mirror of
https://github.com/nspcc-dev/neo-go.git
synced 2024-12-27 15:42:54 +00:00
crypto: drop home-grown elliptic crypto, use crypto/elliptic
As NEO uses P256 we can use standard crypto/elliptic library for almost everything, the only exception being decompression of the Y coordinate. For some reason the standard library only supports uncompressed format in its Marshal()/Unmarshal() functions. elliptic.P256() is known to have constant-time implementation, so it fixes #245 (and the decompression using big.Int operates on public key, so nobody really cares about that part being constant-time). New decompress function is inspired by https://stackoverflow.com/questions/46283760, even though the previous one really did the same thing just in a little less obvious way.
This commit is contained in:
parent
0b884b92b3
commit
f0fbe9f6c9
5 changed files with 66 additions and 348 deletions
|
@ -1,256 +0,0 @@
|
|||
package crypto
|
||||
|
||||
// Original work completed by @vsergeev: https://github.com/vsergeev/btckeygenie
|
||||
// Expanded and tweaked upon here under MIT license.
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/CityOfZion/neo-go/pkg/util"
|
||||
)
|
||||
|
||||
type (
|
||||
// EllipticCurve represents the parameters of a short Weierstrass equation elliptic
|
||||
// curve.
|
||||
EllipticCurve struct {
|
||||
A *big.Int
|
||||
B *big.Int
|
||||
P *big.Int
|
||||
G ECPoint
|
||||
N *big.Int
|
||||
H *big.Int
|
||||
}
|
||||
|
||||
// ECPoint represents a point on the EllipticCurve.
|
||||
ECPoint struct {
|
||||
X *big.Int
|
||||
Y *big.Int
|
||||
}
|
||||
)
|
||||
|
||||
// NewEllipticCurve returns a ready to use EllipticCurve with preconfigured
|
||||
// fields for the NEO protocol.
|
||||
func NewEllipticCurve() EllipticCurve {
|
||||
c := EllipticCurve{}
|
||||
|
||||
c.P, _ = new(big.Int).SetString(
|
||||
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", 16,
|
||||
)
|
||||
c.A, _ = new(big.Int).SetString(
|
||||
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", 16,
|
||||
)
|
||||
c.B, _ = new(big.Int).SetString(
|
||||
"5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", 16,
|
||||
)
|
||||
c.G.X, _ = new(big.Int).SetString(
|
||||
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", 16,
|
||||
)
|
||||
c.G.Y, _ = new(big.Int).SetString(
|
||||
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", 16,
|
||||
)
|
||||
c.N, _ = new(big.Int).SetString(
|
||||
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 16,
|
||||
)
|
||||
c.H, _ = new(big.Int).SetString("01", 16)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
// ECPointFromReader return a new point from the given reader.
|
||||
// f == 4, 6 or 7 are not implemented.
|
||||
func ECPointFromReader(r io.Reader) (point ECPoint, err error) {
|
||||
var f uint8
|
||||
if err = binary.Read(r, binary.LittleEndian, &f); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
// Infinity
|
||||
if f == 0 {
|
||||
return ECPoint{
|
||||
X: new(big.Int),
|
||||
Y: new(big.Int),
|
||||
}, nil
|
||||
}
|
||||
|
||||
if f == 2 || f == 3 {
|
||||
y := new(big.Int).SetBytes([]byte{f & 1})
|
||||
data := make([]byte, 32)
|
||||
if err = binary.Read(r, binary.LittleEndian, data); err != nil {
|
||||
return
|
||||
}
|
||||
data = util.ArrayReverse(data)
|
||||
data = append(data, byte(0x00))
|
||||
|
||||
return ECPoint{
|
||||
X: new(big.Int).SetBytes(data),
|
||||
Y: y,
|
||||
}, nil
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// EncodeBinary encodes the point to the given io.Writer.
|
||||
func (p ECPoint) EncodeBinary(w io.Writer) error {
|
||||
bx := p.X.Bytes()
|
||||
padded := append(
|
||||
bytes.Repeat(
|
||||
[]byte{0x00},
|
||||
32-len(bx),
|
||||
),
|
||||
bx...,
|
||||
)
|
||||
|
||||
prefix := byte(0x03)
|
||||
if p.Y.Bit(0) == 0 {
|
||||
prefix = byte(0x02)
|
||||
}
|
||||
buf := make([]byte, len(padded)+1)
|
||||
buf[0] = prefix
|
||||
copy(buf[1:], padded)
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, buf)
|
||||
}
|
||||
|
||||
// String implements the Stringer interface.
