neo-go/pkg/core/mpt/trie.go

391 lines
9.1 KiB
Go
Raw Normal View History

package mpt
import (
"bytes"
"errors"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/util"
)
// Trie is an MPT trie storing all key-value pairs.
type Trie struct {
Store *storage.MemCachedStore
root Node
}
// ErrNotFound is returned when requested trie item is missing.
var ErrNotFound = errors.New("item not found")
// NewTrie returns new MPT trie. It accepts a MemCachedStore to decouple storage errors from logic errors
// so that all storage errors are processed during `store.Persist()` at the caller.
// This also has the benefit, that every `Put` can be considered an atomic operation.
func NewTrie(root Node, store *storage.MemCachedStore) *Trie {
if root == nil {
root = new(HashNode)
}
return &Trie{
Store: store,
root: root,
}
}
// Get returns value for the provided key in t.
func (t *Trie) Get(key []byte) ([]byte, error) {
path := toNibbles(key)
r, bs, err := t.getWithPath(t.root, path)
if err != nil {
return nil, err
}
t.root = r
return bs, nil
}
// getWithPath returns value the provided path in a subtrie rooting in curr.
// It also returns a current node with all hash nodes along the path
// replaced to their "unhashed" counterparts.
func (t *Trie) getWithPath(curr Node, path []byte) (Node, []byte, error) {
switch n := curr.(type) {
case *LeafNode:
if len(path) == 0 {
return curr, copySlice(n.value), nil
}
case *BranchNode:
i, path := splitPath(path)
r, bs, err := t.getWithPath(n.Children[i], path)
if err != nil {
return nil, nil, err
}
n.Children[i] = r
return n, bs, nil
case *HashNode:
if !n.IsEmpty() {
if r, err := t.getFromStore(n.hash); err == nil {
return t.getWithPath(r, path)
}
}
case *ExtensionNode:
if bytes.HasPrefix(path, n.key) {
r, bs, err := t.getWithPath(n.next, path[len(n.key):])
if err != nil {
return nil, nil, err
}
n.next = r
return curr, bs, err
}
default:
panic("invalid MPT node type")
}
return curr, nil, ErrNotFound
}
// Put puts key-value pair in t.
func (t *Trie) Put(key, value []byte) error {
if len(key) > MaxKeyLength {
return errors.New("key is too big")
} else if len(value) > MaxValueLength {
return errors.New("value is too big")
}
if len(value) == 0 {
return t.Delete(key)
}
path := toNibbles(key)
n := NewLeafNode(value)
r, err := t.putIntoNode(t.root, path, n)
if err != nil {
return err
}
t.root = r
return nil
}
// putIntoLeaf puts val to trie if current node is a Leaf.
// It returns Node if curr needs to be replaced and error if any.
func (t *Trie) putIntoLeaf(curr *LeafNode, path []byte, val Node) (Node, error) {
v := val.(*LeafNode)
if len(path) == 0 {
return v, nil
}
b := NewBranchNode()
b.Children[path[0]] = newSubTrie(path[1:], v)
b.Children[lastChild] = curr
return b, nil
}
// putIntoBranch puts val to trie if current node is a Branch.
// It returns Node if curr needs to be replaced and error if any.
func (t *Trie) putIntoBranch(curr *BranchNode, path []byte, val Node) (Node, error) {
i, path := splitPath(path)
r, err := t.putIntoNode(curr.Children[i], path, val)
if err != nil {
return nil, err
}
curr.Children[i] = r
curr.invalidateCache()
return curr, nil
}
// putIntoExtension puts val to trie if current node is an Extension.
// It returns Node if curr needs to be replaced and error if any.
func (t *Trie) putIntoExtension(curr *ExtensionNode, path []byte, val Node) (Node, error) {
if bytes.HasPrefix(path, curr.key) {
r, err := t.putIntoNode(curr.next, path[len(curr.key):], val)
if err != nil {
return nil, err
}
curr.next = r
curr.invalidateCache()
return curr, nil
}
pref := lcp(curr.key, path)
lp := len(pref)
keyTail := curr.key[lp:]
pathTail := path[lp:]
s1 := newSubTrie(keyTail[1:], curr.next)
b := NewBranchNode()
b.Children[keyTail[0]] = s1
i, pathTail := splitPath(pathTail)
s2 := newSubTrie(pathTail, val)
b.Children[i] = s2
if lp > 0 {
return NewExtensionNode(copySlice(pref), b), nil
}
return b, nil
}
// putIntoHash puts val to trie if current node is a HashNode.
// It returns Node if curr needs to be replaced and error if any.
func (t *Trie) putIntoHash(curr *HashNode, path []byte, val Node) (Node, error) {
if curr.IsEmpty() {
return newSubTrie(path, val), nil
}
result, err := t.getFromStore(curr.hash)
if err != nil {
return nil, err
}
return t.putIntoNode(result, path, val)
}
// newSubTrie create new trie containing node at provided path.
func newSubTrie(path []byte, val Node) Node {
if len(path) == 0 {
return val
}
return NewExtensionNode(path, val)
}
func (t *Trie) putIntoNode(curr Node, path []byte, val Node) (Node, error) {
switch n := curr.(type) {
case *LeafNode:
return t.putIntoLeaf(n, path, val)
case *BranchNode:
return t.putIntoBranch(n, path, val)
case *ExtensionNode:
return t.putIntoExtension(n, path, val)
case *HashNode:
return t.putIntoHash(n, path, val)
default:
panic("invalid MPT node type")
}
}
// Delete removes key from trie.
