frostfs-crypto/ecdsa.go
alexvanin 8fa65a0afc Use consistent parameter names for Sign and Verify functions
It may be misleading when verify function takes signature as a hash
parameter. This commit suggested to use rfc6979 original naming
for the parameters:
- `msg` as the message to sign,
- `sig` as the signature of message.
All hashing operations are encapsulated inside of the Sign
and Verify functions.

Also there are comment fixes and re-usage of `hashBytes()` in rfc6979.
2019-11-12 14:52:23 +03:00

217 lines
5.7 KiB
Go

package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"math/big"
"github.com/nspcc-dev/neofs-crypto/internal"
"github.com/pkg/errors"
)
const (
// ErrEmptyPublicKey when PK passed to Verify method is nil.
ErrEmptyPublicKey = internal.Error("empty public key")
// ErrInvalidSignature when signature passed to Verify method is mismatch.
ErrInvalidSignature = internal.Error("invalid signature")
// ErrCannotUnmarshal when signature ([]byte) passed to Verify method has wrong format
// and cannot be parsed.
ErrCannotUnmarshal = internal.Error("could not unmarshal signature")
// PrivateKeyCompressedSize is constant with compressed size of private key (SK).
// D coordinate stored, recover PK by formula x, y = curve.ScalarBaseMul(d,bytes).
PrivateKeyCompressedSize = 32
// PublicKeyCompressedSize is constant with compressed size of public key (PK).
PublicKeyCompressedSize = 33
// PublicKeyUncompressedSize is constant with uncompressed size of public key (PK).
// First byte always should be 0x4 other 64 bytes is X and Y (32 bytes per coordinate).
// 2 * 32 + 1
PublicKeyUncompressedSize = 65
)
// P256 is base elliptic curve.
var curve = elliptic.P256()
// Marshal converts a points into the uncompressed form specified in section 4.3.6 of ANSI X9.62.
func marshalXY(x, y *big.Int) []byte {
return elliptic.Marshal(curve, x, y)
}
// unmarshalXY converts a point, serialized by Marshal, into an x, y pair.
// It is an error if the point is not in uncompressed form.
// On error, x,y = nil.
// Unlike the original version of the code, we ignore that x or y not on the curve
// --------------
// It's copy-paste elliptic.Unmarshal(curve, data) stdlib function, without last line
// of code.
// Link - https://golang.org/pkg/crypto/elliptic/#Unmarshal
func unmarshalXY(data []byte) (x *big.Int, y *big.Int) {
if len(data) != PublicKeyUncompressedSize {
return
} else if data[0] != 4 { // uncompressed form
return
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1:PublicKeyCompressedSize])
y = new(big.Int).SetBytes(data[PublicKeyCompressedSize:])
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
x, y = nil, nil
}
return
}
// decompressPoints using formula y² = x³ - 3x + b
// crypto/elliptic/elliptic.go:55
func decompressPoints(x *big.Int, yBit uint) (*big.Int, *big.Int) {
params := curve.Params()
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
threeX := new(big.Int).Lsh(x, 1)
threeX.Add(threeX, x)
x3.Sub(x3, threeX)
x3.Add(x3, params.B)
x3.Mod(x3, params.P)
// y = √(x³ - 3x + b) mod p
y := new(big.Int).ModSqrt(x3, params.P)
// big.Int.Jacobi(a, b) can return nil
if y == nil {
return nil, nil
}
if y.Bit(0) != (yBit & 0x1) {
y.Neg(y)
y.Mod(y, params.P)
}
return x, y
}
func encodePoint(x, y *big.Int) []byte {
data := make([]byte, PublicKeyCompressedSize)
copy(data[1:], x.Bytes())
if y.Bit(0) == 0x1 {
data[0] = 0x3
} else {
data[0] = 0x2
}
return data
}
func decodePoint(data []byte) (*big.Int, *big.Int) {
// empty data
if len(data) == 0 {
return nil, nil
}
switch prefix := data[0]; prefix {
case 0x02, 0x03: // compressed key
// Incorrect length for compressed encoding
if len(data) != PublicKeyCompressedSize {
return nil, nil
}
return decompressPoints(new(big.Int).SetBytes(data[1:]), uint(prefix))
case 0x04: // uncompressed key
// To get the public key, besides getting it from the data and checking,
// we also must to check that the points are on an elliptic curve
return unmarshalXY(data)
}
// unknown type
return nil, nil
}
// MarshalPublicKey to bytes.
func MarshalPublicKey(key *ecdsa.PublicKey) []byte {
if key == nil || key.X == nil || key.Y == nil {
return nil
}
return encodePoint(key.X, key.Y)
}
// UnmarshalPublicKey from bytes.
func UnmarshalPublicKey(data []byte) *ecdsa.PublicKey {
if x, y := decodePoint(data); x != nil && y != nil && curve.IsOnCurve(x, y) {
return &ecdsa.PublicKey{
Curve: curve,
X: x,
Y: y,
}
}
return nil
}
// UnmarshalPrivateKey from bytes.
// It is similar to `ecdsa.Generate()` but uses pre-defined big.Int and
// curve for NEO Blockchain (elliptic.P256)
// Link - https://golang.org/pkg/crypto/ecdsa/#GenerateKey
func UnmarshalPrivateKey(data []byte) (*ecdsa.PrivateKey, error) {
if len(data) == PrivateKeyCompressedSize { // todo: consider using only NEO blockchain private keys
d := new(big.Int).SetBytes(data)
priv := new(ecdsa.PrivateKey)
priv.PublicKey.Curve = curve
priv.D = d
priv.PublicKey.X, priv.PublicKey.Y = curve.ScalarBaseMult(data)
return priv, nil
}
return x509.ParseECPrivateKey(data)
}
// MarshalPrivateKey to bytes.
func MarshalPrivateKey(key *ecdsa.PrivateKey) []byte {
return key.D.Bytes()
}
// hashBytes returns the sha256 sum.
func hashBytes(data []byte) []byte {
buf := sha256.Sum256(data)
return buf[:]
}
// Verify verifies the signature of msg using the public key pub. It returns
// nil only if signature is valid.
func Verify(pub *ecdsa.PublicKey, sig, msg []byte) error {
if r, s := unmarshalXY(sig); r == nil || s == nil {
return ErrCannotUnmarshal
} else if pub == nil {
return ErrEmptyPublicKey
} else if !ecdsa.Verify(pub, hashBytes(msg), r, s) {
return errors.Wrapf(ErrInvalidSignature, "%0x : %0x", r, s)
}
return nil
}
// Sign signs a message using the private key. If the sha256 hash of msg
// is longer than the bit-length of the private key's curve order, the hash
// will be truncated to that length. It returns the signature as slice bytes.
// The security of the private key depends on the entropy of rand.
func Sign(key *ecdsa.PrivateKey, msg []byte) ([]byte, error) {
x, y, err := ecdsa.Sign(rand.Reader, key, hashBytes(msg))
if err != nil {
return nil, err
}
return marshalXY(x, y), nil
}