native: add test for custom Koblitz witness verification script

Every single thing is already implemented in the protocol for Koblitz
verification scripts.

Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
This commit is contained in:
Anna Shaleva 2024-04-27 18:16:02 +03:00
parent ac70f069ff
commit 17a99aa427

View file

@ -0,0 +1,489 @@
package native_test
import (
"math/big"
"testing"
"github.com/nspcc-dev/neo-go/pkg/core/interop/interopnames"
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/native/nativenames"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/neotest"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
"github.com/nspcc-dev/neo-go/pkg/vm/opcode"
"github.com/stretchr/testify/require"
)
// TestCryptoLib_KoblitzVerificationScript builds transaction with custom witness that contains
// the Koblitz tx signature bytes and Koblitz signature verification script.
// This test ensures that transaction signed by Koblitz key passes verification and can
// be successfully accepted to the chain.
func TestCryptoLib_KoblitzVerificationScript(t *testing.T) {
check := func(
t *testing.T,
buildVerificationScript func(t *testing.T, pub *keys.PublicKey) []byte,
constructMsg func(t *testing.T, magic uint32, tx hash.Hashable) []byte,
) {
c := newGasClient(t)
gasInvoker := c.WithSigners(c.Committee)
e := c.Executor
// Consider the user that is able to sign txs only with Secp256k1 private key.
// Let this user build, sign and push a GAS transfer transaction from its account
// to some other account.
pk, err := keys.NewSecp256k1PrivateKey()
require.NoError(t, err)
// Firstly, we need to build the N3 user's account address based on the user's public key.
// The address itself is Hash160 from the verification script corresponding to the user's public key.
// Since user's private key belongs to Koblitz curve, we can't use System.Crypto.CheckSig interop
// in the verification script. Likely, we have a 'verifyWithECDsa' method in native CriptoLib contract
// that is able to check Koblitz signature. So let's build custom verification script based on this call.
// The script should call 'verifyWithECDsa' method of native CriptoLib contract with Koblitz curve identifier
// and check the provided message signature against the user's Koblitz public key.
vrfBytes := buildVerificationScript(t, pk.PublicKey())
// Construct the user's account script hash. It's effectively a verification script hash.
from := hash.Hash160(vrfBytes)
// Supply this account with some initial balance so that the user is able to pay for his transactions.
gasInvoker.Invoke(t, true, "transfer", c.Committee.ScriptHash(), from, 10000_0000_0000, nil)
// Construct transaction that transfers 5 GAS from the user's account to some other account.
to := util.Uint160{1, 2, 3}
amount := 5
tx := gasInvoker.PrepareInvokeNoSign(t, "transfer", from, to, amount, nil)
tx.Signers = []transaction.Signer{
{
Account: from,
Scopes: transaction.CalledByEntry,
},
}
neotest.AddNetworkFee(t, e.Chain, tx)
neotest.AddSystemFee(e.Chain, tx, -1)
// Add some more network fee to pay for the witness verification. This value may be calculated precisely,
// but let's keep some inaccurate value for the test.
tx.NetworkFee += 540_0000
// This transaction (along with the network magic) should be signed by the user's Koblitz private key.
msg := constructMsg(t, uint32(e.Chain.GetConfig().Magic), tx)
// The user has to sign the Sha256 hash of the message by his Koblitz key.
// Please, note that this Sha256 hash may easily be replaced by Keccaak hash via minor adjustment of
// CryptoLib's `verifyWithECDsa` behaviour (if needed).
signature := pk.SignHash(hash.Sha256(msg))
// Ensure that signature verification passes. This line here is just for testing purposes,
// it won't be present in the real code.
require.True(t, pk.PublicKey().Verify(signature, hash.Sha256(msg).BytesBE()))
// Build invocation witness script for the user's account.
invBytes := buildKoblitzInvocationScript(t, signature)
// Construct witness for signer #0 (the user itself).
tx.Scripts = []transaction.Witness{
{
InvocationScript: invBytes,
VerificationScript: vrfBytes,
},
}
// Add transaction to the chain. No error is expected on new block addition. Note, that this line performs
// all those checks that are executed during transaction acceptance in the real network.
e.AddNewBlock(t, tx)
// Double-check: ensure funds have been transferred.
e.CheckGASBalance(t, to, big.NewInt(int64(amount)))
}
// The simplest witness verification script with low length and low execution cost
// (98 bytes, 2092530 GAS including Invocation script execution).
