frostfs-sdk-go/netmap/policy.go
Alexander Chuprov 03d35dd1f3
All checks were successful
DCO / DCO (pull_request) Successful in 1m58s
Tests and linters / Tests (1.21) (pull_request) Successful in 2m10s
Tests and linters / Tests (1.20) (pull_request) Successful in 2m17s
Tests and linters / Lint (pull_request) Successful in 4m4s
[#166] netmap: Add support YML tests
Signed-off-by: Alexander Chuprov <a.chuprov@yadro.com>
2023-11-17 14:43:03 +03:00

950 lines
24 KiB
Go

package netmap
import (
"errors"
"fmt"
"io"
"strconv"
"strings"
"git.frostfs.info/TrueCloudLab/frostfs-api-go/v2/netmap"
"git.frostfs.info/TrueCloudLab/frostfs-sdk-go/netmap/parser"
"github.com/antlr4-go/antlr/v4"
)
// PlacementPolicy declares policy to store objects in the FrostFS container.
// Within itself, PlacementPolicy represents a set of rules to select a subset
// of nodes from FrostFS network map - node-candidates for object storage.
//
// PlacementPolicy is mutually compatible with git.frostfs.info/TrueCloudLab/frostfs-api-go/v2/netmap.PlacementPolicy
// message. See ReadFromV2 / WriteToV2 methods.
//
// Instances can be created using built-in var declaration.
type PlacementPolicy struct {
backupFactor uint32
filters []netmap.Filter
selectors []netmap.Selector
replicas []netmap.Replica
unique bool
}
func (p *PlacementPolicy) readFromV2(m netmap.PlacementPolicy, checkFieldPresence bool) error {
p.replicas = m.GetReplicas()
if checkFieldPresence && len(p.replicas) == 0 {
return errors.New("missing replicas")
}
p.backupFactor = m.GetContainerBackupFactor()
p.selectors = m.GetSelectors()
p.filters = m.GetFilters()
p.unique = m.GetUnique()
return nil
}
// Marshal encodes PlacementPolicy into a binary format of the FrostFS API
// protocol (Protocol Buffers with direct field order).
//
// See also Unmarshal.
func (p PlacementPolicy) Marshal() []byte {
var m netmap.PlacementPolicy
p.WriteToV2(&m)
return m.StableMarshal(nil)
}
// Unmarshal decodes FrostFS API protocol binary format into the PlacementPolicy
// (Protocol Buffers with direct field order). Returns an error describing
// a format violation.
//
// See also Marshal.
func (p *PlacementPolicy) Unmarshal(data []byte) error {
var m netmap.PlacementPolicy
err := m.Unmarshal(data)
if err != nil {
return err
}
return p.readFromV2(m, false)
}
// MarshalJSON encodes PlacementPolicy into a JSON format of the FrostFS API
// protocol (Protocol Buffers JSON).
//
// See also UnmarshalJSON.
func (p PlacementPolicy) MarshalJSON() ([]byte, error) {
var m netmap.PlacementPolicy
p.WriteToV2(&m)
return m.MarshalJSON()
}
// UnmarshalJSON decodes FrostFS API protocol JSON format into the PlacementPolicy
// (Protocol Buffers JSON). Returns an error describing a format violation.
//
// See also MarshalJSON.
func (p *PlacementPolicy) UnmarshalJSON(data []byte) error {
var m netmap.PlacementPolicy
err := m.UnmarshalJSON(data)
if err != nil {
return err
}
return p.readFromV2(m, false)
}
// ReadFromV2 reads PlacementPolicy from the netmap.PlacementPolicy message.
// Checks if the message conforms to FrostFS API V2 protocol.
//
// See also WriteToV2.
func (p *PlacementPolicy) ReadFromV2(m netmap.PlacementPolicy) error {
return p.readFromV2(m, true)
}
// WriteToV2 writes PlacementPolicy to the session.Token message.
// The message must not be nil.
