frostfs-s3-gw/api/auth/signer/v4asdk2/internal/crypto/ecc.go

114 lines
3.1 KiB
Go
Raw Normal View History

package crypto
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"encoding/asn1"
"encoding/binary"
"fmt"
"hash"
"math"
"math/big"
)
type ecdsaSignature struct {
R, S *big.Int
}
// ECDSAKey takes the given elliptic curve, and private key (d) byte slice
// and returns the private ECDSA key.
func ECDSAKey(curve elliptic.Curve, d []byte) *ecdsa.PrivateKey {
return ECDSAKeyFromPoint(curve, (&big.Int{}).SetBytes(d))
}
// ECDSAKeyFromPoint takes the given elliptic curve and point and returns the
// private and public keypair
func ECDSAKeyFromPoint(curve elliptic.Curve, d *big.Int) *ecdsa.PrivateKey {
pX, pY := curve.ScalarBaseMult(d.Bytes())
privKey := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: curve,
X: pX,
Y: pY,
},
D: d,
}
return privKey
}
// ECDSAPublicKey takes the provide curve and (x, y) coordinates and returns
// *ecdsa.PublicKey. Returns an error if the given points are not on the curve.
func ECDSAPublicKey(curve elliptic.Curve, x, y []byte) (*ecdsa.PublicKey, error) {
xPoint := (&big.Int{}).SetBytes(x)
yPoint := (&big.Int{}).SetBytes(y)
if !curve.IsOnCurve(xPoint, yPoint) {
return nil, fmt.Errorf("point(%v, %v) is not on the given curve", xPoint.String(), yPoint.String())
}
return &ecdsa.PublicKey{
Curve: curve,
X: xPoint,
Y: yPoint,
}, nil
}
// VerifySignature takes the provided public key, hash, and asn1 encoded signature and returns
// whether the given signature is valid.
func VerifySignature(key *ecdsa.PublicKey, hash []byte, signature []byte) (bool, error) {
var ecdsaSignature ecdsaSignature
_, err := asn1.Unmarshal(signature, &ecdsaSignature)
if err != nil {
return false, err
}
return ecdsa.Verify(key, hash, ecdsaSignature.R, ecdsaSignature.S), nil
}
// HMACKeyDerivation provides an implementation of a NIST-800-108 of a KDF (Key Derivation Function) in Counter Mode.
// For the purposes of this implantation HMAC is used as the PRF (Pseudorandom function), where the value of
// `r` is defined as a 4 byte counter.
func HMACKeyDerivation(hash func() hash.Hash, bitLen int, key []byte, label, context []byte) ([]byte, error) {
// verify that we won't overflow the counter
n := int64(math.Ceil((float64(bitLen) / 8) / float64(hash().Size())))
if n > 0x7FFFFFFF {
return nil, fmt.Errorf("unable to derive key of size %d using 32-bit counter", bitLen)
}
// verify the requested bit length is not larger then the length encoding size
if int64(bitLen) > 0x7FFFFFFF {
return nil, fmt.Errorf("bitLen is greater than 32-bits")
}
fixedInput := bytes.NewBuffer(nil)
fixedInput.Write(label)
fixedInput.WriteByte(0x00)
fixedInput.Write(context)
if err := binary.Write(fixedInput, binary.BigEndian, int32(bitLen)); err != nil {
return nil, fmt.Errorf("failed to write bit length to fixed input string: %v", err)
}
var output []byte
h := hmac.New(hash, key)
for i := int64(1); i <= n; i++ {
h.Reset()
if err := binary.Write(h, binary.BigEndian, int32(i)); err != nil {
return nil, err
}
_, err := h.Write(fixedInput.Bytes())
if err != nil {
return nil, err
}
output = append(output, h.Sum(nil)...)
}
return output[:bitLen/8], nil
}