \
MOVL a, y3; \ // y3 = a // MAJA
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
ADDL (disp + 1*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
VPSRLD $3, XTMP1, XTMP4; \ // XTMP4 = W[-15] >> 3
MOVL f, y2; \ // y2 = f // CH
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
XORL g, y2; \ // y2 = f^g // CH
; \
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
ANDL e, y2; \ // y2 = (f^g)&e // CH
ADDL h, d; \ // d = k + w + h + d // --
; \
VPSLLD $(32-18), XTMP1, XTMP1; \
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
; \
VPXOR XTMP1, XTMP3, XTMP3; \
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
; \
VPXOR XTMP2, XTMP3, XTMP3; \ // XTMP3 = W[-15] ror 7 ^ W[-15] ror 18
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
VPXOR XTMP4, XTMP3, XTMP1; \ // XTMP1 = s0
VPSHUFD $0xFA, XDWORD3, XTMP2; \ // XTMP2 = W[-2] {BBAA}
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
; \
VPADDD XTMP1, XTMP0, XTMP0; \ // XTMP0 = W[-16] + W[-7] + s0
ADDL y2, d; \ // d = k + w + h + d + S1 + CH = d + t1 // --
ADDL y2, h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
ADDL y3, h; \ // h = t1 + S0 + MAJ // --
; \
VPSRLD $10, XTMP2, XTMP4 // XTMP4 = W[-2] >> 10 {BBAA}
#define ROUND_AND_SCHED_N_2(disp, a, b, c, d, e, f, g, h, XDWORD0, XDWORD1, XDWORD2, XDWORD3) \
; \ // ################################### RND N + 2 ############################
; \
MOVL a, y3; \ // y3 = a // MAJA
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
ADDL (disp + 2*4)(SP)(SRND*1), h; \ // h = k + w + h // --
; \
VPSRLQ $19, XTMP2, XTMP3; \ // XTMP3 = W[-2] ror 19 {xBxA}
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
ORL c, y3; \ // y3 = a|c // MAJA
MOVL f, y2; \ // y2 = f // CH
XORL g, y2; \ // y2 = f^g // CH
; \
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
VPSRLQ $17, XTMP2, XTMP2; \ // XTMP2 = W[-2] ror 17 {xBxA}
ANDL e, y2; \ // y2 = (f^g)&e // CH
; \
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
VPXOR XTMP3, XTMP2, XTMP2; \
ADDL h, d; \ // d = k + w + h + d // --
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
VPXOR XTMP2, XTMP4, XTMP4; \ // XTMP4 = s1 {xBxA}
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
; \
MOVL f, _TMP(SP); \
MOVQ $shuff_00BA<>(SB), f; \ // f is used to keep SHUF_00BA
VPSHUFB (f), XTMP4, XTMP4; \ // XTMP4 = s1 {00BA}
MOVL _TMP(SP), f; \ // f is restored
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
VPADDD XTMP4, XTMP0, XTMP0; \ // XTMP0 = {..., ..., W[1], W[0]}
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
VPSHUFD $80, XTMP0, XTMP2; \ // XTMP2 = W[-2] {DDCC}
; \
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
ADDL y2, d; \ // d = k + w + h + d + S1 + CH = d + t1 // --
ADDL y2, h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
; \
ADDL y3, h // h = t1 + S0 + MAJ // --
#define ROUND_AND_SCHED_N_3(disp, a, b, c, d, e, f, g, h, XDWORD0, XDWORD1, XDWORD2, XDWORD3) \
; \ // ################################### RND N + 3 ############################
; \
MOVL a, y3; \ // y3 = a // MAJA
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
ADDL (disp + 3*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
VPSRLD $10, XTMP2, XTMP5; \ // XTMP5 = W[-2] >> 10 {DDCC}
MOVL f, y2; \ // y2 = f // CH
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
XORL g, y2; \ // y2 = f^g // CH
; \
VPSRLQ $19, XTMP2, XTMP3; \ // XTMP3 = W[-2] ror 19 {xDxC}
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
ANDL e, y2; \ // y2 = (f^g)&e // CH
ADDL h, d; \ // d = k + w + h + d // --
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
; \
VPSRLQ $17, XTMP2, XTMP2; \ // XTMP2 = W[-2] ror 17 {xDxC}
