1) Make timeout a timeout, don't do magic ping counts.
2) Drop additional timer from the main peer's protocol loop, create it
dynamically and make it disconnect the peer.
3) Don't expose the ping counter to the outside, handle more logic inside the
Peer.
Relates to #430.
We don't and we won't have synchronized clocks in the network so the only
timestamp that we can compare our local time with is the one made
ourselves. What this ping mechanism is used for is to recover from missing the
block broadcast, thus it's appropriate for it to trigger after X seconds of
the local time since the last block received.
Relates to #430.
In reality it will never be true exactly in the case where we want this ping
mechanism to work --- when the node failed to get a block from the net. It
won't get the header either and thus its block height will be equal to header
height. The only moment when this condition is met is when the node does
initial synchronization and this synchronization works just fine without any
pings.
Relates to #430.
Two queues for high-priority and ordinary messages. Fixes#590. These queues
are deliberately made small to avoid buffer bloat problem, there is gonna be
another queueing layer above them to compensate for that. The queues are
designed to be synchronous in enqueueing, async capabilities are to be added
layer above later.
add pingInterval same as used in ref C# implementation with the same logic
add pingTimeout which is used to check whether pong received. If not -- drop the peer.
add pingLimit which is hardcoded to 4 in TCPPeer. It's limit for unsuccessful ping/pong calls (where pong wasn't received in pingTimeout interval)
It wasn't actually requesting transactions but rather sending an inventory
message telling everyone that we have them which is completely wrong and
easily leads to ChangeView that could be avoided.
go vet is not happy about them:
pkg/io/binaryReader.go:92:21: method ReadByte() byte should have signature ReadByte() (byte, error)
pkg/io/binaryWriter.go:75:21: method WriteByte(u8 byte) should have signature WriteByte(byte) error
This seriously improves the serialization/deserialization performance for
several reasons:
* no time spent in `binary` reflection
* no memory allocations being made on every read/write
* uses fast ReadBytes everywhere it's appropriate
It also makes Fixed8 Serializable just for convenience.
add dao which takes care about all CRUD operations on storage
remove blockchain state since everything is stored on change
remove storage operations from structs(entities)
move structs to entities package
It reduces heap pressure a little for these elements as we don't have to
allocate/free them individually. And they're directly tied to transactions or
block, not being shared or anything like that, so it makes little sense for
them to be pointer-based. It only makes building transactions a little easier,
but that's obviously a minor usecase.
Before this patch on block import we could easily be spending more than 6
seconds out of 30 in Uint256 encoding for UnspentBalance, now it's completely
off the radar.
Only request headers from the other peer if his height is bigger than
ours. Otherwise we routinely ask 0-height newcomers for some random headers
that they know nothing about.
This one is essential for the consensus nodes as otherwise they won't give out
the blocks they generate making their generation almost useless. It also makes
our networking part more complete.