|
||||
func (p *ECPoint) String() string {
|
||||
if p.IsInfinity() {
|
||||
return "00"
|
||||
}
|
||||
bx := hex.EncodeToString(p.X.Bytes())
|
||||
by := hex.EncodeToString(p.Y.Bytes())
|
||||
return fmt.Sprintf("%s%s", bx, by)
|
||||
}
|
||||
|
||||
// IsInfinity checks if point P is infinity on EllipticCurve ec.
|
||||
func (p *ECPoint) IsInfinity() bool {
|
||||
return p.X == nil && p.Y == nil
|
||||
}
|
||||
|
||||
// IsInfinity checks if point P is infinity on EllipticCurve ec.
|
||||
func (c *EllipticCurve) IsInfinity(P ECPoint) bool {
|
||||
return P.X == nil && P.Y == nil
|
||||
}
|
||||
|
||||
// IsOnCurve checks if point P is on EllipticCurve ec.
|
||||
func (c *EllipticCurve) IsOnCurve(P ECPoint) bool {
|
||||
if c.IsInfinity(P) {
|
||||
return false
|
||||
}
|
||||
lhs := mulMod(P.Y, P.Y, c.P)
|
||||
rhs := addMod(
|
||||
addMod(
|
||||
expMod(P.X, big.NewInt(3), c.P),
|
||||
mulMod(c.A, P.X, c.P), c.P),
|
||||
c.B, c.P)
|
||||
|
||||
return lhs.Cmp(rhs) == 0
|
||||
}
|
||||
|
||||
// Add computes R = P + Q on EllipticCurve ec.
|
||||
func (c *EllipticCurve) Add(P, Q ECPoint) (R ECPoint) {
|
||||
// See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf
|
||||
if c.IsInfinity(P) && c.IsInfinity(Q) {
|
||||
R.X = nil
|
||||
R.Y = nil
|
||||
} else if c.IsInfinity(P) {
|
||||
R.X = new(big.Int).Set(Q.X)
|
||||
R.Y = new(big.Int).Set(Q.Y)
|
||||
} else if c.IsInfinity(Q) {
|
||||
R.X = new(big.Int).Set(P.X)
|
||||
R.Y = new(big.Int).Set(P.Y)
|
||||
} else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, c.P).Sign() == 0 {
|
||||
R.X = nil
|
||||
R.Y = nil
|
||||
} else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 {
|
||||
num := addMod(
|
||||
mulMod(big.NewInt(3),
|
||||
mulMod(P.X, P.X, c.P), c.P),
|
||||
c.A, c.P)
|
||||
den := invMod(mulMod(big.NewInt(2), P.Y, c.P), c.P)
|
||||
lambda := mulMod(num, den, c.P)
|
||||
R.X = subMod(
|
||||
mulMod(lambda, lambda, c.P),
|
||||
mulMod(big.NewInt(2), P.X, c.P),
|
||||
c.P)
|
||||
R.Y = subMod(
|
||||
mulMod(lambda, subMod(P.X, R.X, c.P), c.P),
|
||||
P.Y, c.P)
|
||||
} else if P.X.Cmp(Q.X) != 0 {
|
||||
num := subMod(Q.Y, P.Y, c.P)
|
||||
den := invMod(subMod(Q.X, P.X, c.P), c.P)
|
||||
lambda := mulMod(num, den, c.P)
|
||||
R.X = subMod(
|
||||
subMod(
|
||||
mulMod(lambda, lambda, c.P),
|
||||
P.X, c.P),
|
||||
Q.X, c.P)
|
||||
R.Y = subMod(
|
||||
mulMod(lambda,
|
||||
subMod(P.X, R.X, c.P), c.P),
|
||||
P.Y, c.P)
|
||||
} else {
|
||||
panic(fmt.Sprintf("Unsupported point addition: %v + %v", P, Q))
|
||||
}
|
||||
|
||||
return R
|
||||
}
|
||||
|
||||
// ScalarMult computes Q = k * P on EllipticCurve ec.