//
// See also ReadFromV2.
func (p PlacementPolicy) WriteToV2(m *netmap.PlacementPolicy) {
m.SetContainerBackupFactor(p.backupFactor)
m.SetFilters(p.filters)
m.SetSelectors(p.selectors)
m.SetReplicas(p.replicas)
m.SetUnique(p.unique)
}
// ReplicaDescriptor replica descriptor characterizes replicas of objects from
// the subset selected by a particular Selector.
type ReplicaDescriptor struct {
m netmap.Replica
}
// SetNumberOfObjects sets number of object replicas.
func (r *ReplicaDescriptor) SetNumberOfObjects(c uint32) {
r.m.SetCount(c)
}
// NumberOfObjects returns number set using SetNumberOfObjects.
//
// Zero ReplicaDescriptor has zero number of objects.
func (r ReplicaDescriptor) NumberOfObjects() uint32 {
return r.m.GetCount()
}
// SetSelectorName sets name of the related Selector.
//
// Zero ReplicaDescriptor references to the root bucket's selector: it contains
// all possible nodes to store the object.
func (r *ReplicaDescriptor) SetSelectorName(s string) {
r.m.SetSelector(s)
}
// AddReplicas adds a bunch object replica's characteristics.
//
// See also IterateReplicas.
func (p *PlacementPolicy) AddReplicas(rs ...ReplicaDescriptor) {
off := len(p.replicas)
p.replicas = append(p.replicas, make([]netmap.Replica, len(rs))...)
for i := range rs {
p.replicas[off+i] = rs[i].m
}
}
// NumberOfReplicas returns number of replica descriptors set using AddReplicas.
//
// Zero PlacementPolicy has no replicas which is incorrect according to the
// FrostFS API protocol.
func (p PlacementPolicy) NumberOfReplicas() int {
return len(p.replicas)
}
// ReplicaNumberByIndex returns number of object replicas from the i-th replica
// descriptor. Index MUST be in range [0; NumberOfReplicas()).
//
// Zero PlacementPolicy has no replicas.
func (p PlacementPolicy) ReplicaNumberByIndex(i int) uint32 {
return p.replicas[i].GetCount()
}
// SetContainerBackupFactor sets container backup factor: it controls how deep
// FrostFS will search for nodes alternatives to include into container's nodes subset.
//
// Zero PlacementPolicy has zero container backup factor.
func (p *PlacementPolicy) SetContainerBackupFactor(f uint32) {
p.backupFactor = f
}
// SetUnique sets the unique flag: it controls whether the selected replica buckets
// are disjoint or not.
//
// Zero PlacementPolicy has false unique flag.
func (p *PlacementPolicy) SetUnique(b bool) {
p.unique = b
}
// Selector describes the bucket selection operator: choose a number of nodes
// from the bucket taking the nearest nodes to the related container by hash distance.
type Selector struct {
m netmap.Selector
}
// SetName sets name with which the Selector can be referenced.
//
// Zero Selector is unnamed.
func (s *Selector) SetName(name string) {
s.m.SetName(name)
}
// SetNumberOfNodes sets number of nodes to select from the bucket.
//
// Zero Selector selects nothing.
func (s *Selector) SetNumberOfNodes(num uint32) {
s.m.SetCount(num)
}
// SelectByBucketAttribute sets attribute of the bucket to select nodes from.
//
// Zero Selector has empty attribute.
func (s *Selector) SelectByBucketAttribute(bucket string) {
s.m.SetAttribute(bucket)
}
// SetClause sets the clause for the Selector.
func (s *Selector) SetClause(clause netmap.Clause) {
s.m.SetClause(clause)
}
// SelectSame makes selection algorithm to select only nodes having the same values
// of the bucket attribute.
//
// Zero Selector doesn't specify selection modifier so nodes are selected randomly.
//
// See also SelectByBucketAttribute.
func (s *Selector) SelectSame() {
s.m.SetClause(netmap.Same)
}
// SelectDistinct makes selection algorithm to select only nodes having the different values
// of the bucket attribute.