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
; \
VPXOR XTMP3, XTMP2, XTMP2; \
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
VPXOR XTMP2, XTMP5, XTMP5; \ // XTMP5 = s1 {xDxC}
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
ADDL y2, d; \ // d = k + w + h + d + S1 + CH = d + t1 // --
; \
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
; \
MOVL f, _TMP(SP); \ // Save f
MOVQ $shuff_DC00<>(SB), f; \ // SHUF_00DC
VPSHUFB (f), XTMP5, XTMP5; \ // XTMP5 = s1 {DC00}
MOVL _TMP(SP), f; \ // Restore f
; \
VPADDD XTMP0, XTMP5, XDWORD0; \ // XDWORD0 = {W[3], W[2], W[1], W[0]}
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL c, T1; \ // T1 = a&c // MAJB
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
; \
ADDL y1, h; \ // h = k + w + h + S0 // --
ADDL y2, h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
ADDL y3, h // h = t1 + S0 + MAJ // --
#define DO_ROUND_N_0(disp, a, b, c, d, e, f, g, h, old_h) \
; \ // ################################### RND N + 0 ###########################
MOVL f, y2; \ // y2 = f // CH
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
XORL g, y2; \ // y2 = f^g // CH
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
ANDL e, y2; \ // y2 = (f^g)&e // CH
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
MOVL a, y3; \ // y3 = a // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
ADDL (disp + 0*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
ADDL h, d; \ // d = k + w + h + d // --
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
ADDL y2, d // d = k + w + h + d + S1 + CH = d + t1 // --
#define DO_ROUND_N_1(disp, a, b, c, d, e, f, g, h, old_h) \
; \ // ################################### RND N + 1 ###########################
ADDL y2, old_h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0 // --
MOVL f, y2; \ // y2 = f // CH
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
XORL g, y2; \ // y2 = f^g // CH
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
ANDL e, y2; \ // y2 = (f^g)&e // CH
ADDL y3, old_h; \ // h = t1 + S0 + MAJ // --
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
MOVL a, y3; \ // y3 = a // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
ADDL (disp + 1*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
ADDL h, d; \ // d = k + w + h + d // --
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
; \
ADDL y2, d // d = k + w + h + d + S1 + CH = d + t1 // --
#define DO_ROUND_N_2(disp, a, b, c, d, e, f, g, h, old_h) \
; \ // ################################### RND N + 2 ##############################
ADDL y2, old_h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
MOVL f, y2; \ // y2 = f // CH
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
XORL g, y2; \ // y2 = f^g // CH
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
ANDL e, y2; \ // y2 = (f^g)&e // CH
ADDL y3, old_h; \ // h = t1 + S0 + MAJ // --
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
MOVL a, y3; \ // y3 = a // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
ADDL (disp + 2*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
ADDL h, d; \ // d = k + w + h + d // --
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
; \
ADDL y2, d // d = k + w + h + d + S1 + CH = d + t1 // --
#define DO_ROUND_N_3(disp, a, b, c, d, e, f, g, h, old_h) \
; \ // ################################### RND N + 3 ###########################
ADDL y2, old_h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
MOVL f, y2; \ // y2 = f // CH
RORXL $25, e, y0; \ // y0 = e >> 25 // S1A
RORXL $11, e, y1; \ // y1 = e >> 11 // S1B
XORL g, y2; \ // y2 = f^g // CH
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) // S1