|
||||
func (c *EllipticCurve) ScalarMult(k *big.Int, P ECPoint) (Q ECPoint) {
|
||||
// Implementation based on pseudocode here:
|
||||
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
|
||||
var R0 ECPoint
|
||||
var R1 ECPoint
|
||||
|
||||
R0.X = nil
|
||||
R0.Y = nil
|
||||
R1.X = new(big.Int).Set(P.X)
|
||||
R1.Y = new(big.Int).Set(P.Y)
|
||||
|
||||
for i := c.N.BitLen() - 1; i >= 0; i-- {
|
||||
if k.Bit(i) == 0 {
|
||||
R1 = c.Add(R0, R1)
|
||||
R0 = c.Add(R0, R0)
|
||||
} else {
|
||||
R0 = c.Add(R0, R1)
|
||||
R1 = c.Add(R1, R1)
|
||||
}
|
||||
}
|
||||
return R0
|
||||
}
|
||||
|
||||
// ScalarBaseMult computes Q = k * G on EllipticCurve ec.
|
||||
func (c *EllipticCurve) ScalarBaseMult(k *big.Int) (Q ECPoint) {
|
||||
return c.ScalarMult(k, c.G)
|
||||
}
|
||||
|
||||
// Decompress decompresses coordinate x and ylsb (y's least significant bit) into a ECPoint P on EllipticCurve ec.
|
||||
func (c *EllipticCurve) Decompress(x *big.Int, ylsb uint) (P ECPoint, err error) {
|
||||
/* y**2 = x**3 + a*x + b % p */
|
||||
rhs := addMod(
|
||||
addMod(
|
||||
expMod(x, big.NewInt(3), c.P),
|
||||
mulMod(c.A, x, c.P),
|
||||
c.P),
|
||||
c.B, c.P)
|
||||
|
||||
y := sqrtMod(rhs, c.P)
|
||||
if y.Bit(0) != (ylsb & 0x1) {
|
||||
y = subMod(big.NewInt(0), y, c.P)
|
||||
}
|
||||
|
||||
P.X = x
|
||||
P.Y = y
|
||||
|
||||
if !c.IsOnCurve(P) {
|
||||
return P, errors.New("compressed (x, ylsb) not on curve")
|
||||
}
|
||||
|
||||
return P, nil
|
||||
}
|
|
@ -10,10 +10,8 @@ import (
|
|||
"encoding/hex"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/CityOfZion/neo-go/pkg/crypto"
|
||||
"github.com/nspcc-dev/rfc6979"
|
||||
)
|
||||
|
||||
|
@ -24,18 +22,11 @@ type PrivateKey struct {
|
|||
|
||||
// NewPrivateKey creates a new random private key.
|
||||
func NewPrivateKey() (*PrivateKey, error) {
|
||||
c := crypto.NewEllipticCurve()
|
||||
b := make([]byte, c.N.BitLen()/8+8)
|
||||
if _, err := io.ReadFull(rand.Reader, b); err != nil {
|
||||
priv, _, _, err := elliptic.GenerateKey(elliptic.P256(), rand.Reader)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
d := new(big.Int).SetBytes(b)
|
||||
d.Mod(d, new(big.Int).Sub(c.N, big.NewInt(1)))
|
||||
d.Add(d, big.NewInt(1))
|
||||
|
||||
p := &PrivateKey{b: d.Bytes()}
|
||||
return p, nil
|
||||
return &PrivateKey{b: priv}, nil
|
||||
}
|
||||
|
||||
// NewPrivateKeyFromHex returns a PrivateKey created from the
|
||||
|
@ -72,16 +63,16 @@ func (p *PrivateKey) PublicKey() (*PublicKey, error) {
|
|||
var (
|
||||
err error
|
||||
pk PublicKey
|
||||
c = crypto.NewEllipticCurve()
|
||||
c = elliptic.P256()
|
||||
q = new(big.Int).SetBytes(p.b)
|
||||
)
|
||||
|
||||
point := c.ScalarBaseMult(q)
|
||||
if !c.IsOnCurve(point) {
|
||||
x, y := c.ScalarBaseMult(q.Bytes())
|
||||
if !c.IsOnCurve(x, y) {
|
||||
return nil, errors.New("failed to derive public key using elliptic curve")
|
||||
}
|
||||
|
||||
bx := point.X.Bytes()
|
||||
bx := x.Bytes()
|
||||
padded := append(
|
||||
bytes.Repeat(
|
||||
[]byte{0x00},
|
||||
|
@ -91,7 +82,7 @@ func (p *PrivateKey) PublicKey() (*PublicKey, error) {
|
|||
)
|
||||
|
||||
prefix := []byte{0x03}
|
||||
if point.Y.Bit(0) == 0 {
|
||||
if y.Bit(0) == 0 {
|
||||
prefix = []byte{0x02}
|
||||
}
|
||||
b := append(prefix, padded...)
