8fa65a0afc
It may be misleading when verify function takes signature as a hash parameter. This commit suggested to use rfc6979 original naming for the parameters: - `msg` as the message to sign, - `sig` as the signature of message. All hashing operations are encapsulated inside of the Sign and Verify functions. Also there are comment fixes and re-usage of `hashBytes()` in rfc6979.
217 lines
5.7 KiB
Go
217 lines
5.7 KiB
Go
package crypto
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"math/big"
|
|
|
|
"github.com/nspcc-dev/neofs-crypto/internal"
|
|
"github.com/pkg/errors"
|
|
)
|
|
|
|
const (
|
|
// ErrEmptyPublicKey when PK passed to Verify method is nil.
|
|
ErrEmptyPublicKey = internal.Error("empty public key")
|
|
|
|
// ErrInvalidSignature when signature passed to Verify method is mismatch.
|
|
ErrInvalidSignature = internal.Error("invalid signature")
|
|
|
|
// ErrCannotUnmarshal when signature ([]byte) passed to Verify method has wrong format
|
|
// and cannot be parsed.
|
|
ErrCannotUnmarshal = internal.Error("could not unmarshal signature")
|
|
|
|
// PrivateKeyCompressedSize is constant with compressed size of private key (SK).
|
|
// D coordinate stored, recover PK by formula x, y = curve.ScalarBaseMul(d,bytes).
|
|
PrivateKeyCompressedSize = 32
|
|
|
|
// PublicKeyCompressedSize is constant with compressed size of public key (PK).
|
|
PublicKeyCompressedSize = 33
|
|
|
|
// PublicKeyUncompressedSize is constant with uncompressed size of public key (PK).
|
|
// First byte always should be 0x4 other 64 bytes is X and Y (32 bytes per coordinate).
|
|
// 2 * 32 + 1
|
|
PublicKeyUncompressedSize = 65
|
|
)
|
|
|
|
// P256 is base elliptic curve.
|
|
var curve = elliptic.P256()
|
|
|
|
// Marshal converts a points into the uncompressed form specified in section 4.3.6 of ANSI X9.62.
|
|
func marshalXY(x, y *big.Int) []byte {
|
|
return elliptic.Marshal(curve, x, y)
|
|
}
|
|
|
|
// unmarshalXY converts a point, serialized by Marshal, into an x, y pair.
|
|
// It is an error if the point is not in uncompressed form.
|
|
// On error, x,y = nil.
|
|
// Unlike the original version of the code, we ignore that x or y not on the curve
|
|
// --------------
|
|
// It's copy-paste elliptic.Unmarshal(curve, data) stdlib function, without last line
|
|
// of code.
|
|
// Link - https://golang.org/pkg/crypto/elliptic/#Unmarshal
|
|
func unmarshalXY(data []byte) (x *big.Int, y *big.Int) {
|
|
if len(data) != PublicKeyUncompressedSize {
|
|
return
|
|
} else if data[0] != 4 { // uncompressed form
|
|
return
|
|
}
|
|
|
|
p := curve.Params().P
|
|
x = new(big.Int).SetBytes(data[1:PublicKeyCompressedSize])
|
|
y = new(big.Int).SetBytes(data[PublicKeyCompressedSize:])
|
|
|
|
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
|
|
x, y = nil, nil
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// decompressPoints using formula y² = x³ - 3x + b
|
|
// crypto/elliptic/elliptic.go:55
|
|
func decompressPoints(x *big.Int, yBit uint) (*big.Int, *big.Int) {
|
|
params := curve.Params()
|
|
|
|
x3 := new(big.Int).Mul(x, x)
|
|
x3.Mul(x3, x)
|
|
|
|
threeX := new(big.Int).Lsh(x, 1)
|
|
threeX.Add(threeX, x)
|
|
|
|
x3.Sub(x3, threeX)
|
|
x3.Add(x3, params.B)
|
|
x3.Mod(x3, params.P)
|
|
|
|
// y = √(x³ - 3x + b) mod p
|
|
y := new(big.Int).ModSqrt(x3, params.P)
|
|
|
|
// big.Int.Jacobi(a, b) can return nil
|
|
if y == nil {
|
|
return nil, nil
|
|
}
|
|
|
|
if y.Bit(0) != (yBit & 0x1) {