//
// Zero Selector doesn't specify selection modifier so nodes are selected randomly.
//
// See also SelectByBucketAttribute.
func (s *Selector) SelectDistinct() {
s.m.SetClause(netmap.Distinct)
}
// SetFilterName sets reference to pre-filtering nodes for selection.
//
// Zero Selector has no filtering reference.
//
// See also Filter.SetName.
func (s *Selector) SetFilterName(f string) {
s.m.SetFilter(f)
}
// AddSelectors adds a Selector bunch to form the subset of the nodes
// to store container objects.
//
// Zero PlacementPolicy does not declare selectors.
func (p *PlacementPolicy) AddSelectors(ss ...Selector) {
off := len(p.selectors)
p.selectors = append(p.selectors, make([]netmap.Selector, len(ss))...)
for i := range ss {
p.selectors[off+i] = ss[i].m
}
}
// Filter contains rules for filtering the node sets.
type Filter struct {
m netmap.Filter
}
// SetName sets name with which the Filter can be referenced or, for inner filters,
// to which the Filter references. Top-level filters MUST be named. The name
// MUST NOT be '*'.
//
// Zero Filter is unnamed.
func (x *Filter) SetName(name string) {
x.m.SetName(name)
}
func (x *Filter) setAttribute(key string, op netmap.Operation, val string) {
x.m.SetKey(key)
x.m.SetOp(op)
x.m.SetValue(val)
}
// Equal applies the rule to accept only nodes with the same attribute value.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) Equal(key, value string) {
x.setAttribute(key, netmap.EQ, value)
}
// NotEqual applies the rule to accept only nodes with the distinct attribute value.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) NotEqual(key, value string) {
x.setAttribute(key, netmap.NE, value)
}
// NumericGT applies the rule to accept only nodes with the numeric attribute
// greater than given number.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) NumericGT(key string, num int64) {
x.setAttribute(key, netmap.GT, strconv.FormatInt(num, 10))
}
// NumericGE applies the rule to accept only nodes with the numeric attribute
// greater than or equal to given number.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) NumericGE(key string, num int64) {
x.setAttribute(key, netmap.GE, strconv.FormatInt(num, 10))
}
// NumericLT applies the rule to accept only nodes with the numeric attribute
// less than given number.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) NumericLT(key string, num int64) {
x.setAttribute(key, netmap.LT, strconv.FormatInt(num, 10))
}
// NumericLE applies the rule to accept only nodes with the numeric attribute
// less than or equal to given number.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) NumericLE(key string, num int64) {
x.setAttribute(key, netmap.LE, strconv.FormatInt(num, 10))
}
func (x *Filter) setInnerFilters(op netmap.Operation, filters []Filter) {
x.setAttribute("", op, "")
inner := x.m.GetFilters()
if rem := len(filters) - len(inner); rem > 0 {
inner = append(inner, make([]netmap.Filter, rem)...)
}
for i := range filters {
inner[i] = filters[i].m
}
x.m.SetFilters(inner)
}
// LogicalOR applies the rule to accept only nodes which satisfy at least one
// of the given filters.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) LogicalOR(filters ...Filter) {
x.setInnerFilters(netmap.OR, filters)
}
// LogicalAND applies the rule to accept only nodes which satisfy all the given
// filters.
//
// Method SHOULD NOT be called along with other similar methods.
func (x *Filter) LogicalAND(filters ...Filter) {
x.setInnerFilters(netmap.AND, filters)
}
// AddFilters adds a Filter bunch that will be applied when selecting nodes.
//
// Zero PlacementPolicy has no filters.
func (p *PlacementPolicy) AddFilters(fs ...Filter) {
off := len(p.filters)
p.filters = append(p.filters, make([]netmap.Filter, len(fs))...)
for i := range fs {
p.filters[off+i] = fs[i].m
}
}
// WriteStringTo encodes PlacementPolicy into human-readably query and writes
// the result into w. Returns w's errors directly.
