package service import ( "crypto/ecdsa" crypto "github.com/nspcc-dev/neofs-crypto" ) type keySign struct { key *ecdsa.PublicKey sign []byte } // GetSignature is a sign field getter. func (s keySign) GetSignature() []byte { return s.sign } // GetPublicKey is a key field getter, func (s keySign) GetPublicKey() *ecdsa.PublicKey { return s.key } // Unites passed key with signature and returns SignKeyPair interface. func newSignatureKeyPair(key *ecdsa.PublicKey, sign []byte) SignKeyPair { return &keySign{ key: key, sign: sign, } } // Returns data from DataSignatureAccumulator for signature creation/verification. // // If passed DataSignatureAccumulator provides a SignedDataReader interface, data for signature is obtained // using this interface for optimization. In this case, it is understood that reading into the slice D // that the method DataForSignature returns does not change D. // // If returned length of data is negative, ErrNegativeLength returns. func dataForSignature(src SignedDataSource) ([]byte, error) { if src == nil { return nil, ErrNilSignedDataSource } r, ok := src.(SignedDataReader) if !ok { return src.SignedData() } buf := bytesPool.Get().([]byte) if size := r.SignedDataSize(); size < 0 { return nil, ErrNegativeLength } else if size <= cap(buf) { buf = buf[:size] } else { buf = make([]byte, size) } n, err := r.ReadSignedData(buf) if err != nil { return nil, err } return buf[:n], nil } // DataSignature returns the signature of data obtained using the private key. // // If passed data container is nil, ErrNilSignedDataSource returns. // If passed private key is nil, crypto.ErrEmptyPrivateKey returns. // If the data container or the signature function returns an error, it is returned directly. func DataSignature(key *ecdsa.PrivateKey, src SignedDataSource) ([]byte, error) { if key == nil { return nil, crypto.ErrEmptyPrivateKey } data, err := dataForSignature(src) if err != nil { return nil, err } defer bytesPool.Put(data) return crypto.Sign(key, data) } // AddSignatureWithKey calculates the data signature and adds it to accumulator with public key. // // Any change of data provoke signature breakdown. // // Returns signing errors only. func AddSignatureWithKey(key *ecdsa.PrivateKey, v DataWithSignKeyAccumulator) error { sign, err := DataSignature(key, v) if err != nil { return err } v.AddSignKey(sign, &key.PublicKey) return nil } // Checks passed key-signature pairs for data from the passed container. // // If passed key-signatures pair set is empty, nil returns immediately. func verifySignatures(src SignedDataSource, items ...SignKeyPair) error { if len(items) <= 0 { return nil } data, err := dataForSignature(src) if err != nil { return err } defer bytesPool.Put(data) for _, signKey := range items { if err := crypto.Verify( signKey.GetPublicKey(), data, signKey.GetSignature(), ); err != nil { return err } } return nil } // VerifySignatures checks passed key-signature pairs for data from the passed container. // // If passed data source is nil, ErrNilSignedDataSource returns. // If check data is not ready, corresponding error returns. // If at least one of the pairs is invalid, an error returns. func VerifySignatures(src SignedDataSource, items ...SignKeyPair) error { return verifySignatures(src, items...) } // VerifyAccumulatedSignatures checks if accumulated key-signature pairs are valid. // // Behaves like VerifySignatures. // If passed key-signature source is empty, ErrNilSignatureKeySource returns. func VerifyAccumulatedSignatures(src DataWithSignKeySource) error { if src == nil { return ErrNilSignatureKeySource } return verifySignatures(src, src.GetSignKeyPairs()...) } // VerifySignatureWithKey checks data signature from the passed container with passed key. // // If passed data with signature is nil, ErrEmptyDataWithSignature returns. // If passed key is nil, crypto.ErrEmptyPublicKey returns. // A non-nil error returns if and only if the signature does not pass verification. func VerifySignatureWithKey(key *ecdsa.PublicKey, src DataWithSignature) error { if src == nil { return ErrEmptyDataWithSignature } else if key == nil { return crypto.ErrEmptyPublicKey } return verifySignatures( src, newSignatureKeyPair( key, src.GetSignature(), ), ) } // SignDataWithSessionToken calculates data with token signature and adds it to accumulator. // // Any change of data or session token info provoke signature breakdown. // // If passed private key is nil, crypto.ErrEmptyPrivateKey returns. // If passed DataWithTokenSignAccumulator is nil, ErrNilDataWithTokenSignAccumulator returns. func SignDataWithSessionToken(key *ecdsa.PrivateKey, src DataWithTokenSignAccumulator) error { if src == nil { return ErrNilDataWithTokenSignAccumulator } else if r, ok := src.(SignedDataReader); ok { return AddSignatureWithKey(key, &signDataReaderWithToken{ SignedDataSource: src, SignKeyPairAccumulator: src, rdr: r, token: src.GetSessionToken(), }, ) } return AddSignatureWithKey(key, &signAccumWithToken{ SignedDataSource: src, SignKeyPairAccumulator: src, token: src.GetSessionToken(), }) } // VerifyAccumulatedSignaturesWithToken checks if accumulated key-signature pairs of data with token are valid. // // If passed DataWithTokenSignSource is nil, ErrNilSignatureKeySourceWithToken returns. func VerifyAccumulatedSignaturesWithToken(src DataWithTokenSignSource) error { if src == nil { return ErrNilSignatureKeySourceWithToken } else if r, ok := src.(SignedDataReader); ok { return VerifyAccumulatedSignatures(&signDataReaderWithToken{ SignedDataSource: src, SignKeyPairSource: src, rdr: r, token: src.GetSessionToken(), }) } return VerifyAccumulatedSignatures(&signAccumWithToken{ SignedDataSource: src, SignKeyPairSource: src, token: src.GetSessionToken(), }) }