// The user has to sign the sha256([var-bytes-network-magic, txHash-bytes-BE]).
check(t, buildKoblitzVerificationScriptSimpleSingleHash, constructMessageNoHash)
// Even more simple witness verification script with low length and low execution cost
// (95 bytes, 2092320 GAS including Invocation script execution).
// The user has to sign the sha256([var-bytes-network-magic, txHash-bytes-BE]).
// The difference is that network magic is a static value, thus, both verification script and
// user address are network-specific.
check(t, buildKoblitzVerificationScriptSimpleSingleHashStaticMagic, constructMessageNoHash)
// More complicated verification script with higher length and higher execution cost
// (136 bytes, 4120620 GAS including Invocation script execution).
// The user has to sign the sha256(sha256([var-bytes-network-magic, txHash-bytes-BE])).
check(t, buildKoblitzVerificationScriptSimple, constructMessageSimple)
// Witness verification script that follows the existing standard CheckSig account generation rules
// and has larger length and higher execution cost.
// (186 bytes, 5116020 GAS including Invocation script execution).
// The user has to sign the sha256(sha256([4-bytes-network-magic-LE, txHash-bytes-BE]))
check(t, buildKoblitzVerificationScriptCompat, constructMessageCompat)
}
// buildKoblitzVerificationScriptSimpleSingleHash builds witness verification script for Koblitz public key.
// This method differs from buildKoblitzVerificationScriptCompat in that it checks
//
// sha256([var-bytes-network-magic, txHash-bytes-BE])
//
// instead of (comparing with N3)
//
// sha256([4-bytes-network-magic-LE, txHash-bytes-BE]).
func buildKoblitzVerificationScriptSimpleSingleHash(t *testing.T, pub *keys.PublicKey) []byte {
criptoLibH := state.CreateNativeContractHash(nativenames.CryptoLib)
// vrf is witness verification script corresponding to the pub.
// vrf is witness verification script corresponding to the pk.
vrf := io.NewBufBinWriter()
emit.Int(vrf.BinWriter, int64(native.Secp256k1)) // push Koblitz curve identifier.
emit.Opcodes(vrf.BinWriter, opcode.SWAP) // swap curve identifier with the signature.
emit.Bytes(vrf.BinWriter, pub.Bytes()) // emit the caller's public key.
// Construct and push the signed message. The signed message is effectively the network-dependent transaction hash,
// i.e. msg = [network-magic-bytes, tx.Hash()]
// Firstly, retrieve network magic (it's uint32 wrapped into BigInteger and represented as Integer stackitem on stack).
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetNetwork) // push network magic.
// Retrieve executing transaction hash.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetScriptContainer) // push the script container (executing transaction, actually).
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.PICKITEM) // pick 0-th transaction item (the transaction hash).
// Concatenate network magic and transaction hash.
emit.Opcodes(vrf.BinWriter, opcode.CAT) // this instruction will convert network magic to bytes using BigInteger rules of conversion.
// Continue construction of 'verifyWithECDsa' call.
emit.Opcodes(vrf.BinWriter, opcode.PUSH4, opcode.PACK) // pack arguments for 'verifyWithECDsa' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "verifyWithECDsa", callflag.All) // emit the call to 'verifyWithECDsa' itself.
require.NoError(t, vrf.Err)
return vrf.Bytes()
// Here's an example of the resulting witness verification script (98 bytes length, always constant length, with variable length of signed data):
// NEO-GO-VM > loadbase64 ABZQDCEDY9ekgSWnbN6m4JjJ8SjoKSDtQo5ftMrx1/gcFsrQwgVBxfug4EEtUQgwEM6LFMAfDA92ZXJpZnlXaXRoRUNEc2EMFBv1dasRiWiEE2EKNaEohs3gtmxyQWJ9W1I=
// READY: loaded 98 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHINT8 22 (16) <<
// 2 SWAP
// 3 PUSHDATA1 0363d7a48125a76cdea6e098c9f128e82920ed428e5fb4caf1d7f81c16cad0c205
// 38 SYSCALL System.Runtime.GetNetwork (c5fba0e0)
// 43 SYSCALL System.Runtime.GetScriptContainer (2d510830)
// 48 PUSH0
// 49 PICKITEM
// 50 CAT
// 51 PUSH4
// 52 PACK
// 53 PUSH15
// 54 PUSHDATA1 766572696679576974684543447361 ("verifyWithECDsa")
// 71 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 93 SYSCALL System.Contract.Call (627d5b52)
}
// buildKoblitzVerificationScriptSimpleSingleHashStaticMagic builds witness verification script for Koblitz public key.