RORXL $6, e, y1; \ // y1 = (e >> 6) // S1
ANDL e, y2; \ // y2 = (f^g)&e // CH
ADDL y3, old_h; \ // h = t1 + S0 + MAJ // --
; \
XORL y1, y0; \ // y0 = (e>>25) ^ (e>>11) ^ (e>>6) // S1
RORXL $13, a, T1; \ // T1 = a >> 13 // S0B
XORL g, y2; \ // y2 = CH = ((f^g)&e)^g // CH
RORXL $22, a, y1; \ // y1 = a >> 22 // S0A
MOVL a, y3; \ // y3 = a // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) // S0
RORXL $2, a, T1; \ // T1 = (a >> 2) // S0
ADDL (disp + 3*4)(SP)(SRND*1), h; \ // h = k + w + h // --
ORL c, y3; \ // y3 = a|c // MAJA
; \
XORL T1, y1; \ // y1 = (a>>22) ^ (a>>13) ^ (a>>2) // S0
MOVL a, T1; \ // T1 = a // MAJB
ANDL b, y3; \ // y3 = (a|c)&b // MAJA
ANDL c, T1; \ // T1 = a&c // MAJB
ADDL y0, y2; \ // y2 = S1 + CH // --
; \
ADDL h, d; \ // d = k + w + h + d // --
ORL T1, y3; \ // y3 = MAJ = (a|c)&b)|(a&c) // MAJ
ADDL y1, h; \ // h = k + w + h + S0 // --
; \
ADDL y2, d; \ // d = k + w + h + d + S1 + CH = d + t1 // --
; \
ADDL y2, h; \ // h = k + w + h + S0 + S1 + CH = t1 + S0// --
; \
ADDL y3, h // h = t1 + S0 + MAJ // --
TEXT ·block(SB), 0, $536-32
CMPB runtime·support_avx2(SB), $0
JE noavx2bmi2
CMPB runtime·support_bmi2(SB), $1 // check for RORXL instruction
JE avx2
noavx2bmi2:
MOVQ p_base+8(FP), SI
MOVQ p_len+16(FP), DX
SHRQ $6, DX
SHLQ $6, DX
LEAQ (SI)(DX*1), DI
MOVQ DI, 256(SP)
CMPQ SI, DI
JEQ end
MOVQ dig+0(FP), BP
MOVL (0*4)(BP), R8 // a = H0
MOVL (1*4)(BP), R9 // b = H1
MOVL (2*4)(BP), R10 // c = H2
MOVL (3*4)(BP), R11 // d = H3
MOVL (4*4)(BP), R12 // e = H4
MOVL (5*4)(BP), R13 // f = H5
MOVL (6*4)(BP), R14 // g = H6
MOVL (7*4)(BP), R15 // h = H7
loop:
MOVQ SP, BP // message schedule
MOVQ SP, BP
SHA256ROUND0(0, 0x428a2f98, R8, R9, R10, R11, R12, R13, R14, R15)
SHA256ROUND0(1, 0x71374491, R15, R8, R9, R10, R11, R12, R13, R14)
@ -230,27 +654,391 @@ loop:
SHA256ROUND1(62, 0xbef9a3f7, R10, R11, R12, R13, R14, R15, R8, R9)
SHA256ROUND1(63, 0xc67178f2, R9, R10, R11, R12, R13, R14, R15, R8)
MOVQ dig+0(FP), BP
ADDL (0*4)(BP), R8 // H0 = a + H0
MOVL R8, (0*4)(BP)
ADDL (1*4)(BP), R9 // H1 = b + H1
MOVL R9, (1*4)(BP)
ADDL (2*4)(BP), R10 // H2 = c + H2
MOVL R10, (2*4)(BP)
ADDL (3*4)(BP), R11 // H3 = d + H3
MOVL R11, (3*4)(BP)
ADDL (4*4)(BP), R12 // H4 = e + H4
MOVL R12, (4*4)(BP)
ADDL (5*4)(BP), R13 // H5 = f + H5
MOVL R13, (5*4)(BP)
ADDL (6*4)(BP), R14 // H6 = g + H6
MOVL R14, (6*4)(BP)
ADDL (7*4)(BP), R15 // H7 = h + H7
MOVL R15, (7*4)(BP)
MOVQ dig+0(FP), BP
ADDL (0*4)(BP), R8 // H0 = a + H0
MOVL R8, (0*4)(BP)
ADDL (1*4)(BP), R9 // H1 = b + H1
MOVL R9, (1*4)(BP)
ADDL (2*4)(BP), R10 // H2 = c + H2
MOVL R10, (2*4)(BP)
ADDL (3*4)(BP), R11 // H3 = d + H3
MOVL R11, (3*4)(BP)
ADDL (4*4)(BP), R12 // H4 = e + H4
MOVL R12, (4*4)(BP)
ADDL (5*4)(BP), R13 // H5 = f + H5
MOVL R13, (5*4)(BP)
ADDL (6*4)(BP), R14 // H6 = g + H6
MOVL R14, (6*4)(BP)
ADDL (7*4)(BP), R15 // H7 = h + H7
MOVL R15, (7*4)(BP)
ADDQ $64, SI
CMPQ SI, 256(SP)
JB loop
ADDQ $64, SI
CMPQ SI, 256(SP)
JB loop
end:
RET
avx2:
MOVQ dig+0(FP), CTX // d.h[8]
MOVQ p_base+8(FP), INP
MOVQ p_len+16(FP), NUM_BYTES
LEAQ -64(INP)(NUM_BYTES*1), NUM_BYTES // Pointer to the last block
MOVQ NUM_BYTES, _INP_END(SP)
CMPQ NUM_BYTES, INP
JE avx2_only_one_block
// Load initial digest
MOVL 0(CTX), a // a = H0
MOVL 4(CTX), b // b = H1
MOVL 8(CTX), c // c = H2
MOVL 12(CTX), d // d = H3
MOVL 16(CTX), e // e = H4
MOVL 20(CTX), f // f = H5
MOVL 24(CTX), g // g = H6
MOVL 28(CTX), h // h = H7
avx2_loop0: // at each iteration works with one block (512 bit)
VMOVDQU (0*32)(INP), XTMP0
VMOVDQU (1*32)(INP), XTMP1
VMOVDQU (2*32)(INP), XTMP2
VMOVDQU (3*32)(INP), XTMP3
MOVQ $flip_mask<>(SB), BP // BYTE_FLIP_MASK
