package storage import ( "fmt" "path" "github.com/docker/docker-registry/common" ) const storagePathVersion = "v2" // pathMapper maps paths based on "object names" and their ids. The "object // names" mapped by pathMapper are internal to the storage system. // // The path layout in the storage backend will be roughly as follows: // // /v2 // -> repositories/ // ->/ // -> images/ // // -> layers/ // -> tarsum/ // -> / // -> / // // -> layerindex/ // -> tarsum/ // -> / // -> / // // -> blob/sha256 // // // There are few important components to this path layout. First, we have the // repository store identified by name. This contains the image manifests and // a layer store with links to CAS blob ids. Outside of the named repo area, // we have the layerindex, which provides lookup from tarsum id to repo // storage. The blob store contains the actual layer data and any other data // that can be referenced by a CAS id. // // We cover the path formats implemented by this path mapper below. // // layerLinkPathSpec: /v2/repositories//layers/tarsum/// // layerIndexLinkPathSpec: /v2/layerindex/tarsum/// // blobPathSpec: /v2/blob/sha256// // // For more information on the semantic meaning of each path and their // contents, please see the path spec documentation. type pathMapper struct { root string version string // should be a constant? } // TODO(stevvooe): This storage layout currently allows lookup to layer stores // by repo name via the tarsum. The layer index lookup could come with an // access control check against the link contents before proceeding. The main // problem with this comes with a collision in the tarsum algorithm: if party // A uploads a layer before party B, with an identical tarsum, party B may // never be able to get access to the tarsum stored under party A. We'll need // a way for party B to associate with a "unique" version of their image. This // may be as simple as forcing the client to re-upload images to which they // don't have access. // path returns the path identified by spec. func (pm *pathMapper) path(spec pathSpec) (string, error) { // Switch on the path object type and return the appropriate path. At // first glance, one may wonder why we don't use an interface to // accomplish this. By keep the formatting separate from the pathSpec, we // keep separate the path generation componentized. These specs could be // passed to a completely different mapper implementation and generate a // different set of paths. // // For example, imagine migrating from one backend to the other: one could // build a filesystem walker that converts a string path in one version, // to an intermediate path object, than can be consumed and mapped by the // other version. switch v := spec.(type) { case layerLinkPathSpec: tsi, err := common.ParseTarSum(v.tarSum) if err != nil { // TODO(sday): This will return an InvalidTarSumError from // ParseTarSum but we may want to wrap this. This error should // never be encountered in production, since the tarsum should be // validated by this point. return "", err } p := path.Join(append([]string{pm.root, pm.version, "repositories", v.name, "layers"}, tarSumInfoPathComponents(tsi)...)...) return p, nil case layerIndexLinkPathSpec: tsi, err := common.ParseTarSum(v.tarSum) if err != nil { // TODO(sday): This will return an InvalidTarSumError from // ParseTarSum but we may want to wrap this. This error should // never be encountered in production, since the tarsum should be // validated by this point. return "", err } p := path.Join(append([]string{pm.root, pm.version, "layerindex"}, tarSumInfoPathComponents(tsi)...)...) return p, nil case blobPathSpec: p := path.Join([]string{pm.root, pm.version, "blob", v.alg, v.digest[:2], v.digest}...) return p, nil default: // TODO(sday): This is an internal error. Ensure it doesn't escape (panic?). return "", fmt.Errorf("unknown path spec: %#v", v) } } // pathSpec is a type to mark structs as path specs. There is no // implementation because we'd like to keep the specs and the mappers // decoupled. type pathSpec interface { pathSpec() } // layerLink specifies a path for a layer link, which is a file with a blob // id. The layer link will contain a content addressable blob id reference // into the blob store. The format of the contents is as follows: // // : // // The following example of the file contents is more illustrative: // // sha256:96443a84ce518ac22acb2e985eda402b58ac19ce6f91980bde63726a79d80b36 // // This says indicates that there is a blob with the id/digest, calculated via // sha256 that can be fetched from the blob store. type layerLinkPathSpec struct { name string tarSum string } func (layerLinkPathSpec) pathSpec() {} // layerIndexLinkPath provides a path to a registry global layer store, // indexed by tarsum. The target file will contain the repo name of the // "owner" of the layer. An example name link file follows: // // library/ubuntu // foo/bar // // The above file has the tarsum stored under the foo/bar repository and the // library/ubuntu repository. The storage layer should access the tarsum from // the first repository to which the client has access. type layerIndexLinkPathSpec struct { tarSum string } func (layerIndexLinkPathSpec) pathSpec() {} // blobPath contains the path for the registry global blob store. For now, // this contains layer data, exclusively. type blobPathSpec struct { alg string digest string } func (blobPathSpec) pathSpec() {} // tarSumInfoPath generates storage path components for the provided // TarSumInfo. func tarSumInfoPathComponents(tsi common.TarSumInfo) []string { version := tsi.Version if version == "" { version = "v0" } return []string{"tarsum", version, tsi.Algorithm, tsi.Digest} }