// This method differs from buildKoblitzVerificationScriptCompat in that it checks
//
// sha256([var-bytes-network-magic, txHash-bytes-BE])
//
// instead of (comparing with N3)
//
// sha256([4-bytes-network-magic-LE, txHash-bytes-BE]).
//
// and it uses static magic value (simple PUSHINT* + magic, or PUSHDATA1 + magicBytes is also possible)
// which results in network-specific verification script and, consequently, network-specific user address.
func buildKoblitzVerificationScriptSimpleSingleHashStaticMagic(t *testing.T, pub *keys.PublicKey) []byte {
criptoLibH := state.CreateNativeContractHash(nativenames.CryptoLib)
// vrf is witness verification script corresponding to the pub.
// vrf is witness verification script corresponding to the pk.
vrf := io.NewBufBinWriter()
emit.Int(vrf.BinWriter, int64(native.Secp256k1)) // push Koblitz curve identifier.
emit.Opcodes(vrf.BinWriter, opcode.SWAP) // swap curve identifier with the signature.
emit.Bytes(vrf.BinWriter, pub.Bytes()) // emit the caller's public key.
// Construct and push the signed message. The signed message is effectively the network-dependent transaction hash,
// i.e. msg = [network-magic-bytes, tx.Hash()]
// Firstly, push static network magic (it's 42 for unit test chain).
emit.Int(vrf.BinWriter, 42)
// Retrieve executing transaction hash.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetScriptContainer) // push the script container (executing transaction, actually).
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.PICKITEM) // pick 0-th transaction item (the transaction hash).
// Concatenate network magic and transaction hash.
emit.Opcodes(vrf.BinWriter, opcode.CAT) // this instruction will convert network magic to bytes using BigInteger rules of conversion.
// Continue construction of 'verifyWithECDsa' call.
emit.Opcodes(vrf.BinWriter, opcode.PUSH4, opcode.PACK) // pack arguments for 'verifyWithECDsa' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "verifyWithECDsa", callflag.All) // emit the call to 'verifyWithECDsa' itself.
require.NoError(t, vrf.Err)
return vrf.Bytes()
// Here's an example of the resulting witness verification script (95 bytes length, always constant length, with variable length of signed data):
// NEO-GO-VM > loadbase64 ABZQDCECluEwgK3pKiq3IjOMKiSe6Ng6FPZJxoMhZkFl8GvREL0AKkEtUQgwEM6LFMAfDA92ZXJpZnlXaXRoRUNEc2EMFBv1dasRiWiEE2EKNaEohs3gtmxyQWJ9W1I=
// READY: loaded 95 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHINT8 22 (16) <<
// 2 SWAP
// 3 PUSHDATA1 0296e13080ade92a2ab722338c2a249ee8d83a14f649c68321664165f06bd110bd
// 38 PUSHINT8 42 (2a)
// 40 SYSCALL System.Runtime.GetScriptContainer (2d510830)
// 45 PUSH0
// 46 PICKITEM
// 47 CAT
// 48 PUSH4
// 49 PACK
// 50 PUSH15
// 51 PUSHDATA1 766572696679576974684543447361 ("verifyWithECDsa")
// 68 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 90 SYSCALL System.Contract.Call (627d5b52)
}
// buildKoblitzVerificationScriptSimple builds witness verification script for Koblitz public key.
// This method differs from buildKoblitzVerificationScriptCompat in that it checks
//
// sha256(sha256([var-bytes-network-magic, txHash-bytes-BE]))
//
// instead of (comparing with N3)
//
// sha256([4-bytes-network-magic-LE, txHash-bytes-BE]).
//
// It produces constant-length verification script (136 bytes) independently of the network parameters.
