package placement import ( "errors" "fmt" "maps" "math" "strings" "sync" "sync/atomic" locodedb "git.frostfs.info/TrueCloudLab/frostfs-locode-db/pkg/locode/db" locodebolt "git.frostfs.info/TrueCloudLab/frostfs-locode-db/pkg/locode/db/boltdb" "git.frostfs.info/TrueCloudLab/frostfs-sdk-go/netmap" ) const ( attrPrefix = "$attribute:" geoDistance = "$geoDistance" ) type Metric interface { CalculateValue(*netmap.NodeInfo, *netmap.NodeInfo) int } type metricsParser struct { locodeDBPath string locodes map[string]locodedb.Point } type MetricParser interface { ParseMetrics([]string) ([]Metric, error) } func NewMetricsParser(locodeDBPath string) (MetricParser, error) { return &metricsParser{ locodeDBPath: locodeDBPath, }, nil } func (p *metricsParser) initLocodes() error { if len(p.locodes) != 0 { return nil } if len(p.locodeDBPath) > 0 { p.locodes = make(map[string]locodedb.Point) locodeDB := locodebolt.New(locodebolt.Prm{ Path: p.locodeDBPath, }, locodebolt.ReadOnly(), ) err := locodeDB.Open() if err != nil { return err } defer locodeDB.Close() err = locodeDB.IterateOverLocodes(func(k string, v locodedb.Point) { p.locodes[k] = v }) if err != nil { return err } return nil } return errors.New("set path to locode database") } func (p *metricsParser) ParseMetrics(priority []string) ([]Metric, error) { var metrics []Metric for _, raw := range priority { if attr, found := strings.CutPrefix(raw, attrPrefix); found { metrics = append(metrics, NewAttributeMetric(attr)) } else if raw == geoDistance { err := p.initLocodes() if err != nil { return nil, err } if len(p.locodes) == 0 { return nil, fmt.Errorf("provide locodes database for metric %s", raw) } m := NewGeoDistanceMetric(p.locodes) metrics = append(metrics, m) } else { return nil, fmt.Errorf("unsupported priority metric %s", raw) } } return metrics, nil } // attributeMetric describes priority metric based on attribute. type attributeMetric struct { attribute string } // CalculateValue return [0] if from and to contains attribute attributeMetric.attribute and // the value of attribute is the same. In other case return [1]. func (am *attributeMetric) CalculateValue(from *netmap.NodeInfo, to *netmap.NodeInfo) int { fromAttr := from.Attribute(am.attribute) toAttr := to.Attribute(am.attribute) if len(fromAttr) > 0 && len(toAttr) > 0 && fromAttr == toAttr { return 0 } return 1 } func NewAttributeMetric(attr string) Metric { return &attributeMetric{attribute: attr} } // geoDistanceMetric describes priority metric based on attribute. type geoDistanceMetric struct { locodes map[string]locodedb.Point distance *atomic.Pointer[map[string]int] mtx sync.Mutex } func NewGeoDistanceMetric(locodes map[string]locodedb.Point) Metric { d := atomic.Pointer[map[string]int]{} m := make(map[string]int) d.Store(&m) gm := &geoDistanceMetric{ locodes: locodes, distance: &d, } return gm } // CalculateValue return distance in kilometers between current node and provided, // if coordinates for provided node found. In other case return math.MaxInt. func (gm *geoDistanceMetric) CalculateValue(from *netmap.NodeInfo, to *netmap.NodeInfo) int { fl := from.LOCODE() tl := to.LOCODE() if fl == tl { return 0 } m := gm.distance.Load() if v, ok := (*m)[fl+tl]; ok { return v } return gm.calculateDistance(fl, tl) } func (gm *geoDistanceMetric) calculateDistance(from, to string) int { gm.mtx.Lock() defer gm.mtx.Unlock() od := gm.distance.Load() if v, ok := (*od)[from+to]; ok { return v } nd := maps.Clone(*od) var dist int pointFrom, okFrom := gm.locodes[from] pointTo, okTo := gm.locodes[to] if okFrom && okTo { dist = int(distance(pointFrom.Latitude(), pointFrom.Longitude(), pointTo.Latitude(), pointTo.Longitude())) } else { dist = math.MaxInt } nd[from+to] = dist gm.distance.Store(&nd) return dist } // distance return amount of KM between two points. // Parameters are latitude and longitude of point 1 and 2 in decimal degrees. // Original implementation can be found here https://www.geodatasource.com/developers/go. func distance(lt1 float64, ln1 float64, lt2 float64, ln2 float64) float64 { radLat1 := math.Pi * lt1 / 180 radLat2 := math.Pi * lt2 / 180 radTheta := math.Pi * (ln1 - ln2) / 180 dist := math.Sin(radLat1)*math.Sin(radLat2) + math.Cos(radLat1)*math.Cos(radLat2)*math.Cos(radTheta) if dist > 1 { dist = 1 } dist = math.Acos(dist) dist = dist * 180 / math.Pi dist = dist * 60 * 1.1515 * 1.609344 return dist }