VMOVDQU (BP), BYTE_FLIP_MASK
// Apply Byte Flip Mask: LE -> BE
VPSHUFB BYTE_FLIP_MASK, XTMP0, XTMP0
VPSHUFB BYTE_FLIP_MASK, XTMP1, XTMP1
VPSHUFB BYTE_FLIP_MASK, XTMP2, XTMP2
VPSHUFB BYTE_FLIP_MASK, XTMP3, XTMP3
// Transpose data into high/low parts
VPERM2I128 $0x20, XTMP2, XTMP0, XDWORD0 // w3, w2, w1, w0
VPERM2I128 $0x31, XTMP2, XTMP0, XDWORD1 // w7, w6, w5, w4
VPERM2I128 $0x20, XTMP3, XTMP1, XDWORD2 // w11, w10, w9, w8
VPERM2I128 $0x31, XTMP3, XTMP1, XDWORD3 // w15, w14, w13, w12
MOVQ $K256<>(SB), TBL // Loading address of table with round-specific constants
avx2_last_block_enter:
ADDQ $64, INP
MOVQ INP, _INP(SP)
XORQ SRND, SRND
avx2_loop1: // for w0 - w47
// Do 4 rounds and scheduling
VPADDD 0*32(TBL)(SRND*1), XDWORD0, XFER
VMOVDQU XFER, (_XFER + 0*32)(SP)(SRND*1)
ROUND_AND_SCHED_N_0(_XFER + 0*32, a, b, c, d, e, f, g, h, XDWORD0, XDWORD1, XDWORD2, XDWORD3)
ROUND_AND_SCHED_N_1(_XFER + 0*32, h, a, b, c, d, e, f, g, XDWORD0, XDWORD1, XDWORD2, XDWORD3)
ROUND_AND_SCHED_N_2(_XFER + 0*32, g, h, a, b, c, d, e, f, XDWORD0, XDWORD1, XDWORD2, XDWORD3)
ROUND_AND_SCHED_N_3(_XFER + 0*32, f, g, h, a, b, c, d, e, XDWORD0, XDWORD1, XDWORD2, XDWORD3)
// Do 4 rounds and scheduling
VPADDD 1*32(TBL)(SRND*1), XDWORD1, XFER
VMOVDQU XFER, (_XFER + 1*32)(SP)(SRND*1)
ROUND_AND_SCHED_N_0(_XFER + 1*32, e, f, g, h, a, b, c, d, XDWORD1, XDWORD2, XDWORD3, XDWORD0)
ROUND_AND_SCHED_N_1(_XFER + 1*32, d, e, f, g, h, a, b, c, XDWORD1, XDWORD2, XDWORD3, XDWORD0)
ROUND_AND_SCHED_N_2(_XFER + 1*32, c, d, e, f, g, h, a, b, XDWORD1, XDWORD2, XDWORD3, XDWORD0)
ROUND_AND_SCHED_N_3(_XFER + 1*32, b, c, d, e, f, g, h, a, XDWORD1, XDWORD2, XDWORD3, XDWORD0)
// Do 4 rounds and scheduling
VPADDD 2*32(TBL)(SRND*1), XDWORD2, XFER
VMOVDQU XFER, (_XFER + 2*32)(SP)(SRND*1)
ROUND_AND_SCHED_N_0(_XFER + 2*32, a, b, c, d, e, f, g, h, XDWORD2, XDWORD3, XDWORD0, XDWORD1)
ROUND_AND_SCHED_N_1(_XFER + 2*32, h, a, b, c, d, e, f, g, XDWORD2, XDWORD3, XDWORD0, XDWORD1)
ROUND_AND_SCHED_N_2(_XFER + 2*32, g, h, a, b, c, d, e, f, XDWORD2, XDWORD3, XDWORD0, XDWORD1)
ROUND_AND_SCHED_N_3(_XFER + 2*32, f, g, h, a, b, c, d, e, XDWORD2, XDWORD3, XDWORD0, XDWORD1)
// Do 4 rounds and scheduling
VPADDD 3*32(TBL)(SRND*1), XDWORD3, XFER
VMOVDQU XFER, (_XFER + 3*32)(SP)(SRND*1)
ROUND_AND_SCHED_N_0(_XFER + 3*32, e, f, g, h, a, b, c, d, XDWORD3, XDWORD0, XDWORD1, XDWORD2)
ROUND_AND_SCHED_N_1(_XFER + 3*32, d, e, f, g, h, a, b, c, XDWORD3, XDWORD0, XDWORD1, XDWORD2)
ROUND_AND_SCHED_N_2(_XFER + 3*32, c, d, e, f, g, h, a, b, XDWORD3, XDWORD0, XDWORD1, XDWORD2)
ROUND_AND_SCHED_N_3(_XFER + 3*32, b, c, d, e, f, g, h, a, XDWORD3, XDWORD0, XDWORD1, XDWORD2)
ADDQ $4*32, SRND
CMPQ SRND, $3*4*32
JB avx2_loop1
avx2_loop2:
// w48 - w63 processed with no scheduliung (last 16 rounds)
VPADDD 0*32(TBL)(SRND*1), XDWORD0, XFER
VMOVDQU XFER, (_XFER + 0*32)(SP)(SRND*1)
DO_ROUND_N_0(_XFER + 0*32, a, b, c, d, e, f, g, h, h)
DO_ROUND_N_1(_XFER + 0*32, h, a, b, c, d, e, f, g, h)
DO_ROUND_N_2(_XFER + 0*32, g, h, a, b, c, d, e, f, g)
DO_ROUND_N_3(_XFER + 0*32, f, g, h, a, b, c, d, e, f)
VPADDD 1*32(TBL)(SRND*1), XDWORD1, XFER
VMOVDQU XFER, (_XFER + 1*32)(SP)(SRND*1)
DO_ROUND_N_0(_XFER + 1*32, e, f, g, h, a, b, c, d, e)
DO_ROUND_N_1(_XFER + 1*32, d, e, f, g, h, a, b, c, d)
DO_ROUND_N_2(_XFER + 1*32, c, d, e, f, g, h, a, b, c)
DO_ROUND_N_3(_XFER + 1*32, b, c, d, e, f, g, h, a, b)
ADDQ $2*32, SRND
VMOVDQU XDWORD2, XDWORD0
VMOVDQU XDWORD3, XDWORD1
CMPQ SRND, $4*4*32
JB avx2_loop2
MOVQ dig+0(FP), CTX // d.h[8]
MOVQ _INP(SP), INP
addm( 0(CTX), a)
addm( 4(CTX), b)
addm( 8(CTX), c)
addm( 12(CTX), d)
addm( 16(CTX), e)
addm( 20(CTX), f)
addm( 24(CTX), g)
addm( 28(CTX), h)
CMPQ _INP_END(SP), INP