|
|
y.Neg(y)
|
|
y.Mod(y, params.P)
|
|
}
|
|
|
|
return x, y
|
|
}
|
|
|
|
func encodePoint(x, y *big.Int) []byte {
|
|
data := make([]byte, PublicKeyCompressedSize)
|
|
copy(data[1:], x.Bytes())
|
|
|
|
if y.Bit(0) == 0x1 {
|
|
data[0] = 0x3
|
|
} else {
|
|
data[0] = 0x2
|
|
}
|
|
|
|
return data
|
|
}
|
|
|
|
func decodePoint(data []byte) (*big.Int, *big.Int) {
|
|
// empty data
|
|
if len(data) == 0 {
|
|
return nil, nil
|
|
}
|
|
|
|
switch prefix := data[0]; prefix {
|
|
case 0x02, 0x03: // compressed key
|
|
// Incorrect length for compressed encoding
|
|
if len(data) != PublicKeyCompressedSize {
|
|
return nil, nil
|
|
}
|
|
|
|
return decompressPoints(new(big.Int).SetBytes(data[1:]), uint(prefix))
|
|
case 0x04: // uncompressed key
|
|
// To get the public key, besides getting it from the data and checking,
|
|
// we also must to check that the points are on an elliptic curve
|
|
return unmarshalXY(data)
|
|
}
|
|
|
|
// unknown type
|
|
return nil, nil
|
|
}
|
|
|
|
// MarshalPublicKey to bytes.
|
|
func MarshalPublicKey(key *ecdsa.PublicKey) []byte {
|
|
if key == nil || key.X == nil || key.Y == nil {
|
|
return nil
|
|
}
|
|
|
|
return encodePoint(key.X, key.Y)
|
|
}
|
|
|
|
// UnmarshalPublicKey from bytes.
|
|
func UnmarshalPublicKey(data []byte) *ecdsa.PublicKey {
|
|
if x, y := decodePoint(data); x != nil && y != nil && curve.IsOnCurve(x, y) {
|
|
return &ecdsa.PublicKey{
|
|
Curve: curve,
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// UnmarshalPrivateKey from bytes.
|
|
// It is similar to `ecdsa.Generate()` but uses pre-defined big.Int and
|
|
// curve for NEO Blockchain (elliptic.P256)
|
|
// Link - https://golang.org/pkg/crypto/ecdsa/#GenerateKey
|
|
func UnmarshalPrivateKey(data []byte) (*ecdsa.PrivateKey, error) {
|
|
if len(data) == PrivateKeyCompressedSize { // todo: consider using only NEO blockchain private keys
|
|
d := new(big.Int).SetBytes(data)
|
|
priv := new(ecdsa.PrivateKey)
|
|
priv.PublicKey.Curve = curve
|
|
priv.D = d
|
|
priv.PublicKey.X, priv.PublicKey.Y = curve.ScalarBaseMult(data)
|
|
|
|
return priv, nil
|
|
}
|
|
|
|
return x509.ParseECPrivateKey(data)
|
|
}
|
|
|
|
// MarshalPrivateKey to bytes.
|
|
func MarshalPrivateKey(key *ecdsa.PrivateKey) []byte {
|
|
return key.D.Bytes()
|
|
}
|
|
|
|
// hashBytes returns the sha256 sum.
|
|
func hashBytes(data []byte) []byte {
|
|
buf := sha256.Sum256(data)
|
|
return buf[:]
|
|
}
|
|
|
|
// Verify verifies the signature of msg using the public key pub. It returns
|
|
// nil only if signature is valid.
|
|
func Verify(pub *ecdsa.PublicKey, sig, msg []byte) error {
|
|
if r, s := unmarshalXY(sig); r == nil || s == nil {
|
|
return ErrCannotUnmarshal
|
|
} else if pub == nil {
|
|
return ErrEmptyPublicKey
|
|
} else if !ecdsa.Verify(pub, hashBytes(msg), r, s) {
|
|
return errors.Wrapf(ErrInvalidSignature, "%0x : %0x", r, s)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Sign signs a message using the private key. If the sha256 hash of msg
|
|
// is longer than the bit-length of the private key's curve order, the hash
|
|
// will be truncated to that length. It returns the signature as slice bytes.
|
|
// The security of the private key depends on the entropy of rand.
|
|
func Sign(key *ecdsa.PrivateKey, msg []byte) ([]byte, error) {
|
|
x, y, err := ecdsa.Sign(rand.Reader, key, hashBytes(msg))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return marshalXY(x, y), nil
|
|
}
|