hrw/hrw.go
Alex Vanin 58a8ce4e47
Added weighted HRW sorting (#5)
* Added weighted HRW sorting

This commit proposes renaming of old `SortByWeight` functions to `Sort`
and implementation of `SortByWeight` function with explicit weights in
arguments. `SortByWeight` function calculates normalized hashes of
nodes and normalized input weights. Then multiplies these values to
obtain node's actual weight for later sorting.

- renamed `SortByWeight` function to `Sort`
- added `SortByWeight`, `SortSliceByWeightValue` and
  `SortSliceBeWeightIndex` functions
- moved code with reflection processing into `prepareRule` function
- added tests and benchmarks for new weighted functions
- added benchmark results into README

* Fixed comments
2019-05-27 10:45:29 +03:00

285 lines
6.9 KiB
Go

// Package hrw implements Rendezvous hashing.
// http://en.wikipedia.org/wiki/Rendezvous_hashing.
package hrw
import (
"encoding/binary"
"reflect"
"sort"
"github.com/spaolacci/murmur3"
)
type (
swapper func(i, j int)
// Hasher interface used by SortSliceByValue
Hasher interface{ Hash() uint64 }
hashed struct {
length int
sorted []uint64
weight []uint64
}
weighted struct {
h hashed
normal []float64 // normalized input weights
}
)
func weight(x uint64, y uint64) uint64 {
acc := x ^ y
// here used mmh3 64 bit finalizer
// https://github.com/aappleby/smhasher/blob/61a0530f28277f2e850bfc39600ce61d02b518de/src/MurmurHash3.cpp#L81
acc ^= acc >> 33
acc = acc * 0xff51afd7ed558ccd
acc ^= acc >> 33
acc = acc * 0xc4ceb9fe1a85ec53
acc ^= acc >> 33
return acc
}
func (h hashed) Len() int { return h.length }
func (h hashed) Less(i, j int) bool { return h.weight[i] < h.weight[j] }
func (h hashed) Swap(i, j int) {
h.sorted[i], h.sorted[j] = h.sorted[j], h.sorted[i]
h.weight[i], h.weight[j] = h.weight[j], h.weight[i]
}
func (w weighted) Len() int { return w.h.length }
func (w weighted) Less(i, j int) bool {
// `maxUint64 - weight` makes least weight most valuable
// it is necessary for operation with normalized values
wi := float64(^uint64(0)-w.h.weight[i]) * w.normal[i]
wj := float64(^uint64(0)-w.h.weight[j]) * w.normal[j]
return wi > wj // higher weight must be placed lower to be first
}
func (w weighted) Swap(i, j int) { w.normal[i], w.normal[j] = w.normal[j], w.normal[i]; w.h.Swap(i, j) }
// Hash uses murmur3 hash to return uint64
func Hash(key []byte) uint64 {
return murmur3.Sum64(key)
}
// Sort receive nodes and hash, and sort it by weight
func Sort(nodes []uint64, hash uint64) []uint64 {
var (
l = len(nodes)
h = hashed{
length: l,
sorted: make([]uint64, 0, l),
weight: make([]uint64, 0, l),
}
)
for i, node := range nodes {
h.sorted = append(h.sorted, uint64(i))
h.weight = append(h.weight, weight(node, hash))
}
sort.Sort(h)
return h.sorted
}
// SortByWeight receive nodes and hash, and sort it by weight
func SortByWeight(nodes []uint64, weights []uint64, hash uint64) []uint64 {
var (
maxWeight uint64
l = len(nodes)
w = weighted{
h: hashed{
length: l,
sorted: make([]uint64, 0, l),
weight: make([]uint64, 0, l),
},
normal: make([]float64, 0, l),
}
)
// finding max weight to perform normalization
for i := range weights {
if maxWeight < weights[i] {
maxWeight = weights[i]
}
}
// if all nodes have 0-weights or weights are incorrect then sort uniformly
if maxWeight == 0 || l != len(nodes) {
return Sort(nodes, hash)
}
fMaxWeight := float64(maxWeight)
for i, node := range nodes {
w.h.sorted = append(w.h.sorted, uint64(i))
w.h.weight = append(w.h.weight, weight(node, hash))
w.normal = append(w.normal, float64(weights[i])/fMaxWeight)
}
sort.Sort(w)
return w.h.sorted
}
// SortSliceByValue received []T and hash to sort by value-weight
func SortSliceByValue(slice interface{}, hash uint64) {