//
// See also DecodeString.
// nolint: funlen
func (p PlacementPolicy) WriteStringTo(w io.StringWriter) (err error) {
if p.unique {
if _, err := w.WriteString("UNIQUE\n"); err != nil {
return err
}
}
delim := ""
for i := range p.replicas {
c := p.replicas[i].GetCount()
s := p.replicas[i].GetSelector()
if s != "" {
_, err = w.WriteString(fmt.Sprintf("%sREP %d IN %s", delim, c, s))
} else {
_, err = w.WriteString(fmt.Sprintf("%sREP %d", delim, c))
}
if err != nil {
return err
}
delim = "\n"
}
if p.backupFactor > 0 {
_, err = w.WriteString(fmt.Sprintf("\nCBF %d", p.backupFactor))
if err != nil {
return err
}
}
var s string
for i := range p.selectors {
_, err = w.WriteString(fmt.Sprintf("\nSELECT %d", p.selectors[i].GetCount()))
if err != nil {
return err
}
if s = p.selectors[i].GetAttribute(); s != "" {
var clause string
switch p.selectors[i].GetClause() {
case netmap.Same:
clause = "SAME "
case netmap.Distinct:
clause = "DISTINCT "
default:
clause = ""
}
_, err = w.WriteString(fmt.Sprintf(" IN %s%s", clause, s))
if err != nil {
return err
}
}
if s = p.selectors[i].GetFilter(); s != "" {
_, err = w.WriteString(" FROM " + s)
if err != nil {
return err
}
}
if s = p.selectors[i].GetName(); s != "" {
_, err = w.WriteString(" AS " + s)
if err != nil {
return err
}
}
}
for i := range p.filters {
_, err = w.WriteString("\nFILTER ")
if err != nil {
return err
}
err = writeFilterStringTo(w, p.filters[i], false)
if err != nil {
return err
}
}
return nil
}
func writeFilterStringTo(w io.StringWriter, f netmap.Filter, mayNeedOuterBrackets bool) error {
var err error
var s string
op := f.GetOp()
unspecified := op == 0
if s = f.GetKey(); s != "" {
_, err = w.WriteString(fmt.Sprintf("%s %s %s", escapeString(s), op, escapeString(f.GetValue())))
if err != nil {
return err
}
} else if s = f.GetName(); unspecified && s != "" {
_, err = w.WriteString(fmt.Sprintf("@%s", s))
if err != nil {
return err
}
}
inner := f.GetFilters()
if op == netmap.NOT {
_, err = w.WriteString(op.String() + " (")
if err != nil {
return err
}
err = writeFilterStringTo(w, inner[0], false)
if err != nil {
return err
}
_, err = w.WriteString(")")
if err != nil {
return err
}
} else {
useBrackets := mayNeedOuterBrackets && op == netmap.OR && len(inner) > 1
if useBrackets {
_, err = w.WriteString("(")
if err != nil {
return err
}
}
for i := range inner {
if i != 0 {
_, err = w.WriteString(" " + op.String() + " ")
if err != nil {
return err
}
}
err = writeFilterStringTo(w, inner[i], true)
if err != nil {
return err
}
}
if useBrackets {
_, err = w.WriteString(")")
if err != nil {
return err
}
}
}
if s = f.GetName(); s != "" && !unspecified {
_, err = w.WriteString(" AS " + s)
if err != nil {
return err
}
}
return nil
}
// DecodeString decodes PlacementPolicy from the string composed using
// WriteStringTo. Returns error if s is malformed.
func (p *PlacementPolicy) DecodeString(s string) error {
var v policyVisitor
input := antlr.NewInputStream(s)
lexer := parser.NewQueryLexer(input)
lexer.RemoveErrorListeners()
lexer.AddErrorListener(&v)
stream := antlr.NewCommonTokenStream(lexer, 0)
pp := parser.NewQuery(stream)
pp.BuildParseTrees = true
pp.RemoveErrorListeners()
pp.AddErrorListener(&v)
pl := pp.Policy().Accept(&v)
if len(v.errors) != 0 {
return v.errors[0]
}
parsed, ok := pl.(*PlacementPolicy)
if !ok {
return fmt.Errorf("unexpected parsed instance type %T", pl)
} else if parsed == nil {
return errors.New("parsed nil value")
}
if err := validatePolicy(*parsed); err != nil {
return fmt.Errorf("invalid policy: %w", err)
}
*p = *parsed
return nil
}
// SelectFilterExpr is an expression containing only selectors and filters.