|
||||
|
|
|
@ -7,6 +7,7 @@ import (
|
|||
"crypto/x509"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
|
@ -35,9 +36,10 @@ func (keys PublicKeys) Less(i, j int) bool {
|
|||
}
|
||||
|
||||
// PublicKey represents a public key and provides a high level
|
||||
// API around the ECPoint.
|
||||
// API around the X/Y point.
|
||||
type PublicKey struct {
|
||||
crypto.ECPoint
|
||||
X *big.Int
|
||||
Y *big.Int
|
||||
}
|
||||
|
||||
// NewPublicKeyFromString return a public key created from the
|
||||
|
@ -58,7 +60,7 @@ func NewPublicKeyFromString(s string) (*PublicKey, error) {
|
|||
|
||||
// Bytes returns the byte array representation of the public key.
|
||||
func (p *PublicKey) Bytes() []byte {
|
||||
if p.IsInfinity() {
|
||||
if p.isInfinity() {
|
||||
return []byte{0x00}
|
||||
}
|
||||
|
||||
|
@ -89,14 +91,38 @@ func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
|
|||
return nil, errors.New("given bytes aren't ECDSA public key")
|
||||
}
|
||||
key := PublicKey{
|
||||
crypto.ECPoint{
|
||||
X: pk.X,
|
||||
Y: pk.Y,
|
||||
},
|
||||
X: pk.X,
|
||||
Y: pk.Y,
|
||||
}
|
||||
return &key, nil
|
||||
}
|
||||
|
||||
// decodeCompressedY performs decompression of Y coordinate for given X and Y's least significant bit
|
||||
func decodeCompressedY(x *big.Int, ylsb uint) (*big.Int, error) {
|
||||
c := elliptic.P256()
|
||||
cp := c.Params()
|
||||
three := big.NewInt(3)
|
||||
/* y**2 = x**3 + a*x + b % p */
|
||||
xCubed := new(big.Int).Exp(x, three, cp.P)
|
||||
threeX := new(big.Int).Mul(x, three)
|
||||
threeX.Mod(threeX, cp.P)
|
||||
ySquared := new(big.Int).Sub(xCubed, threeX)
|
||||
ySquared.Add(ySquared, cp.B)
|
||||
ySquared.Mod(ySquared, cp.P)
|
||||
y := new(big.Int).ModSqrt(ySquared, cp.P)
|
||||
if y == nil {
|
||||
return nil, errors.New("error computing Y for compressed point")
|
||||
}
|
||||
if y.Bit(0) != ylsb {
|
||||
y.Neg(y)
|
||||
y.Mod(y, cp.P)
|
||||
}
|
||||
if !c.IsOnCurve(x, y) {
|
||||
return nil, errors.New("compressed (x, ylsb) not on curve")
|
||||
}
|
||||
return y, nil
|
||||
}
|
||||
|
||||
// DecodeBytes decodes a PublicKey from the given slice of bytes.
|
||||
func (p *PublicKey) DecodeBytes(data []byte) error {
|
||||
l := len(data)
|
||||
|
@ -104,19 +130,22 @@ func (p *PublicKey) DecodeBytes(data []byte) error {
|
|||
switch prefix := data[0]; prefix {
|
||||
// Infinity
|
||||
case 0x00:
|
||||
p.ECPoint = crypto.ECPoint{}
|
||||
p.X = nil
|
||||
p.Y = nil
|
||||
// Compressed public keys
|
||||
case 0x02, 0x03:
|
||||
if l < 33 {
|
||||
return errors.Errorf("bad binary size(%d)", l)
|
||||
}
|
||||
|
||||
c := crypto.NewEllipticCurve()
|
||||
var err error
|
||||
p.ECPoint, err = c.Decompress(new(big.Int).SetBytes(data[1:]), uint(prefix&0x1))
|
||||
x := new(big.Int).SetBytes(data[1:])
|
||||
ylsb := uint(prefix&0x1)
|
||||
y, err := decodeCompressedY(x, ylsb)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
p.X = x
|
||||
p.Y = y
|
||||
case 0x04:
|
||||
if l < 66 {
|
||||
return errors.Errorf("bad binary size(%d)", l)
|
||||
|
@ -141,7 +170,8 @@ func (p *PublicKey) DecodeBinary(r io.Reader) error {
|
|||
// Infinity
|
||||
switch prefix {
|
||||
case 0x00:
|
||||
p.ECPoint = crypto.ECPoint{}
|
||||
p.X = nil
|
||||
p.Y = nil
|
||||
return nil
|
||||
// Compressed public keys
|
||||
case 0x02, 0x03:
|
||||
|
@ -206,3 +236,18 @@ func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
|
|||
sBytes := new(big.Int).SetBytes(signature[32:64])
|
||||
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
|
||||
}
|
||||
|
||||
// isInfinity checks if point P is infinity on EllipticCurve ec.