rule := prepareRule(slice)
if rule != nil {
swap := reflect.Swapper(slice)
rule = Sort(rule, hash)
sortByRuleInverse(swap, uint64(len(rule)), rule)
}
}
// SortSliceByWeightValue received []T, weights and hash to sort by value-weight
func SortSliceByWeightValue(slice interface{}, weight []uint64, hash uint64) {
rule := prepareRule(slice)
if rule != nil {
swap := reflect.Swapper(slice)
rule = SortByWeight(rule, weight, hash)
sortByRuleInverse(swap, uint64(len(rule)), rule)
}
}
// SortSliceByIndex received []T and hash to sort by index-weight
func SortSliceByIndex(slice interface{}, hash uint64) {
length := uint64(reflect.ValueOf(slice).Len())
swap := reflect.Swapper(slice)
rule := make([]uint64, 0, length)
for i := uint64(0); i < length; i++ {
rule = append(rule, i)
}
rule = Sort(rule, hash)
sortByRuleInverse(swap, length, rule)
}
// SortSliceByWeightIndex received []T, weights and hash to sort by index-weight
func SortSliceByWeightIndex(slice interface{}, weight []uint64, hash uint64) {
length := uint64(reflect.ValueOf(slice).Len())
swap := reflect.Swapper(slice)
rule := make([]uint64, 0, length)
for i := uint64(0); i < length; i++ {
rule = append(rule, i)
}
rule = SortByWeight(rule, weight, hash)
sortByRuleInverse(swap, length, rule)
}
func sortByRuleDirect(swap swapper, length uint64, rule []uint64) {
done := make([]bool, length)
for i := uint64(0); i < length; i++ {
if done[i] {
continue
}
for j := rule[i]; !done[rule[j]]; j = rule[j] {
swap(int(i), int(j))
done[j] = true
}
}
}
func sortByRuleInverse(swap swapper, length uint64, rule []uint64) {
done := make([]bool, length)
for i := uint64(0); i < length; i++ {
if done[i] {
continue
}
for j := i; !done[rule[j]]; j = rule[j] {
swap(int(j), int(rule[j]))
done[j] = true
}
}
}
func prepareRule(slice interface{}) []uint64 {
t := reflect.TypeOf(slice)
if t.Kind() != reflect.Slice {
return nil
}
var (
val = reflect.ValueOf(slice)
length = val.Len()
rule = make([]uint64, 0, length)
)
if length == 0 {
return nil
}
switch slice := slice.(type) {
case []int:
var key = make([]byte, 16)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint64(key, uint64(slice[i]))
rule = append(rule, Hash(key))
}
case []uint:
var key = make([]byte, 16)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint64(key, uint64(slice[i]))
rule = append(rule, Hash(key))
}
case []int8:
for i := 0; i < length; i++ {
key := byte(slice[i])
rule = append(rule, Hash([]byte{key}))
}
case []uint8:
for i := 0; i < length; i++ {
key := slice[i]
rule = append(rule, Hash([]byte{key}))
}
case []int16:
var key = make([]byte, 8)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint16(key, uint16(slice[i]))
rule = append(rule, Hash(key))
}
case []uint16:
var key = make([]byte, 8)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint16(key, slice[i])
rule = append(rule, Hash(key))
}
case []int32:
var key = make([]byte, 16)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint32(key, uint32(slice[i]))
rule = append(rule, Hash(key))
}
case []uint32:
var key = make([]byte, 16)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint32(key, slice[i])
rule = append(rule, Hash(key))
}
case []int64:
var key = make([]byte, 32)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint64(key, uint64(slice[i]))
rule = append(rule, Hash(key))
}
case []uint64:
var key = make([]byte, 32)
for i := 0; i < length; i++ {
binary.BigEndian.PutUint64(key, slice[i])
rule = append(rule, Hash(key))
}
case []string:
for i := 0; i < length; i++ {
rule = append(rule, Hash([]byte(slice[i])))
}
default:
if _, ok := val.Index(0).Interface().(Hasher); !ok {
return nil
}
for i := 0; i < length; i++ {
h := val.Index(i).Interface().(Hasher)
rule = append(rule, h.Hash())
}
}
return rule
}