// It's useful to evaluate their effect before being used in a policy.
type SelectFilterExpr struct {
cbf uint32
selector *netmap.Selector
filters []netmap.Filter
}
// DecodeString decodes a string into a SelectFilterExpr.
// Returns an error if s is malformed.
func DecodeSelectFilterString(s string) (*SelectFilterExpr, error) {
var v policyVisitor
input := antlr.NewInputStream(s)
lexer := parser.NewQueryLexer(input)
lexer.RemoveErrorListeners()
lexer.AddErrorListener(&v)
stream := antlr.NewCommonTokenStream(lexer, 0)
pp := parser.NewQuery(stream)
pp.BuildParseTrees = true
pp.RemoveErrorListeners()
pp.AddErrorListener(&v)
sfExpr := pp.SelectFilterExpr().Accept(&v)
if len(v.errors) != 0 {
return nil, v.errors[0]
}
parsed, ok := sfExpr.(*SelectFilterExpr)
if !ok {
return nil, fmt.Errorf("unexpected parsed instance type %T", sfExpr)
}
return parsed, nil
}
var (
// errUnknownFilter is returned when a value of FROM in a query is unknown.
errUnknownFilter = errors.New("filter not found")
// errUnknownSelector is returned when a value of IN is unknown.
errUnknownSelector = errors.New("policy: selector not found")
// errSyntaxError is returned for errors found by ANTLR parser.
errSyntaxError = errors.New("policy: syntax error")
// errRedundantSelector is returned for errors found by selectors policy validator.
errRedundantSelector = errors.New("policy: found redundant selector")
// errUnnamedSelector is returned for errors found by selectors policy validator.
errUnnamedSelector = errors.New("policy: unnamed selectors are useless, " +
"make sure to pair REP and SELECT clauses: \"REP .. IN X\" + \"SELECT ... AS X\"")
// errRedundantSelector is returned for errors found by filters policy validator.
errRedundantFilter = errors.New("policy: found redundant filter")
)
type policyVisitor struct {
errors []error
parser.BaseQueryVisitor
antlr.DefaultErrorListener
}
func (p *policyVisitor) SyntaxError(_ antlr.Recognizer, _ any, line, column int, msg string, _ antlr.RecognitionException) {
p.reportError(fmt.Errorf("%w: line %d:%d %s", errSyntaxError, line, column, msg))
}
func (p *policyVisitor) reportError(err error) any {
p.errors = append(p.errors, err)
return nil
}
// VisitPolicy implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitPolicy(ctx *parser.PolicyContext) any {
if len(p.errors) != 0 {
return nil
}
pl := new(PlacementPolicy)
pl.unique = ctx.UNIQUE() != nil
repStmts := ctx.AllRepStmt()
pl.replicas = make([]netmap.Replica, 0, len(repStmts))
for _, r := range repStmts {
res, ok := r.Accept(p).(*netmap.Replica)
if !ok {
return nil
}
pl.replicas = append(pl.replicas, *res)
}
if cbfStmt := ctx.CbfStmt(); cbfStmt != nil {
cbf, ok := cbfStmt.(*parser.CbfStmtContext).Accept(p).(uint32)
if !ok {
return nil
}
pl.SetContainerBackupFactor(cbf)
}
selStmts := ctx.AllSelectStmt()
pl.selectors = make([]netmap.Selector, 0, len(selStmts))
for _, s := range selStmts {
res, ok := s.Accept(p).(*netmap.Selector)
if !ok {
return nil
}
pl.selectors = append(pl.selectors, *res)