JB done_hash
XORQ SRND, SRND
avx2_loop3: // Do second block using previously scheduled results
DO_ROUND_N_0(_XFER + 0*32 + 16, a, b, c, d, e, f, g, h, a)
DO_ROUND_N_1(_XFER + 0*32 + 16, h, a, b, c, d, e, f, g, h)
DO_ROUND_N_2(_XFER + 0*32 + 16, g, h, a, b, c, d, e, f, g)
DO_ROUND_N_3(_XFER + 0*32 + 16, f, g, h, a, b, c, d, e, f)
DO_ROUND_N_0(_XFER + 1*32 + 16, e, f, g, h, a, b, c, d, e)
DO_ROUND_N_1(_XFER + 1*32 + 16, d, e, f, g, h, a, b, c, d)
DO_ROUND_N_2(_XFER + 1*32 + 16, c, d, e, f, g, h, a, b, c)
DO_ROUND_N_3(_XFER + 1*32 + 16, b, c, d, e, f, g, h, a, b)
ADDQ $2*32, SRND
CMPQ SRND, $4*4*32
JB avx2_loop3
MOVQ dig+0(FP), CTX // d.h[8]
MOVQ _INP(SP), INP
ADDQ $64, INP
addm( 0(CTX), a)
addm( 4(CTX), b)
addm( 8(CTX), c)
addm( 12(CTX), d)
addm( 16(CTX), e)
addm( 20(CTX), f)
addm( 24(CTX), g)
addm( 28(CTX), h)
CMPQ _INP_END(SP), INP
JA avx2_loop0
JB done_hash
avx2_do_last_block:
VMOVDQU 0(INP), XWORD0
VMOVDQU 16(INP), XWORD1
VMOVDQU 32(INP), XWORD2
VMOVDQU 48(INP), XWORD3
MOVQ $flip_mask<>(SB), BP
VMOVDQU (BP), X_BYTE_FLIP_MASK
VPSHUFB X_BYTE_FLIP_MASK, XWORD0, XWORD0
VPSHUFB X_BYTE_FLIP_MASK, XWORD1, XWORD1
VPSHUFB X_BYTE_FLIP_MASK, XWORD2, XWORD2
VPSHUFB X_BYTE_FLIP_MASK, XWORD3, XWORD3
MOVQ $K256<>(SB), TBL
JMP avx2_last_block_enter
avx2_only_one_block:
// Load initial digest
MOVL 0(CTX), a // a = H0
MOVL 4(CTX), b // b = H1
MOVL 8(CTX), c // c = H2
MOVL 12(CTX), d // d = H3
MOVL 16(CTX), e // e = H4
MOVL 20(CTX), f // f = H5
MOVL 24(CTX), g // g = H6
MOVL 28(CTX), h // h = H7
JMP avx2_do_last_block
done_hash:
VZEROUPPER
RET
// shuffle byte order from LE to BE
DATA flip_mask<>+0x00(SB)/8, $0x0405060700010203
DATA flip_mask<>+0x08(SB)/8, $0x0c0d0e0f08090a0b
DATA flip_mask<>+0x10(SB)/8, $0x0405060700010203
DATA flip_mask<>+0x18(SB)/8, $0x0c0d0e0f08090a0b
GLOBL flip_mask<>(SB), 8, $32
// shuffle xBxA -> 00BA
DATA shuff_00BA<>+0x00(SB)/8, $0x0b0a090803020100
DATA shuff_00BA<>+0x08(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shuff_00BA<>+0x10(SB)/8, $0x0b0a090803020100
DATA shuff_00BA<>+0x18(SB)/8, $0xFFFFFFFFFFFFFFFF
GLOBL shuff_00BA<>(SB), 8, $32
// shuffle xDxC -> DC00
DATA shuff_DC00<>+0x00(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shuff_DC00<>+0x08(SB)/8, $0x0b0a090803020100
DATA shuff_DC00<>+0x10(SB)/8, $0xFFFFFFFFFFFFFFFF
DATA shuff_DC00<>+0x18(SB)/8, $0x0b0a090803020100
GLOBL shuff_DC00<>(SB), 8, $32
// Round specific constants
DATA K256<>+0x00(SB)/4, $0x428a2f98 // k1
DATA K256<>+0x04(SB)/4, $0x71374491 // k2
DATA K256<>+0x08(SB)/4, $0xb5c0fbcf // k3
DATA K256<>+0x0c(SB)/4, $0xe9b5dba5 // k4
DATA K256<>+0x10(SB)/4, $0x428a2f98 // k1
DATA K256<>+0x14(SB)/4, $0x71374491 // k2
DATA K256<>+0x18(SB)/4, $0xb5c0fbcf // k3
DATA K256<>+0x1c(SB)/4, $0xe9b5dba5 // k4
DATA K256<>+0x20(SB)/4, $0x3956c25b // k5 - k8
DATA K256<>+0x24(SB)/4, $0x59f111f1
DATA K256<>+0x28(SB)/4, $0x923f82a4
DATA K256<>+0x2c(SB)/4, $0xab1c5ed5
DATA K256<>+0x30(SB)/4, $0x3956c25b
DATA K256<>+0x34(SB)/4, $0x59f111f1
DATA K256<>+0x38(SB)/4, $0x923f82a4
DATA K256<>+0x3c(SB)/4, $0xab1c5ed5
DATA K256<>+0x40(SB)/4, $0xd807aa98 // k9 - k12
DATA K256<>+0x44(SB)/4, $0x12835b01
DATA K256<>+0x48(SB)/4, $0x243185be
DATA K256<>+0x4c(SB)/4, $0x550c7dc3
DATA K256<>+0x50(SB)/4, $0xd807aa98
DATA K256<>+0x54(SB)/4, $0x12835b01
DATA K256<>+0x58(SB)/4, $0x243185be
DATA K256<>+0x5c(SB)/4, $0x550c7dc3
DATA K256<>+0x60(SB)/4, $0x72be5d74 // k13 - k16
DATA K256<>+0x64(SB)/4, $0x80deb1fe
DATA K256<>+0x68(SB)/4, $0x9bdc06a7
DATA K256<>+0x6c(SB)/4, $0xc19bf174
DATA K256<>+0x70(SB)/4, $0x72be5d74
DATA K256<>+0x74(SB)/4, $0x80deb1fe
DATA K256<>+0x78(SB)/4, $0x9bdc06a7
DATA K256<>+0x7c(SB)/4, $0xc19bf174
