Various copyedits to reduce future tense, wordiness, and use of 'please' (#5788)

* Reword lots of instances of 'will'

* Reword lots of instances of won't

* Reword lots of instances of we'll

* Eradicate you'll

* Eradicate 'be able to' type of phrases

* Eradicate 'unable to' type of phrases

* Eradicate 'has / have to' type of phrases

* Eradicate 'note that' type of phrases

* Eradicate 'in order to' type of phrases

* Redirect to official Chef and Puppet docs

* Eradicate gratuitous 'please'

* Reduce use of e.g.

* Reduce use of i.e.

* Reduce use of N.B.

* Get rid of 'sexagesimal' and correct some errors
This commit is contained in:
Misty Stanley-Jones 2018-01-25 17:37:23 -08:00 committed by GitHub
parent b5bbca9ed4
commit f1fb06838a
14 changed files with 114 additions and 122 deletions

View file

@ -183,7 +183,7 @@ service](#run-a-registry-as-a-service) below.
These examples assume the following:
- Your registry will be accessible on `https://myregistry.domain.com/`.
- Your registry URL is `https://myregistry.domain.com/`.
- Your DNS, routing, and firewall settings allow access to the registry's host
on port 5000.
- You have already obtained a certificate from a certificate authority (CA).
@ -279,8 +279,8 @@ or a service with either only a single node or a node constraint.
fully replicated service. Each worker can write to the storage back-end
without causing write conflicts.
- If you use a local bind mount or volume, each worker node will write to its
own storage location, which means that each registry will contain a different
- If you use a local bind mount or volume, each worker node writes to its
own storage location, which means that each registry contains a different
data set. You can solve this problem by using a single-replica service and a
node constraint to ensure that only a single worker is writing to the bind
mount.
@ -348,15 +348,15 @@ the following must be the same:
- HTTP Secret
- Redis Cache (if configured)
If any of these are different, the registry will have trouble serving requests.
Differences in any of the above cause problems serving requests.
As an example, if you're using the filesystem driver, all registry instances
must have access to the same filesystem root, which means they should be in
the same machine. For other drivers, such as s3 or azure, they should be
accessing the same resource, and will likely share an identical configuration.
must have access to the same filesystem root, on
the same machine. For other drivers, such as S3 or Azure, they should be
accessing the same resource and share an identical configuration.
The _HTTP Secret_ coordinates uploads, so also must be the same across
instances. Configuring different redis instances will work (at the time
of writing), but will not be optimal if the instances are not shared, causing
more requests to be directed to the backend.
instances. Configuring different redis instances works (at the time
of writing), but is not optimal if the instances are not shared, because
more requests are directed to the backend.
### Important/Required HTTP-Headers
@ -377,11 +377,11 @@ without credentials. The response should include a `WWW-Authenticate`
challenge, providing guidance on how to authenticate, such as with basic auth
or a token service. If the load balancer has health checks, it is recommended
to configure it to consider a 401 response as healthy and any other as down.
This will secure your registry by ensuring that configuration problems with
This secures your registry by ensuring that configuration problems with
authentication don't accidentally expose an unprotected registry. If you're
using a less sophisticated load balancer, such as Amazon's Elastic Load
Balancer, that doesn't allow one to change the healthy response code, health
checks can be directed at "/", which will always return a `200 OK` response.
checks can be directed at "/", which always returns a `200 OK` response.
## Restricting access
@ -436,7 +436,7 @@ secrets.
```
4. Try to pull an image from the registry, or push an image to the registry.
These commands will fail.
These commands fail.
5. Log in to the registry.
@ -518,7 +518,7 @@ following:
distributable. This means that when you push an image based on one of these
images to your private registry, the non-distributable layers are **not**
pushed, but are always fetched from their authorized location. This is fine
for internet-connected hosts, but will not work in an air-gapped set-up.
for internet-connected hosts, but not in an air-gapped set-up.
In Docker 17.06 and higher, you can configure the Docker daemon to allow
pushing non-distributable layers to private registries, in this scenario.
@ -546,7 +546,7 @@ following:
3. Restart the registry if it does not start automatically.
4. When you push images to the registries in the list, their
non-distributable layers will be pushed to the registry.
non-distributable layers are pushed to the registry.
> **Warning**: Non-distributable artifacts typically have restrictions on
> how and where they can be distributed and shared. Only use this feature
@ -557,7 +557,7 @@ following:
## Next steps
You will find more specific and advanced information in the following sections:
More specific and advanced information is available in the following sections:
- [Configuration reference](configuration.md)
- [Working with notifications](notifications.md)