}
filtStmts := ctx.AllFilterStmt()
pl.filters = make([]netmap.Filter, 0, len(filtStmts))
for _, f := range filtStmts {
pl.filters = append(pl.filters, *f.Accept(p).(*netmap.Filter))
}
return pl
}
func (p *policyVisitor) VisitSelectFilterExpr(ctx *parser.SelectFilterExprContext) any {
if len(p.errors) != 0 {
return nil
}
sfExpr := new(SelectFilterExpr)
if cbfStmt := ctx.CbfStmt(); cbfStmt != nil {
cbf, ok := cbfStmt.(*parser.CbfStmtContext).Accept(p).(uint32)
if !ok {
return nil
}
sfExpr.cbf = cbf
}
if selStmt := ctx.SelectStmt(); selStmt != nil {
sel, ok := selStmt.Accept(p).(*netmap.Selector)
if !ok {
return nil
}
sfExpr.selector = sel
}
filtStmts := ctx.AllFilterStmt()
sfExpr.filters = make([]netmap.Filter, 0, len(filtStmts))
for _, f := range filtStmts {
sfExpr.filters = append(sfExpr.filters, *f.Accept(p).(*netmap.Filter))
}
return sfExpr
}
func (p *policyVisitor) VisitCbfStmt(ctx *parser.CbfStmtContext) any {
cbf, err := strconv.ParseUint(ctx.GetBackupFactor().GetText(), 10, 32)
if err != nil {
return p.reportError(errInvalidNumber)
}
return uint32(cbf)
}
// VisitRepStmt implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitRepStmt(ctx *parser.RepStmtContext) any {
num, err := strconv.ParseUint(ctx.GetCount().GetText(), 10, 32)
if err != nil {
return p.reportError(errInvalidNumber)
}
rs := new(netmap.Replica)
rs.SetCount(uint32(num))
if sel := ctx.GetSelector(); sel != nil {
rs.SetSelector(sel.GetText())
}
return rs
}
// VisitSelectStmt implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitSelectStmt(ctx *parser.SelectStmtContext) any {
res, err := strconv.ParseUint(ctx.GetCount().GetText(), 10, 32)
if err != nil {
return p.reportError(errInvalidNumber)
}
s := new(netmap.Selector)
s.SetCount(uint32(res))
if clStmt := ctx.Clause(); clStmt != nil {
s.SetClause(clauseFromString(clStmt.GetText()))
}
if bStmt := ctx.GetBucket(); bStmt != nil {
s.SetAttribute(ctx.GetBucket().GetText())
}
s.SetFilter(ctx.GetFilter().GetText()) // either ident or wildcard
if ctx.AS() != nil {
s.SetName(ctx.GetName().GetText())
}
return s
}
// VisitFilterStmt implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitFilterStmt(ctx *parser.FilterStmtContext) any {
f := p.VisitFilterExpr(ctx.GetExpr().(*parser.FilterExprContext)).(*netmap.Filter)
f.SetName(ctx.GetName().GetText())
return f
}
func (p *policyVisitor) VisitFilterExpr(ctx *parser.FilterExprContext) any {
if eCtx := ctx.Expr(); eCtx != nil {
return eCtx.Accept(p)
}
if inner := ctx.GetInner(); inner != nil {
return inner.Accept(p)
}
f := new(netmap.Filter)
op := operationFromString(ctx.GetOp().GetText())
f.SetOp(op)
if op == netmap.NOT {
f1 := *ctx.GetF1().Accept(p).(*netmap.Filter)
f.SetFilters([]netmap.Filter{f1})
return f
}
f1 := *ctx.GetF1().Accept(p).(*netmap.Filter)
f2 := *ctx.GetF2().Accept(p).(*netmap.Filter)
// Consider f1=(.. AND ..) AND f2. This can be merged because our AND operation
// is of arbitrary arity. ANTLR generates left-associative parse-tree by default.