// However, the length of signed message is variable and depends on the network magic (since network
// magic Integer stackitem being converted to Buffer has the resulting byte slice length that depends on
// the magic).
func buildKoblitzVerificationScriptSimple(t *testing.T, pub *keys.PublicKey) []byte {
criptoLibH := state.CreateNativeContractHash(nativenames.CryptoLib)
// vrf is witness verification script corresponding to the pub.
// vrf is witness verification script corresponding to the pk.
vrf := io.NewBufBinWriter()
emit.Int(vrf.BinWriter, int64(native.Secp256k1)) // push Koblitz curve identifier.
emit.Opcodes(vrf.BinWriter, opcode.SWAP) // swap curve identifier with the signature.
emit.Bytes(vrf.BinWriter, pub.Bytes()) // emit the caller's public key.
// Construct and push the signed message. The signed message is effectively the network-dependent transaction hash,
// i.e. msg = Sha256([network-magic-bytes, tx.Hash()])
// Firstly, retrieve network magic (it's uint32 wrapped into BigInteger and represented as Integer stackitem on stack).
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetNetwork) // push network magic.
// Retrieve executing transaction hash.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetScriptContainer) // push the script container (executing transaction, actually).
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.PICKITEM, // pick 0-th transaction item (the transaction hash).
opcode.CAT, // concatenate network magic and transaction hash; this instruction will convert network magic to bytes using BigInteger rules of conversion.
opcode.PUSH1, // push 1 (the number of arguments of 'sha256' method of native CryptoLib).
opcode.PACK) // pack arguments for 'sha256' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "sha256", callflag.All) // emit the call to 'sha256' itself.
// Continue construction of 'verifyWithECDsa' call.
emit.Opcodes(vrf.BinWriter, opcode.PUSH4, opcode.PACK) // pack arguments for 'verifyWithECDsa' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "verifyWithECDsa", callflag.All) // emit the call to 'verifyWithECDsa' itself.
require.NoError(t, vrf.Err)
return vrf.Bytes()
// Here's an example of the resulting witness verification script (136 bytes length, always constant length, with variable length of signed data):
// NEO-GO-VM 0 > loadbase64 ABZQDCEDp38Tevu0to16RQqloo/jNfgExYmoCElLS2JuuYcH831Bxfug4EEtUQgwEM6LEcAfDAZzaGEyNTYMFBv1dasRiWiEE2EKNaEohs3gtmxyQWJ9W1IUwB8MD3ZlcmlmeVdpdGhFQ0RzYQwUG/V1qxGJaIQTYQo1oSiGzeC2bHJBYn1bUg==
// READY: loaded 136 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHINT8 22 (16) <<
// 2 SWAP
// 3 PUSHDATA1 03a77f137afbb4b68d7a450aa5a28fe335f804c589a808494b4b626eb98707f37d
// 38 SYSCALL System.Runtime.GetNetwork (c5fba0e0)
// 43 SYSCALL System.Runtime.GetScriptContainer (2d510830)
// 48 PUSH0
// 49 PICKITEM
// 50 CAT
// 51 PUSH1
// 52 PACK
// 53 PUSH15
// 54 PUSHDATA1 736861323536 ("sha256")
// 62 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 84 SYSCALL System.Contract.Call (627d5b52)
// 89 PUSH4
// 90 PACK
// 91 PUSH15
// 92 PUSHDATA1 766572696679576974684543447361 ("verifyWithECDsa")
// 109 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 131 SYSCALL System.Contract.Call (627d5b52)
}
// buildKoblitzVerificationScript builds custom verification script for the provided Koblitz public key.
// It checks that the following message is signed by the provided public key:
//
// sha256(sha256([4-bytes-network-magic-LE, txHash-bytes-BE]))
//
// It produces constant-length verification script (186 bytes) independently of the network parameters.
func buildKoblitzVerificationScriptCompat(t *testing.T, pub *keys.PublicKey) []byte {
criptoLibH := state.CreateNativeContractHash(nativenames.CryptoLib)
// vrf is witness verification script corresponding to the pub.
vrf := io.NewBufBinWriter()
emit.Int(vrf.BinWriter, int64(native.Secp256k1)) // push Koblitz curve identifier.
emit.Opcodes(vrf.BinWriter, opcode.SWAP) // swap curve identifier with the signature.
emit.Bytes(vrf.BinWriter, pub.Bytes()) // emit the caller's public key.