DATA K256<>+0x80(SB)/4, $0xe49b69c1 // k17 - k20
DATA K256<>+0x84(SB)/4, $0xefbe4786
DATA K256<>+0x88(SB)/4, $0x0fc19dc6
DATA K256<>+0x8c(SB)/4, $0x240ca1cc
DATA K256<>+0x90(SB)/4, $0xe49b69c1
DATA K256<>+0x94(SB)/4, $0xefbe4786
DATA K256<>+0x98(SB)/4, $0x0fc19dc6
DATA K256<>+0x9c(SB)/4, $0x240ca1cc
DATA K256<>+0xa0(SB)/4, $0x2de92c6f // k21 - k24
DATA K256<>+0xa4(SB)/4, $0x4a7484aa
DATA K256<>+0xa8(SB)/4, $0x5cb0a9dc
DATA K256<>+0xac(SB)/4, $0x76f988da
DATA K256<>+0xb0(SB)/4, $0x2de92c6f
DATA K256<>+0xb4(SB)/4, $0x4a7484aa
DATA K256<>+0xb8(SB)/4, $0x5cb0a9dc
DATA K256<>+0xbc(SB)/4, $0x76f988da
DATA K256<>+0xc0(SB)/4, $0x983e5152 // k25 - k28
DATA K256<>+0xc4(SB)/4, $0xa831c66d
DATA K256<>+0xc8(SB)/4, $0xb00327c8
DATA K256<>+0xcc(SB)/4, $0xbf597fc7
DATA K256<>+0xd0(SB)/4, $0x983e5152
DATA K256<>+0xd4(SB)/4, $0xa831c66d
DATA K256<>+0xd8(SB)/4, $0xb00327c8
DATA K256<>+0xdc(SB)/4, $0xbf597fc7
DATA K256<>+0xe0(SB)/4, $0xc6e00bf3 // k29 - k32
DATA K256<>+0xe4(SB)/4, $0xd5a79147
DATA K256<>+0xe8(SB)/4, $0x06ca6351
DATA K256<>+0xec(SB)/4, $0x14292967
DATA K256<>+0xf0(SB)/4, $0xc6e00bf3
DATA K256<>+0xf4(SB)/4, $0xd5a79147
DATA K256<>+0xf8(SB)/4, $0x06ca6351
DATA K256<>+0xfc(SB)/4, $0x14292967
DATA K256<>+0x100(SB)/4, $0x27b70a85
DATA K256<>+0x104(SB)/4, $0x2e1b2138
DATA K256<>+0x108(SB)/4, $0x4d2c6dfc
DATA K256<>+0x10c(SB)/4, $0x53380d13
DATA K256<>+0x110(SB)/4, $0x27b70a85
DATA K256<>+0x114(SB)/4, $0x2e1b2138
DATA K256<>+0x118(SB)/4, $0x4d2c6dfc
DATA K256<>+0x11c(SB)/4, $0x53380d13
DATA K256<>+0x120(SB)/4, $0x650a7354
DATA K256<>+0x124(SB)/4, $0x766a0abb
DATA K256<>+0x128(SB)/4, $0x81c2c92e
DATA K256<>+0x12c(SB)/4, $0x92722c85
DATA K256<>+0x130(SB)/4, $0x650a7354
DATA K256<>+0x134(SB)/4, $0x766a0abb
DATA K256<>+0x138(SB)/4, $0x81c2c92e
DATA K256<>+0x13c(SB)/4, $0x92722c85
DATA K256<>+0x140(SB)/4, $0xa2bfe8a1
DATA K256<>+0x144(SB)/4, $0xa81a664b
DATA K256<>+0x148(SB)/4, $0xc24b8b70
DATA K256<>+0x14c(SB)/4, $0xc76c51a3
DATA K256<>+0x150(SB)/4, $0xa2bfe8a1
DATA K256<>+0x154(SB)/4, $0xa81a664b
DATA K256<>+0x158(SB)/4, $0xc24b8b70
DATA K256<>+0x15c(SB)/4, $0xc76c51a3
DATA K256<>+0x160(SB)/4, $0xd192e819
DATA K256<>+0x164(SB)/4, $0xd6990624
DATA K256<>+0x168(SB)/4, $0xf40e3585
DATA K256<>+0x16c(SB)/4, $0x106aa070
DATA K256<>+0x170(SB)/4, $0xd192e819
DATA K256<>+0x174(SB)/4, $0xd6990624
DATA K256<>+0x178(SB)/4, $0xf40e3585
DATA K256<>+0x17c(SB)/4, $0x106aa070
DATA K256<>+0x180(SB)/4, $0x19a4c116
DATA K256<>+0x184(SB)/4, $0x1e376c08
DATA K256<>+0x188(SB)/4, $0x2748774c
DATA K256<>+0x18c(SB)/4, $0x34b0bcb5
DATA K256<>+0x190(SB)/4, $0x19a4c116
DATA K256<>+0x194(SB)/4, $0x1e376c08
DATA K256<>+0x198(SB)/4, $0x2748774c
DATA K256<>+0x19c(SB)/4, $0x34b0bcb5
DATA K256<>+0x1a0(SB)/4, $0x391c0cb3
DATA K256<>+0x1a4(SB)/4, $0x4ed8aa4a
DATA K256<>+0x1a8(SB)/4, $0x5b9cca4f
DATA K256<>+0x1ac(SB)/4, $0x682e6ff3
DATA K256<>+0x1b0(SB)/4, $0x391c0cb3
DATA K256<>+0x1b4(SB)/4, $0x4ed8aa4a
DATA K256<>+0x1b8(SB)/4, $0x5b9cca4f
DATA K256<>+0x1bc(SB)/4, $0x682e6ff3
DATA K256<>+0x1c0(SB)/4, $0x748f82ee
DATA K256<>+0x1c4(SB)/4, $0x78a5636f
DATA K256<>+0x1c8(SB)/4, $0x84c87814
DATA K256<>+0x1cc(SB)/4, $0x8cc70208
DATA K256<>+0x1d0(SB)/4, $0x748f82ee
DATA K256<>+0x1d4(SB)/4, $0x78a5636f
DATA K256<>+0x1d8(SB)/4, $0x84c87814
DATA K256<>+0x1dc(SB)/4, $0x8cc70208
DATA K256<>+0x1e0(SB)/4, $0x90befffa
DATA K256<>+0x1e4(SB)/4, $0xa4506ceb
DATA K256<>+0x1e8(SB)/4, $0xbef9a3f7
DATA K256<>+0x1ec(SB)/4, $0xc67178f2
DATA K256<>+0x1f0(SB)/4, $0x90befffa
DATA K256<>+0x1f4(SB)/4, $0xa4506ceb
DATA K256<>+0x1f8(SB)/4, $0xbef9a3f7
DATA K256<>+0x1fc(SB)/4, $0xc67178f2
GLOBL K256<>(SB), (NOPTR + RODATA), $512