if f1.GetOp() == op {
f.SetFilters(append(f1.GetFilters(), f2))
return f
}
f.SetFilters([]netmap.Filter{f1, f2})
return f
}
// VisitFilterKey implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitFilterKey(ctx *parser.FilterKeyContext) any {
if id := ctx.Ident(); id != nil {
return id.GetText()
}
str := ctx.STRING().GetText()
return str[1 : len(str)-1]
}
func (p *policyVisitor) VisitFilterValue(ctx *parser.FilterValueContext) any {
if id := ctx.Ident(); id != nil {
return id.GetText()
}
if num := ctx.Number(); num != nil {
return num.GetText()
}
str := ctx.STRING().GetText()
return str[1 : len(str)-1]
}
// VisitExpr implements parser.QueryVisitor interface.
func (p *policyVisitor) VisitExpr(ctx *parser.ExprContext) any {
f := new(netmap.Filter)
if flt := ctx.GetFilter(); flt != nil {
f.SetName(flt.GetText())
return f
}
key := ctx.GetKey().Accept(p)
opStr := ctx.SIMPLE_OP().GetText()
value := ctx.GetValue().Accept(p)
f.SetKey(key.(string))
f.SetOp(operationFromString(opStr))
f.SetValue(value.(string))
return f
}
// validatePolicy checks high-level constraints such as filter link in SELECT
// being actually defined in FILTER section.
func validatePolicy(p PlacementPolicy) error {
canOmitNames := len(p.selectors) == 1 && len(p.replicas) == 1
seenFilters := map[string]bool{}
expectedFilters := map[string]struct{}{}
for i := range p.filters {
seenFilters[p.filters[i].GetName()] = true
for _, f := range p.filters[i].GetFilters() {
if f.GetName() != "" {
expectedFilters[f.GetName()] = struct{}{}
}
}
}
seenSelectors := map[string]*netmap.Selector{}
for i := range p.selectors {
if p.selectors[i].GetName() == "" && !canOmitNames {
return errUnnamedSelector
}
if flt := p.selectors[i].GetFilter(); flt != mainFilterName {
expectedFilters[flt] = struct{}{}
if !seenFilters[flt] {
return fmt.Errorf("%w: '%s'", errUnknownFilter, flt)
}
}
seenSelectors[p.selectors[i].GetName()] = &p.selectors[i]
}
for _, f := range p.filters {
if _, ok := expectedFilters[f.GetName()]; !ok {
return fmt.Errorf("%w: '%s'", errRedundantFilter, f.GetName())
}
}
expectedSelectors := map[string]struct{}{}
for i := range p.replicas {
selName := p.replicas[i].GetSelector()
if selName != "" || canOmitNames {
expectedSelectors[selName] = struct{}{}
if seenSelectors[selName] == nil {
return fmt.Errorf("%w: '%s'", errUnknownSelector, selName)
}
}
}
for _, s := range p.selectors {
if _, ok := expectedSelectors[s.GetName()]; !ok {
return fmt.Errorf("%w: to use selector '%s' use keyword IN", errRedundantSelector, s.GetName())
}
}
return nil
}
func clauseFromString(s string) (c netmap.Clause) {
if !c.FromString(strings.ToUpper(s)) {
// Such errors should be handled by ANTLR code thus this panic.
panic(fmt.Errorf("BUG: invalid clause: %s", c))
}
return
}
func operationFromString(s string) (op netmap.Operation) {
if !op.FromString(strings.ToUpper(s)) {
// Such errors should be handled by ANTLR code thus this panic.
panic(fmt.Errorf("BUG: invalid operation: %s", op))
}
return
}
// escapeString returns single quote wrapped string if it contains special
// characters '-' and whitespace.
func escapeString(s string) string {
if strings.ContainsAny(s, " -\t") {
return "'" + s + "'"
}
return s
}