|
||||
func (p *PublicKey) isInfinity() bool {
|
||||
return p.X == nil && p.Y == nil
|
||||
}
|
||||
|
||||
// String implements the Stringer interface.
|
||||
func (p *PublicKey) String() string {
|
||||
if p.isInfinity() {
|
||||
return "00"
|
||||
}
|
||||
bx := hex.EncodeToString(p.X.Bytes())
|
||||
by := hex.EncodeToString(p.Y.Bytes())
|
||||
return fmt.Sprintf("%s%s", bx, by)
|
||||
}
|
||||
|
|
|
@ -5,12 +5,11 @@ import (
|
|||
"encoding/hex"
|
||||
"testing"
|
||||
|
||||
"github.com/CityOfZion/neo-go/pkg/crypto"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestEncodeDecodeInfinity(t *testing.T) {
|
||||
key := &PublicKey{crypto.ECPoint{}}
|
||||
key := &PublicKey{}
|
||||
buf := new(bytes.Buffer)
|
||||
assert.Nil(t, key.EncodeBinary(buf))
|
||||
assert.Equal(t, 1, buf.Len())
|
||||
|
|
|
@ -1,61 +0,0 @@
|
|||
package crypto
|
||||
|
||||
import "math/big"
|
||||
|
||||
// addMod computes z = (x + y) % p.
|
||||
func addMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||||
z = new(big.Int).Add(x, y)
|
||||
z.Mod(z, p)
|
||||
return z
|
||||
}
|
||||
|
||||
// subMod computes z = (x - y) % p.
|
||||
func subMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||||
z = new(big.Int).Sub(x, y)
|
||||
z.Mod(z, p)
|
||||
return z
|
||||
}
|
||||
|
||||
// mulMod computes z = (x * y) % p.
|
||||
func mulMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||||
n := new(big.Int).Set(x)
|
||||
z = big.NewInt(0)
|
||||
|
||||
for i := 0; i < y.BitLen(); i++ {
|
||||
if y.Bit(i) == 1 {
|
||||
z = addMod(z, n, p)
|
||||
}
|
||||
n = addMod(n, n, p)
|
||||
}
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// invMod computes z = (1/x) % p.
|
||||
func invMod(x *big.Int, p *big.Int) (z *big.Int) {
|
||||
z = new(big.Int).ModInverse(x, p)
|
||||
return z
|
||||
}
|
||||
|
||||
// expMod computes z = (x^e) % p.
|
||||
func expMod(x *big.Int, y *big.Int, p *big.Int) (z *big.Int) {
|
||||
z = new(big.Int).Exp(x, y, p)
|
||||
return z
|
||||
}
|
||||
|
||||
// sqrtMod computes z = sqrt(x) % p.
|
||||
func sqrtMod(x *big.Int, p *big.Int) (z *big.Int) {
|
||||
/* assert that p % 4 == 3 */
|
||||
if new(big.Int).Mod(p, big.NewInt(4)).Cmp(big.NewInt(3)) != 0 {
|
||||
panic("p is not equal to 3 mod 4!")
|
||||
}
|
||||
|
||||
/* z = sqrt(x) % p = x^((p+1)/4) % p */
|
||||
|
||||
/* e = (p+1)/4 */
|
||||
e := new(big.Int).Add(p, big.NewInt(1))
|
||||
e = e.Rsh(e, 2)
|
||||
|
||||
z = expMod(x, e, p)
|
||||
return z
|
||||
}
|
Loading…
Reference in a new issue