// It returns no error on missing key.
func (t *Trie) Delete(key []byte) error {
path := toNibbles(key)
r, err := t.deleteFromNode(t.root, path)
if err != nil {
return err
}
t.root = r
return nil
}
func (t *Trie) deleteFromBranch(b *BranchNode, path []byte) (Node, error) {
i, path := splitPath(path)
r, err := t.deleteFromNode(b.Children[i], path)
if err != nil {
return nil, err
}
b.Children[i] = r
b.invalidateCache()
var count, index int
for i := range b.Children {
h, ok := b.Children[i].(*HashNode)
if !ok || !h.IsEmpty() {
index = i
count++
}
}
// count is >= 1 because branch node had at least 2 children before deletion.
if count > 1 {
return b, nil
}
c := b.Children[index]
if index == lastChild {
return c, nil
}
if h, ok := c.(*HashNode); ok {
c, err = t.getFromStore(h.Hash())
if err != nil {
return nil, err
}
}
if e, ok := c.(*ExtensionNode); ok {
e.key = append([]byte{byte(index)}, e.key...)
e.invalidateCache()
return e, nil
}
return NewExtensionNode([]byte{byte(index)}, c), nil
}
func (t *Trie) deleteFromExtension(n *ExtensionNode, path []byte) (Node, error) {
if !bytes.HasPrefix(path, n.key) {
return nil, ErrNotFound
}
r, err := t.deleteFromNode(n.next, path[len(n.key):])
if err != nil {
return nil, err
}
switch nxt := r.(type) {
case *ExtensionNode:
n.key = append(n.key, nxt.key...)
n.next = nxt.next
n.invalidateCache()
case *HashNode:
if nxt.IsEmpty() {
return nxt, nil
}
default:
n.next = r
}
return n, nil
}
func (t *Trie) deleteFromNode(curr Node, path []byte) (Node, error) {
switch n := curr.(type) {
case *LeafNode:
if len(path) == 0 {
return new(HashNode), nil
}
return nil, ErrNotFound
case *BranchNode:
return t.deleteFromBranch(n, path)
case *ExtensionNode:
return t.deleteFromExtension(n, path)
case *HashNode:
if n.IsEmpty() {
return nil, ErrNotFound
}
newNode, err := t.getFromStore(n.Hash())
if err != nil {
return nil, err
}
return t.deleteFromNode(newNode, path)
default:
panic("invalid MPT node type")
}
}
// StateRoot returns root hash of t.
func (t *Trie) StateRoot() util.Uint256 {
if hn, ok := t.root.(*HashNode); ok && hn.IsEmpty() {
return util.Uint256{}
}
return t.root.Hash()
}
func makeStorageKey(mptKey []byte) []byte {
return append([]byte{byte(storage.DataMPT)}, mptKey...)
}
// Flush puts every node in the trie except Hash ones to the storage.
// Because we care only about block-level changes, there is no need to put every
// new node to storage. Normally, flush should be called with every StateRoot persist, i.e.
// after every block.
func (t *Trie) Flush() {
t.flush(t.root)
}
func (t *Trie) flush(node Node) {
if node.IsFlushed() {
return
}
switch n := node.(type) {
case *BranchNode:
for i := range n.Children {
t.flush(n.Children[i])
}
case *ExtensionNode:
t.flush(n.next)
case *HashNode:
return
}
t.putToStore(node)
}
func (t *Trie) putToStore(n Node) {
if n.Type() == HashT {
panic("can't put hash node in trie")
}
_ = t.Store.Put(makeStorageKey(n.Hash().BytesBE()), n.Bytes()) // put in MemCached returns no errors
n.SetFlushed()
}
func (t *Trie) getFromStore(h util.Uint256) (Node, error) {
data, err := t.Store.Get(makeStorageKey(h.BytesBE()))
if err != nil {
return nil, err
}
var n NodeObject
r := io.NewBinReaderFromBuf(data)
n.DecodeBinary(r)
if r.Err != nil {
return nil, r.Err
}
return n.Node, nil
}
// Collapse compresses all nodes at depth n to the hash nodes.
// Note: this function does not perform any kind of storage flushing so
// `Flush()` should be called explicitly before invoking function.
func (t *Trie) Collapse(depth int) {
if depth < 0 {
panic("negative depth")
}
t.root = collapse(depth, t.root)
}
func collapse(depth int, node Node) Node {
if _, ok := node.(*HashNode); ok {
return node
} else if depth == 0 {
return NewHashNode(node.Hash())
}
switch n := node.(type) {
case *BranchNode:
for i := range n.Children {
n.Children[i] = collapse(depth-1, n.Children[i])
}
case *ExtensionNode:
n.next = collapse(depth-1, n.next)
case *LeafNode:
case *HashNode:
default:
panic("invalid MPT node type")
}
return node
}