// Construct and push the signed message. The signed message is effectively the network-dependent transaction hash,
// i.e. msg = Sha256([4-bytes-network-magic-LE, tx.Hash()])
// Firstly, convert network magic (uint32) to LE buffer.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetNetwork) // push network magic.
// First byte: n & 0xFF
emit.Opcodes(vrf.BinWriter, opcode.DUP)
emit.Int(vrf.BinWriter, 0xFF) // TODO: this can be optimize in order not to allocate 0xFF every time, but need to compare execution price.
emit.Opcodes(vrf.BinWriter, opcode.AND,
opcode.SWAP, // Swap with the original network n.
opcode.PUSH8,
opcode.SHR)
// Second byte: n >> 8 & 0xFF
emit.Opcodes(vrf.BinWriter, opcode.DUP)
emit.Int(vrf.BinWriter, 0xFF)
emit.Opcodes(vrf.BinWriter, opcode.AND,
opcode.SWAP, // Swap with the n >> 8.
opcode.PUSH8,
opcode.SHR)
// Third byte: n >> 16 & 0xFF
emit.Opcodes(vrf.BinWriter, opcode.DUP)
emit.Int(vrf.BinWriter, 0xFF)
emit.Opcodes(vrf.BinWriter, opcode.AND,
opcode.SWAP, // Swap with the n >> 16.
opcode.PUSH8,
opcode.SHR)
// Fourth byte: n >> 24 & 0xFF
emit.Int(vrf.BinWriter, 0xFF) // no DUP is needed since it's the last shift.
emit.Opcodes(vrf.BinWriter, opcode.AND)
// Put these 4 bytes into buffer.
emit.Opcodes(vrf.BinWriter, opcode.PUSH4, opcode.NEWBUFFER) // allocate new 4-bytes-length buffer.
emit.Opcodes(vrf.BinWriter,
// Set fourth byte.
opcode.DUP, opcode.PUSH3,
opcode.PUSH3, opcode.ROLL,
opcode.SETITEM,
// Set third byte.
opcode.DUP, opcode.PUSH2,
opcode.PUSH3, opcode.ROLL,
opcode.SETITEM,
// Set second byte.
opcode.DUP, opcode.PUSH1,
opcode.PUSH3, opcode.ROLL,
opcode.SETITEM,
// Set first byte.
opcode.DUP, opcode.PUSH0,
opcode.PUSH3, opcode.ROLL,
opcode.SETITEM)
// Retrieve executing transaction hash.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetScriptContainer) // push the script container (executing transaction, actually).
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.PICKITEM, // pick 0-th transaction item (the transaction hash).
opcode.CAT, // concatenate network magic and transaction hash.
opcode.PUSH1, // push 1 (the number of arguments of 'sha256' method of native CryptoLib).
opcode.PACK) // pack arguments for 'sha256' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "sha256", callflag.All) // emit the call to 'sha256' itself.
// Continue construction of 'verifyWithECDsa' call.
emit.Opcodes(vrf.BinWriter, opcode.PUSH4, opcode.PACK) // pack arguments for 'verifyWithECDsa' call.
emit.AppCallNoArgs(vrf.BinWriter, criptoLibH, "verifyWithECDsa", callflag.All) // emit the call to 'verifyWithECDsa' itself.
