frostfs-crypto/ecdsa.go
Evgenii Stratonikov cd99838ed8 Move from nspcc-dev to TrueCloudLab
Signed-off-by: Evgenii Stratonikov <e.stratonikov@yadro.com>
2022-12-12 12:27:52 +03:00

191 lines
5.6 KiB
Go

package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha512"
"crypto/x509"
"fmt"
"math/big"
"github.com/TrueCloudLab/frostfs-crypto/internal"
)
const (
// ErrEmptyPublicKey when PK passed to Verify method is nil.
ErrEmptyPublicKey = internal.Error("empty public key")
// ErrInvalidSignature when signature passed to Verify method is mismatch.
ErrInvalidSignature = internal.Error("invalid signature")
// ErrCannotUnmarshal when signature ([]byte) passed to Verify method has wrong format
// and cannot be parsed.
ErrCannotUnmarshal = internal.Error("could not unmarshal signature")
// PrivateKeyCompressedSize is constant with compressed size of private key (SK).
// D coordinate stored, recover PK by formula x, y = curve.ScalarBaseMul(d,bytes).
PrivateKeyCompressedSize = 32
// PublicKeyCompressedSize is constant with compressed size of public key (PK).
PublicKeyCompressedSize = 33
// PublicKeyUncompressedSize is constant with uncompressed size of public key (PK).
// First byte always should be 0x4 other 64 bytes is X and Y (32 bytes per coordinate).
// 2 * 32 + 1
PublicKeyUncompressedSize = 65
)
// P256 is base elliptic curve.
var curve = elliptic.P256()
// marshalXY converts points into the uncompressed form specified in section 4.3.6 of ANSI X9.62.
// It is also used to marshal signature, for backwards compatibility.
func marshalXY(curve elliptic.Curve, x, y *big.Int) []byte {
params := curve.Params()
curveOrderByteSize := params.P.BitLen() / 8
buf := make([]byte, 1+curveOrderByteSize*2)
// r and s are not on curve at all, leave for backwards compatibility
buf[0] = 4
_ = x.FillBytes(buf[1 : 1+curveOrderByteSize])
_ = y.FillBytes(buf[1+curveOrderByteSize:])
return buf
}
// unmarshalXY converts a point, serialized by Marshal, into an x, y pair.
// It is an error if the point is not in uncompressed form.
// On error, x,y = nil.
// Unlike the original version of the code, we ignore that x or y not on the curve
// --------------
// It's copy-paste elliptic.Unmarshal(curve, data) stdlib function, without last line
// of code.
// Link - https://golang.org/pkg/crypto/elliptic/#Unmarshal
func unmarshalXY(data []byte) (x *big.Int, y *big.Int) {
if len(data) != PublicKeyUncompressedSize {
return
} else if data[0] != 4 { // uncompressed form
return
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1:PublicKeyCompressedSize])
y = new(big.Int).SetBytes(data[PublicKeyCompressedSize:])
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
x, y = nil, nil
}
return
}
// MarshalPublicKey to bytes.
func MarshalPublicKey(key *ecdsa.PublicKey) []byte {
if key == nil || key.X == nil || key.Y == nil {
return nil
}
return elliptic.MarshalCompressed(curve, key.X, key.Y)
}
// UnmarshalPublicKey from bytes.
func UnmarshalPublicKey(data []byte) *ecdsa.PublicKey {
if x, y := decodePoint(data); x != nil && y != nil {
return &ecdsa.PublicKey{
Curve: curve,
X: x,
Y: y,
}
}
return nil
}
func decodePoint(data []byte) (x *big.Int, y *big.Int) {
// empty data
if len(data) == 0 {
return
}
// tries to unmarshal compressed form
// returns (nil, nil) when:
// - wrong len(data)
// - data[0] != 2 && data[0] != 3
if x, y = elliptic.UnmarshalCompressed(curve, data); x != nil && y != nil {
return x, y
}
// tries to unmarshal uncompressed form and check that points on curve
if x, y = unmarshalXY(data); x == nil || y == nil || !curve.IsOnCurve(x, y) {
x, y = nil, nil
}
return x, y
}
// UnmarshalPrivateKey from bytes.
// It is similar to `ecdsa.Generate()` but uses pre-defined big.Int and
// curve for NEO Blockchain (elliptic.P256)
// Link - https://golang.org/pkg/crypto/ecdsa/#GenerateKey
func UnmarshalPrivateKey(data []byte) (*ecdsa.PrivateKey, error) {
if len(data) == PrivateKeyCompressedSize { // todo: consider using only NEO blockchain private keys
d := new(big.Int).SetBytes(data)
priv := new(ecdsa.PrivateKey)
priv.PublicKey.Curve = curve
priv.D = d
priv.PublicKey.X, priv.PublicKey.Y = curve.ScalarBaseMult(data)
return priv, nil
}
return x509.ParseECPrivateKey(data)
}
// MarshalPrivateKey to bytes.
func MarshalPrivateKey(key *ecdsa.PrivateKey) []byte {
return key.D.Bytes()
}
// hashBytes returns the sha512 sum.
func hashBytes(data []byte) []byte {
buf := sha512.Sum512(data)
return buf[:]
}
// Verify verifies the signature of msg using the public key pub. It returns
// nil only if signature is valid.
func Verify(pub *ecdsa.PublicKey, msg, sig []byte) error {
return VerifyHash(pub, hashBytes(msg), sig)
}
// VerifyHash verifies the signature of msg using it's hash the public key pub.
// It returns nil only if signature is valid.
func VerifyHash(pub *ecdsa.PublicKey, msgHash, sig []byte) error {
if pub == nil {
return ErrEmptyPublicKey
} else if r, s := unmarshalXY(sig); r == nil || s == nil {
return ErrCannotUnmarshal
} else if !ecdsa.Verify(pub, msgHash, r, s) {
return fmt.Errorf("%w: %0x : %0x", ErrInvalidSignature, r, s)
}
return nil
}
// Sign signs a message using the private key. If the sha512 hash of msg
// is longer than the bit-length of the private key's curve order, the hash
// will be truncated to that length. It returns the signature as slice bytes.
// The security of the private key depends on the entropy of rand.
func Sign(key *ecdsa.PrivateKey, msg []byte) ([]byte, error) {
return SignHash(key, hashBytes(msg))
}
// SignHash signs message using it's hash and private key.
func SignHash(key *ecdsa.PrivateKey, msgHash []byte) ([]byte, error) {
x, y, err := ecdsa.Sign(rand.Reader, key, msgHash)
if err != nil {
return nil, err
}
return marshalXY(key.Curve, x, y), nil
}