View File

@ -1,8 +1,8 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386 amd64
// +build 386 amd64 s390x ppc64le
package sha256

View File

@ -0,0 +1,9 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!386,!s390x,!ppc64le
package sha256
var block = blockGeneric

View File

@ -0,0 +1,12 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha256
// featureCheck reports whether the CPU supports the
// SHA256 compute intermediate message digest (KIMD)
// function code.
func featureCheck() bool
var useAsm = featureCheck()

View File

@ -0,0 +1,34 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// func featureCheck() bool
TEXT ·featureCheck(SB),NOSPLIT,$16-1
LA tmp-16(SP), R1
XOR R0, R0 // query function code is 0
WORD $0xB93E0006 // KIMD (R6 is ignored)
MOVBZ tmp-16(SP), R4 // get the first byte
AND $0x20, R4 // bit 2 (big endian) for SHA256
CMPBEQ R4, $0, nosha256
MOVB $1, ret+0(FP)
RET
nosha256:
MOVB $0, ret+0(FP)
RET
// func block(dig *digest, p []byte)
TEXT ·block(SB),NOSPLIT,$0-32
MOVBZ ·useAsm(SB), R4
LMG dig+0(FP), R1, R3 // R2 = &p[0], R3 = len(p)
CMPBNE R4, $1, generic
MOVBZ $2, R0 // SHA256 function code
loop:
WORD $0xB93E0002 // KIMD R2
BVS loop // continue if interrupted
done:
XOR R0, R0 // restore R0
RET
generic:
BR ·blockGeneric(SB)

View File

@ -2,8 +2,11 @@ package sha512
import (
"bytes"
"crypto"
"encoding/gob"
"github.com/stevvooe/resumable"
// import to ensure that our init function runs after the standard package
_ "crypto/sha512"
)
@ -21,7 +24,7 @@ func (d *digest) State() ([]byte, error) {
// We encode this way so that we do not have
// to export these fields of the digest struct.
vals := []interface{}{
d.h, d.x, d.nx, d.len, d.is384,
d.h, d.x, d.nx, d.len, d.function,
}
for _, val := range vals {
@ -40,7 +43,7 @@ func (d *digest) Restore(state []byte) error {
// We decode this way so that we do not have
// to export these fields of the digest struct.
vals := []interface{}{
&d.h, &d.x, &d.nx, &d.len, &d.is384,
&d.h, &d.x, &d.nx, &d.len, &d.function,
}
for _, val := range vals {
@ -49,5 +52,12 @@ func (d *digest) Restore(state []byte) error {
}
}
switch d.function {
case crypto.SHA384, crypto.SHA512, crypto.SHA512_224, crypto.SHA512_256:
break
default:
return resumable.ErrBadState
}
return nil
}

View File

@ -2,8 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sha512 implements the SHA384 and SHA512 hash algorithms as defined
// in FIPS 180-2.
// Package sha512 implements the SHA-384, SHA-512, SHA-512/224, and SHA-512/256
// hash algorithms as defined in FIPS 180-4.
package sha512
import (
@ -14,16 +14,27 @@ import (
func init() {
crypto.RegisterHash(crypto.SHA384, New384)
crypto.RegisterHash(crypto.SHA512, New)
crypto.RegisterHash(crypto.SHA512_224, New512_224)
crypto.RegisterHash(crypto.SHA512_256, New512_256)
}
// The size of a SHA512 checksum in bytes.
const Size = 64
const (
// Size is the size, in bytes, of a SHA-512 checksum.
Size = 64
// The size of a SHA384 checksum in bytes.
const Size384 = 48
// Size224 is the size, in bytes, of a SHA-512/224 checksum.
Size224 = 28
// The blocksize of SHA512 and SHA384 in bytes.
const BlockSize = 128
// Size256 is the size, in bytes, of a SHA-512/256 checksum.
Size256 = 32
// Size384 is the size, in bytes, of a SHA-384 checksum.
Size384 = 48
// BlockSize is the block size, in bytes, of the SHA-512/224,
// SHA-512/256, SHA-384 and SHA-512 hash functions.
BlockSize = 128
)
const (
chunk = 128
@ -35,6 +46,22 @@ const (
init5 = 0x9b05688c2b3e6c1f
init6 = 0x1f83d9abfb41bd6b
init7 = 0x5be0cd19137e2179
init0_224 = 0x8c3d37c819544da2
init1_224 = 0x73e1996689dcd4d6
init2_224 = 0x1dfab7ae32ff9c82
init3_224 = 0x679dd514582f9fcf
init4_224 = 0x0f6d2b697bd44da8
init5_224 = 0x77e36f7304c48942
init6_224 = 0x3f9d85a86a1d36c8
init7_224 = 0x1112e6ad91d692a1
init0_256 = 0x22312194fc2bf72c
init1_256 = 0x9f555fa3c84c64c2
init2_256 = 0x2393b86b6f53b151
init3_256 = 0x963877195940eabd
init4_256 = 0x96283ee2a88effe3
init5_256 = 0xbe5e1e2553863992
init6_256 = 0x2b0199fc2c85b8aa
init7_256 = 0x0eb72ddc81c52ca2
init0_384 = 0xcbbb9d5dc1059ed8
init1_384 = 0x629a292a367cd507
init2_384 = 0x9159015a3070dd17
@ -47,24 +74,16 @@ const (
// digest represents the partial evaluation of a checksum.
type digest struct {
h [8]uint64
x [chunk]byte
nx int
len uint64
is384 bool // mark if this digest is SHA-384
h [8]uint64
x [chunk]byte
nx int
len uint64
function crypto.Hash
}
func (d *digest) Reset() {
if !d.is384 {
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
} else {
switch d.function {
case crypto.SHA384:
d.h[0] = init0_384
d.h[1] = init1_384
d.h[2] = init2_384
@ -73,31 +92,77 @@ func (d *digest) Reset() {
d.h[5] = init5_384
d.h[6] = init6_384
d.h[7] = init7_384
case crypto.SHA512_224:
d.h[0] = init0_224
d.h[1] = init1_224
d.h[2] = init2_224
d.h[3] = init3_224
d.h[4] = init4_224
d.h[5] = init5_224
d.h[6] = init6_224
d.h[7] = init7_224
case crypto.SHA512_256:
d.h[0] = init0_256
d.h[1] = init1_256
d.h[2] = init2_256
d.h[3] = init3_256
d.h[4] = init4_256
d.h[5] = init5_256
d.h[6] = init6_256
d.h[7] = init7_256
default:
d.h[0] = init0
d.h[1] = init1
d.h[2] = init2
d.h[3] = init3
d.h[4] = init4
d.h[5] = init5
d.h[6] = init6
d.h[7] = init7
}
d.nx = 0
d.len = 0
}
// New returns a new hash.Hash computing the SHA512 checksum.
// New returns a new hash.Hash computing the SHA-512 checksum.
func New() hash.Hash {
d := new(digest)
d := &digest{function: crypto.SHA512}
d.Reset()
return d
}
// New384 returns a new hash.Hash computing the SHA384 checksum.
// New512_224 returns a new hash.Hash computing the SHA-512/224 checksum.
func New512_224() hash.Hash {
d := &digest{function: crypto.SHA512_224}
d.Reset()
return d
}
// New512_256 returns a new hash.Hash computing the SHA-512/256 checksum.
func New512_256() hash.Hash {
d := &digest{function: crypto.SHA512_256}
d.Reset()
return d
}
// New384 returns a new hash.Hash computing the SHA-384 checksum.
func New384() hash.Hash {
d := new(digest)
d.is384 = true
d := &digest{function: crypto.SHA384}
d.Reset()
return d
}
func (d *digest) Size() int {
if !d.is384 {
switch d.function {
case crypto.SHA512_224:
return Size224
case crypto.SHA512_256:
return Size256
case crypto.SHA384:
return Size384
default:
return Size
}
return Size384
}
func (d *digest) BlockSize() int { return BlockSize }
@ -130,14 +195,20 @@ func (d0 *digest) Sum(in []byte) []byte {
d := new(digest)
*d = *d0
hash := d.checkSum()
if d.is384 {
switch d.function {
case crypto.SHA384:
return append(in, hash[:Size384]...)
case crypto.SHA512_224:
return append(in, hash[:Size224]...)
case crypto.SHA512_256:
return append(in, hash[:Size256]...)
default:
return append(in, hash[:]...)
}
return append(in, hash[:]...)
}
func (d *digest) checkSum() [Size]byte {
// Padding. Add a 1 bit and 0 bits until 112 bytes mod 128.
// Padding. Add a 1 bit and 0 bits until 112 bytes mod 128.
len := d.len
var tmp [128]byte
tmp[0] = 0x80
@ -159,7 +230,7 @@ func (d *digest) checkSum() [Size]byte {
}
h := d.h[:]
if d.is384 {
if d.function == crypto.SHA384 {
h = d.h[:6]
}
@ -180,7 +251,7 @@ func (d *digest) checkSum() [Size]byte {
// Sum512 returns the SHA512 checksum of the data.
func Sum512(data []byte) [Size]byte {
var d digest
d := digest{function: crypto.SHA512}
d.Reset()
d.Write(data)
return d.checkSum()
@ -188,11 +259,30 @@ func Sum512(data []byte) [Size]byte {
// Sum384 returns the SHA384 checksum of the data.
func Sum384(data []byte) (sum384 [Size384]byte) {
var d digest
d.is384 = true
d := digest{function: crypto.SHA384}
d.Reset()
d.Write(data)
sum := d.checkSum()
copy(sum384[:], sum[:Size384])
return
}
// Sum512_224 returns the Sum512/224 checksum of the data.
func Sum512_224(data []byte) (sum224 [Size224]byte) {
d := digest{function: crypto.SHA512_224}
d.Reset()
d.Write(data)
sum := d.checkSum()
copy(sum224[:], sum[:Size224])
return
}
// Sum512_256 returns the Sum512/256 checksum of the data.
func Sum512_256(data []byte) (sum256 [Size256]byte) {
d := digest{function: crypto.SHA512_256}
d.Reset()
d.Write(data)
sum := d.checkSum()
copy(sum256[:], sum[:Size256])
return
}