require.NoError(t, vrf.Err)
return vrf.Bytes()
// Here's an example of the resulting witness verification script (186 bytes length, always constant length, the length of signed data is also always constant):
// NEO-GO-VM 0 > loadbase64 ABZQDCECYn75w2MePMuPvExbbEnjjM7eWnmvseGwcI+7lYp4AtdBxfug4EoB/wCRUBipSgH/AJFQGKlKAf8AkVAYqQH/AJEUiEoTE1LQShITUtBKERNS0EoQE1LQQS1RCDAQzosRwB8MBnNoYTI1NgwUG/V1qxGJaIQTYQo1oSiGzeC2bHJBYn1bUhTAHwwPdmVyaWZ5V2l0aEVDRHNhDBQb9XWrEYlohBNhCjWhKIbN4LZsckFifVtS
// READY: loaded 186 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHINT8 22 (16) <<
// 2 SWAP
// 3 PUSHDATA1 02627ef9c3631e3ccb8fbc4c5b6c49e38ccede5a79afb1e1b0708fbb958a7802d7
// 38 SYSCALL System.Runtime.GetNetwork (c5fba0e0)
// 43 DUP
// 44 PUSHINT16 255 (ff00)
// 47 AND
// 48 SWAP
// 49 PUSH8
// 50 SHR
// 51 DUP
// 52 PUSHINT16 255 (ff00)
// 55 AND
// 56 SWAP
// 57 PUSH8
// 58 SHR
// 59 DUP
// 60 PUSHINT16 255 (ff00)
// 63 AND
// 64 SWAP
// 65 PUSH8
// 66 SHR
// 67 PUSHINT16 255 (ff00)
// 70 AND
// 71 PUSH4
// 72 NEWBUFFER
// 73 DUP
// 74 PUSH3
// 75 PUSH3
// 76 ROLL
// 77 SETITEM
// 78 DUP
// 79 PUSH2
// 80 PUSH3
// 81 ROLL
// 82 SETITEM
// 83 DUP
// 84 PUSH1
// 85 PUSH3
// 86 ROLL
// 87 SETITEM
// 88 DUP
// 89 PUSH0
// 90 PUSH3
// 91 ROLL
// 92 SETITEM
// 93 SYSCALL System.Runtime.GetScriptContainer (2d510830)
// 98 PUSH0
// 99 PICKITEM
// 100 CAT
// 101 PUSH1
// 102 PACK
// 103 PUSH15
// 104 PUSHDATA1 736861323536 ("sha256")
// 112 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 134 SYSCALL System.Contract.Call (627d5b52)
// 139 PUSH4
// 140 PACK
// 141 PUSH15
// 142 PUSHDATA1 766572696679576974684543447361 ("verifyWithECDsa")
// 159 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 181 SYSCALL System.Contract.Call (627d5b52)
}
// buildKoblitzInvocationScript builds witness invocation script for the transaction signature. The signature
// itself may be produced by public key over any curve (not required Koblitz, the algorithm is the same).
func buildKoblitzInvocationScript(t *testing.T, signature []byte) []byte {
//Exactly like during standard
// signature verification, the resulting script pushes Koblitz signature bytes onto stack.
inv := io.NewBufBinWriter()
emit.Bytes(inv.BinWriter, signature) // message signatre bytes.
require.NoError(t, inv.Err)
return inv.Bytes()
// Here's an example of the resulting witness invocation script (66 bytes length, always constant length):
// NEO-GO-VM > loadbase64 DEBMGKU/MdSizlzaVNDUUbd1zMZQJ43eTaZ4vBCpmkJ/wVh1TYrAWEbFyHhkqq+aYxPCUS43NKJdJTXavcjB8sTP
// READY: loaded 66 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHDATA1 4c18a53f31d4a2ce5cda54d0d451b775ccc650278dde4da678bc10a99a427fc158754d8ac05846c5c87864aaaf9a6313c2512e3734a25d2535dabdc8c1f2c4cf <<
}
// constructMessageNoHash constructs message for signing that consists of the
// unhashed magic and transaction hash bytes:
//
// [var-bytes-network-magic, txHash-bytes-BE]
func constructMessageNoHash(t *testing.T, magic uint32, tx hash.Hashable) []byte {
m := big.NewInt(int64(magic))
return append(m.Bytes(), tx.Hash().BytesBE()...)
}
// constructMessageCompat constructs message for signing that does not follow N3 rules,
// but entails smaller verification script size and smaller verification price:
//
// sha256([var-bytes-network-magic, txHash-bytes-BE])
func constructMessageSimple(t *testing.T, magic uint32, tx hash.Hashable) []byte {
m := big.NewInt(int64(magic))
return hash.Sha256(append(m.Bytes(), tx.Hash().BytesBE()...)).BytesBE()
}
// constructMessageCompat constructs message for signing following the N3 rules:
//
// sha256([4-bytes-network-magic-LE, txHash-bytes-BE])
func constructMessageCompat(t *testing.T, magic uint32, tx hash.Hashable) []byte {
return hash.NetSha256(magic, tx).BytesBE()
}