neo-go/pkg/network/discovery_test.go

235 lines
6 KiB
Go
Raw Normal View History

package network
import (
"errors"
"net"
"slices"
"sync/atomic"
"testing"
"time"
"github.com/nspcc-dev/neo-go/pkg/network/capability"
"github.com/nspcc-dev/neo-go/pkg/network/payload"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
type fakeTransp struct {
retFalse atomic.Int32
started atomic.Bool
closed atomic.Bool
dialCh chan string
host string
port string
}
type fakeAPeer struct {
addr string
peer string
version *payload.Version
}
func (f *fakeAPeer) ConnectionAddr() string {
return f.addr
}
func (f *fakeAPeer) PeerAddr() net.Addr {
tcpAddr, err := net.ResolveTCPAddr("tcp", f.peer)
if err != nil {
panic(err)
}
return tcpAddr
}
func (f *fakeAPeer) Version() *payload.Version {
return f.version
}
func newFakeTransp(s *Server, addr string) Transporter {
tr := &fakeTransp{}
h, p, err := net.SplitHostPort(addr)
if err == nil {
tr.host = h
tr.port = p
}
return tr
}
func (ft *fakeTransp) Dial(addr string, timeout time.Duration) (AddressablePeer, error) {
var ret error
if ft.retFalse.Load() > 0 {
ret = errors.New("smth bad happened")
}
ft.dialCh <- addr
return &fakeAPeer{addr: addr, peer: addr}, ret
}
func (ft *fakeTransp) Accept() {
if ft.started.Load() {
panic("started twice")
}
ft.host = "0.0.0.0"
ft.port = "42"
ft.started.Store(true)
}
func (ft *fakeTransp) Proto() string {
return ""
}
func (ft *fakeTransp) HostPort() (string, string) {
return ft.host, ft.port
}
func (ft *fakeTransp) Close() {
if ft.closed.Load() {
panic("closed twice")
}
ft.closed.Store(true)
}
func TestDefaultDiscoverer(t *testing.T) {
ts := &fakeTransp{}
ts.dialCh = make(chan string)
d := NewDefaultDiscovery(nil, time.Second/16, ts)
tryMaxWait = 1 // Don't waste time.
var set1 = []string{"1.1.1.1:10333", "2.2.2.2:10333"}
slices.Sort(set1)
// Added addresses should end up in the pool and in the unconnected set.
// Done twice to check re-adding unconnected addresses, which should be
// a no-op.
for i := 0; i < 2; i++ {
d.BackFill(set1...)
assert.Equal(t, len(set1), d.PoolCount())
set1D := d.UnconnectedPeers()
slices.Sort(set1D)
assert.Equal(t, 0, len(d.GoodPeers()))
assert.Equal(t, 0, len(d.BadPeers()))
require.Equal(t, set1, set1D)
}
require.Equal(t, 2, d.GetFanOut())
// Request should make goroutines dial our addresses draining the pool.
d.RequestRemote(len(set1))
dialled := make([]string, 0)
for i := 0; i < len(set1); i++ {
select {
case a := <-ts.dialCh:
dialled = append(dialled, a)
d.RegisterConnected(&fakeAPeer{addr: a, peer: a})
case <-time.After(time.Second):
t.Fatalf("timeout expecting for transport dial")
}
}
require.Eventually(t, func() bool { return len(d.UnconnectedPeers()) == 0 }, 2*time.Second, 50*time.Millisecond)
slices.Sort(dialled)
assert.Equal(t, 0, d.PoolCount())
assert.Equal(t, 0, len(d.BadPeers()))
assert.Equal(t, 0, len(d.GoodPeers()))
require.Equal(t, set1, dialled)
// Registered good addresses should end up in appropriate set.
for _, addr := range set1 {
d.RegisterGood(&fakeAPeer{
addr: addr,
peer: addr,
version: &payload.Version{
Capabilities: capability.Capabilities{{
Type: capability.FullNode,
Data: &capability.Node{StartHeight: 123},
}},
},
})
}
gAddrWithCap := d.GoodPeers()
gAddrs := make([]string, len(gAddrWithCap))
for i, addr := range gAddrWithCap {
require.Equal(t, capability.Capabilities{
{
Type: capability.FullNode,
Data: &capability.Node{StartHeight: 123},
},
}, addr.Capabilities)
gAddrs[i] = addr.Address
}
slices.Sort(gAddrs)
assert.Equal(t, 0, d.PoolCount())
assert.Equal(t, 0, len(d.UnconnectedPeers()))
assert.Equal(t, 0, len(d.BadPeers()))
require.Equal(t, set1, gAddrs)
// Re-adding connected addresses should be no-op.
d.BackFill(set1...)
assert.Equal(t, 0, len(d.UnconnectedPeers()))
assert.Equal(t, 0, len(d.BadPeers()))
assert.Equal(t, len(set1), len(d.GoodPeers()))
require.Equal(t, 0, d.PoolCount())
// Unregistering connected should work.
for _, addr := range set1 {
d.UnregisterConnected(&fakeAPeer{addr: addr, peer: addr}, false)
}
assert.Equal(t, 2, len(d.UnconnectedPeers())) // They're re-added automatically.
assert.Equal(t, 0, len(d.BadPeers()))
assert.Equal(t, len(set1), len(d.GoodPeers()))
require.Equal(t, 2, d.PoolCount())
// Now make Dial() fail and wait to see addresses in the bad list.
ts.retFalse.Store(1)
assert.Equal(t, len(set1), d.PoolCount())
set1D := d.UnconnectedPeers()
slices.Sort(set1D)
assert.Equal(t, 0, len(d.BadPeers()))
require.Equal(t, set1, set1D)
dialledBad := make([]string, 0)
d.RequestRemote(len(set1))
for i := 0; i < connRetries; i++ {
for j := 0; j < len(set1); j++ {
select {
case a := <-ts.dialCh:
dialledBad = append(dialledBad, a)
case <-time.After(time.Second):
t.Fatalf("timeout expecting for transport dial; i: %d, j: %d", i, j)
}
}
}
require.Eventually(t, func() bool { return d.PoolCount() == 0 }, 2*time.Second, 50*time.Millisecond)
slices.Sort(dialledBad)
for i := 0; i < len(set1); i++ {
for j := 0; j < connRetries; j++ {
assert.Equal(t, set1[i], dialledBad[i*connRetries+j])
}
}
require.Eventually(t, func() bool { return len(d.BadPeers()) == len(set1) }, 2*time.Second, 50*time.Millisecond)
assert.Equal(t, 0, len(d.GoodPeers()))
assert.Equal(t, 0, len(d.UnconnectedPeers()))
// Re-adding bad addresses is a no-op.
d.BackFill(set1...)
assert.Equal(t, 0, len(d.UnconnectedPeers()))
assert.Equal(t, len(set1), len(d.BadPeers()))
assert.Equal(t, 0, len(d.GoodPeers()))
require.Equal(t, 0, d.PoolCount())
}
func TestSeedDiscovery(t *testing.T) {
var seeds = []string{"1.1.1.1:10333", "2.2.2.2:10333"}
ts := &fakeTransp{}
ts.dialCh = make(chan string)
ts.retFalse.Store(1) // Fail all dial requests.
slices.Sort(seeds)
d := NewDefaultDiscovery(seeds, time.Second/10, ts)
tryMaxWait = 1 // Don't waste time.
d.RequestRemote(len(seeds))
for i := 0; i < connRetries*2; i++ {
for range seeds {
select {
case <-ts.dialCh:
case <-time.After(time.Second):
t.Fatalf("timeout expecting for transport dial")
}
}
}
}