View File

@ -2,8 +2,6 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64
// SHA512 block step.
// In its own file so that a faster assembly or C version
// can be substituted easily.
@ -93,7 +91,7 @@ var _K = []uint64{
0x6c44198c4a475817,
}
func block(dig *digest, p []byte) {
func blockGeneric(dig *digest, p []byte) {
var w [80]uint64
h0, h1, h2, h3, h4, h5, h6, h7 := dig.h[0], dig.h[1], dig.h[2], dig.h[3], dig.h[4], dig.h[5], dig.h[6], dig.h[7]
for len(p) >= chunk {

View File

@ -1,4 +1,4 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

View File

@ -1,8 +1,8 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64
// +build amd64 s390x ppc64le
package sha512

View File

@ -0,0 +1,9 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!s390x,!ppc64le
package sha512
var block = blockGeneric

View File

@ -0,0 +1,12 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha512
// featureCheck reports whether the CPU supports the
// SHA512 compute intermediate message digest (KIMD)
// function code.
func featureCheck() bool
var useAsm = featureCheck()

View File

@ -0,0 +1,34 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// func featureCheck() bool
TEXT ·featureCheck(SB),NOSPLIT,$16-1
LA tmp-16(SP), R1
XOR R0, R0 // query function code is 0
WORD $0xB93E0006 // KIMD (R6 is ignored)
MOVBZ tmp-16(SP), R4 // get the first byte
AND $0x10, R4 // bit 3 (big endian) for SHA512
CMPBEQ R4, $0, nosha512
MOVB $1, ret+0(FP)
RET
nosha512:
MOVB $0, ret+0(FP)
RET
// func block(dig *digest, p []byte)
TEXT ·block(SB),NOSPLIT,$0-32
MOVBZ ·useAsm(SB), R4
LMG dig+0(FP), R1, R3 // R2 = &p[0], R3 = len(p)
CMPBNE R4, $1, generic
MOVBZ $3, R0 // SHA512 function code
loop:
WORD $0xB93E0002 // KIMD R2
BVS loop // continue if interrupted
done:
XOR R0, R0 // restore R0
RET
generic:
BR ·blockGeneric(SB)