frostfs-sdk-go/netmap/aggregator.go
Evgenii Stratonikov 262c57ef37 netmap: Reduce allocations in getSelection()
```
goos: linux
goarch: amd64
pkg: git.frostfs.info/TrueCloudLab/frostfs-sdk-go/netmap
cpu: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
                                                              │     new      │                alloc                 │
                                                              │    sec/op    │    sec/op     vs base                │
Netmap_ContainerNodes/REP_2-8                                   9.227µ ± 13%   8.677µ ±  6%        ~ (p=0.165 n=10)
Netmap_ContainerNodes/REP_2_IN_X_CBF_2_SELECT_2_FROM_*_AS_X-8   9.189µ ±  7%   7.946µ ± 14%  -13.53% (p=0.001 n=10)
geomean                                                         9.208µ         8.303µ         -9.82%

                                                              │     new      │                alloc                │
                                                              │     B/op     │     B/op      vs base               │
Netmap_ContainerNodes/REP_2-8                                   8.320Ki ± 0%   7.734Ki ± 0%  -7.04% (p=0.000 n=10)
Netmap_ContainerNodes/REP_2_IN_X_CBF_2_SELECT_2_FROM_*_AS_X-8   7.742Ki ± 0%   7.156Ki ± 0%  -7.57% (p=0.000 n=10)
geomean                                                         8.026Ki        7.440Ki       -7.31%

                                                              │     new     │               alloc                │
                                                              │  allocs/op  │ allocs/op   vs base                │
Netmap_ContainerNodes/REP_2-8                                   122.00 ± 0%   92.00 ± 0%  -24.59% (p=0.000 n=10)
Netmap_ContainerNodes/REP_2_IN_X_CBF_2_SELECT_2_FROM_*_AS_X-8   122.00 ± 0%   92.00 ± 0%  -24.59% (p=0.000 n=10)
geomean                                                          122.0        92.00       -24.59%
```

Signed-off-by: Evgenii Stratonikov <e.stratonikov@yadro.com>
2024-07-12 10:34:03 +03:00

167 lines
2.9 KiB
Go

package netmap
import "slices"
type (
// aggregator can calculate some value across all netmap
// such as median, minimum or maximum.
aggregator interface {
Add(float64)
Compute() float64
}
// normalizer normalizes weight.
normalizer interface {
Normalize(w float64) float64
}
meanAgg struct {
mean float64
count int
}
minAgg struct {
min float64
minFound bool
}
meanIQRAgg struct {
k float64
arr []float64
}
reverseMinNorm struct {
min float64
}
sigmoidNorm struct {
scale float64
}
// weightFunc calculates n's weight.
weightFunc = func(NodeInfo) float64
)
var (
_ aggregator = (*meanAgg)(nil)
_ aggregator = (*minAgg)(nil)
_ aggregator = (*meanIQRAgg)(nil)
_ normalizer = (*reverseMinNorm)(nil)
_ normalizer = (*sigmoidNorm)(nil)
)
// newWeightFunc returns weightFunc which multiplies normalized
// capacity and price.
func newWeightFunc(capNorm, priceNorm normalizer) weightFunc {
return func(n NodeInfo) float64 {
return capNorm.Normalize(float64(n.capacity())) * priceNorm.Normalize(float64(n.Price()))
}
}
// newMeanAgg returns an aggregator which
// computes mean value by recalculating it on
// every addition.
func newMeanAgg() aggregator {
return new(meanAgg)
}
// newMinAgg returns an aggregator which
// computes min value.
func newMinAgg() aggregator {
return new(minAgg)
}
// newReverseMinNorm returns a normalizer which
// normalize values in range of 0.0 to 1.0 to a minimum value.
func newReverseMinNorm(min float64) normalizer {
return &reverseMinNorm{min: min}
}
// newSigmoidNorm returns a normalizer which
// normalize values in range of 0.0 to 1.0 to a scaled sigmoid.
func newSigmoidNorm(scale float64) normalizer {
return &sigmoidNorm{scale: scale}
}
func (a *meanAgg) Add(n float64) {
c := a.count + 1
a.mean = a.mean*(float64(a.count)/float64(c)) + n/float64(c)
a.count++
}
func (a *meanAgg) Compute() float64 {
return a.mean
}
func (a *minAgg) Add(n float64) {
if !a.minFound {
a.min = n
a.minFound = true
return
}
if n < a.min {
a.min = n
}
}
func (a *minAgg) Compute() float64 {
return a.min
}
func (a *meanIQRAgg) clear() {
a.k = 0
a.arr = a.arr[:0]
}
func (a *meanIQRAgg) Add(n float64) {
a.arr = append(a.arr, n)
}
func (a *meanIQRAgg) Compute() float64 {
l := len(a.arr)
if l == 0 {
return 0
}
slices.Sort(a.arr)
var min, max float64
const minLn = 4
if l < minLn {
min, max = a.arr[0], a.arr[l-1]
} else {
start, end := l/minLn, l*3/minLn-1
iqr := a.k * (a.arr[end] - a.arr[start])
min, max = a.arr[start]-iqr, a.arr[end]+iqr
}
count := 0
sum := float64(0)
for _, e := range a.arr {
if e >= min && e <= max {
sum += e
count++
}
}
return sum / float64(count)
}
func (r *reverseMinNorm) Normalize(w float64) float64 {
return (r.min + 1) / (w + 1)
}
func (r *sigmoidNorm) Normalize(w float64) float64 {
if r.scale == 0 {
return 0
}
x := w / r.scale
return x / (1 + x)
}