package interop import ( "cmp" "context" "encoding/binary" "errors" "fmt" "slices" "strings" "github.com/nspcc-dev/neo-go/pkg/config" "github.com/nspcc-dev/neo-go/pkg/core/block" "github.com/nspcc-dev/neo-go/pkg/core/dao" "github.com/nspcc-dev/neo-go/pkg/core/interop/interopnames" "github.com/nspcc-dev/neo-go/pkg/core/state" "github.com/nspcc-dev/neo-go/pkg/core/storage" "github.com/nspcc-dev/neo-go/pkg/core/transaction" "github.com/nspcc-dev/neo-go/pkg/crypto/hash" "github.com/nspcc-dev/neo-go/pkg/io" "github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag" "github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest" "github.com/nspcc-dev/neo-go/pkg/smartcontract/nef" "github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger" "github.com/nspcc-dev/neo-go/pkg/util" "github.com/nspcc-dev/neo-go/pkg/vm" "github.com/nspcc-dev/neo-go/pkg/vm/emit" "github.com/nspcc-dev/neo-go/pkg/vm/opcode" "github.com/nspcc-dev/neo-go/pkg/vm/stackitem" "go.uber.org/zap" ) const ( // DefaultBaseExecFee specifies the default multiplier for opcode and syscall prices. DefaultBaseExecFee = 30 // ContextNonceDataLen is a length of [Context.NonceData] in bytes. ContextNonceDataLen = 16 ) // Ledger is the interface to Blockchain required for Context functionality. type Ledger interface { BlockHeight() uint32 CurrentBlockHash() util.Uint256 GetBlock(hash util.Uint256) (*block.Block, error) GetConfig() config.Blockchain GetHeaderHash(uint32) util.Uint256 } // Context represents context in which interops are executed. type Context struct { Chain Ledger Container hash.Hashable Network uint32 Hardforks map[string]uint32 Natives []Contract Trigger trigger.Type Block *block.Block NonceData [ContextNonceDataLen]byte Tx *transaction.Transaction DAO *dao.Simple Notifications []state.NotificationEvent Log *zap.Logger VM *vm.VM Functions []Function Invocations map[util.Uint160]int cancelFuncs []context.CancelFunc getContract func(*dao.Simple, util.Uint160) (*state.Contract, error) baseExecFee int64 baseStorageFee int64 loadToken func(ic *Context, id int32) error GetRandomCounter uint32 signers []transaction.Signer } // NewContext returns new interop context. func NewContext(trigger trigger.Type, bc Ledger, d *dao.Simple, baseExecFee, baseStorageFee int64, getContract func(*dao.Simple, util.Uint160) (*state.Contract, error), natives []Contract, loadTokenFunc func(ic *Context, id int32) error, block *block.Block, tx *transaction.Transaction, log *zap.Logger) *Context { dao := d.GetPrivate() cfg := bc.GetConfig().ProtocolConfiguration return &Context{ Chain: bc, Network: uint32(cfg.Magic), Hardforks: cfg.Hardforks, Natives: natives, Trigger: trigger, Block: block, Tx: tx, DAO: dao, Log: log, Invocations: make(map[util.Uint160]int), getContract: getContract, baseExecFee: baseExecFee, baseStorageFee: baseStorageFee, loadToken: loadTokenFunc, } } // InitNonceData initializes nonce to be used in `GetRandom` calculations. func (ic *Context) InitNonceData() { if tx, ok := ic.Container.(*transaction.Transaction); ok { ic.NonceData = [ContextNonceDataLen]byte(tx.Hash().BytesBE()) } if ic.Block != nil { nonce := ic.Block.Nonce nonce ^= binary.LittleEndian.Uint64(ic.NonceData[:]) binary.LittleEndian.PutUint64(ic.NonceData[:], nonce) } } // UseSigners allows overriding signers used in this context. func (ic *Context) UseSigners(s []transaction.Signer) { ic.signers = s } // Signers returns signers witnessing the current execution context. func (ic *Context) Signers() []transaction.Signer { if ic.signers != nil { return ic.signers } if ic.Tx != nil { return ic.Tx.Signers } return nil } // Function binds function name, id with the function itself and the price, // it's supposed to be inited once for all interopContexts, so it doesn't use // vm.InteropFuncPrice directly. type Function struct { ID uint32 Name string Func func(*Context) error // ParamCount is a number of function parameters. ParamCount int Price int64 // RequiredFlags is a set of flags which must be set during script invocations. // Default value is NoneFlag i.e. no flags are required. RequiredFlags callflag.CallFlag } // Method is a signature for a native method. type Method = func(ic *Context, args []stackitem.Item) stackitem.Item // MethodAndPrice is a generic hardfork-independent native contract method descriptor. type MethodAndPrice struct { HFSpecificMethodAndPrice ActiveFrom *config.Hardfork ActiveTill *config.Hardfork } // HFSpecificMethodAndPrice is a hardfork-specific native contract method descriptor. type HFSpecificMethodAndPrice struct { Func Method MD *manifest.Method CPUFee int64 StorageFee int64 SyscallOffset int RequiredFlags callflag.CallFlag } // Event is a generic hardfork-independent native contract event descriptor. type Event struct { HFSpecificEvent ActiveFrom *config.Hardfork ActiveTill *config.Hardfork } // HFSpecificEvent is a hardfork-specific native contract event descriptor. type HFSpecificEvent struct { MD *manifest.Event } // Contract is an interface for all native contracts. type Contract interface { // Initialize performs native contract initialization on contract deploy or update. // Active hardfork is passed as the second argument. Initialize(*Context, *config.Hardfork, *HFSpecificContractMD) error // ActiveIn returns the hardfork native contract is active starting from or nil in case // it's always active. ActiveIn() *config.Hardfork // InitializeCache aimed to initialize contract's cache when the contract has // been deployed, but in-memory cached data were lost due to the node reset. // It should be called each time after node restart iff the contract was // deployed and no Initialize method was called. InitializeCache(blockHeight uint32, d *dao.Simple) error // Metadata returns generic native contract metadata. Metadata() *ContractMD OnPersist(*Context) error PostPersist(*Context) error } // ContractMD represents a generic hardfork-independent native contract instance. type ContractMD struct { ID int32 Hash util.Uint160 Name string // methods is a generic set of contract methods with activation hardforks. Any HF-dependent part of included methods // (offsets, in particular) must not be used, there's a mdCache field for that. methods []MethodAndPrice // events is a generic set of contract events with activation hardforks. Any HF-dependent part of events must not be // used, there's a mdCache field for that. events []Event // ActiveHFs is a map of hardforks that contract should react to. Contract update should be called for active // hardforks. Note, that unlike the C# implementation, this map doesn't include contract's activation hardfork. // This map is being initialized on contract creation and used as a read-only, hence, not protected // by mutex. ActiveHFs map[config.Hardfork]struct{} // mdCache contains hardfork-specific ready-to-use contract descriptors. This cache is initialized in the native // contracts constructors, and acts as read-only during the whole node lifetime, thus not protected by mutex. mdCache map[config.Hardfork]*HFSpecificContractMD // onManifestConstruction is a callback for manifest finalization. onManifestConstruction func(*manifest.Manifest) } // HFSpecificContractMD is a hardfork-specific native contract descriptor. type HFSpecificContractMD struct { state.ContractBase Methods []HFSpecificMethodAndPrice Events []HFSpecificEvent } // NewContractMD returns Contract with the specified fields set. onManifestConstruction callback every time // after hardfork-specific manifest creation and aimed to finalize the manifest. func NewContractMD(name string, id int32, onManifestConstruction ...func(*manifest.Manifest)) *ContractMD { c := &ContractMD{Name: name} if len(onManifestConstruction) != 0 { c.onManifestConstruction = onManifestConstruction[0] } c.ID = id c.Hash = state.CreateNativeContractHash(c.Name) c.ActiveHFs = make(map[config.Hardfork]struct{}) c.mdCache = make(map[config.Hardfork]*HFSpecificContractMD) return c } // HFSpecificContractMD returns hardfork-specific native contract metadata, i.e. with methods, events and script // corresponding to the specified hardfork. If hardfork is not specified, then default metadata will be returned // (methods, events and script that are always active). Calling this method for hardforks older than the contract // activation hardfork is a no-op. func (c *ContractMD) HFSpecificContractMD(hf *config.Hardfork) *HFSpecificContractMD { var key config.Hardfork if hf != nil { key = *hf } md, ok := c.mdCache[key] if !ok { panic(fmt.Errorf("native contract descriptor cache is not initialized: contract %s, hardfork %s", c.Hash.StringLE(), key)) } if md == nil { panic(fmt.Errorf("native contract descriptor cache is nil: contract %s, hardfork %s", c.Hash.StringLE(), key)) } return md } // BuildHFSpecificMD generates and caches contract's descriptor for every known hardfork. func (c *ContractMD) BuildHFSpecificMD(activeIn *config.Hardfork) { var start config.Hardfork if activeIn != nil { start = *activeIn } for _, hf := range append([]config.Hardfork{config.HFDefault}, config.Hardforks...) { if hf.Cmp(start) < 0 { continue } _, contractHasChanges := c.ActiveHFs[hf] if hf.Cmp(start) == 0 || contractHasChanges { c.buildHFSpecificMD(hf) } else { // Optimize out MD rebuild, the contract is the same. // Intentionally omit HFSpecificContractMD structure copying since mdCache is read-only. c.mdCache[hf] = c.mdCache[hf.Prev()] } } } // buildHFSpecificMD builds hardfork-specific contract descriptor that includes methods and events active starting from // the specified hardfork or older. It also updates cache with the received value. func (c *ContractMD) buildHFSpecificMD(hf config.Hardfork) { var ( abiMethods = make([]manifest.Method, 0, len(c.methods)) methods = make([]HFSpecificMethodAndPrice, 0, len(c.methods)) abiEvents = make([]manifest.Event, 0, len(c.events)) events = make([]HFSpecificEvent, 0, len(c.events)) ) w := io.NewBufBinWriter() for i := range c.methods { m := c.methods[i] if (m.ActiveFrom != nil && (*m.ActiveFrom).Cmp(hf) > 0) || (m.ActiveTill != nil && (*m.ActiveTill).Cmp(hf) <= 0) { continue } // Perform method descriptor copy to support independent HF-based offset update. md := *m.MD m.MD = &md m.MD.Offset = w.Len() emit.Int(w.BinWriter, 0) m.SyscallOffset = w.Len() emit.Syscall(w.BinWriter, interopnames.SystemContractCallNative) emit.Opcodes(w.BinWriter, opcode.RET) abiMethods = append(abiMethods, *m.MD) methods = append(methods, m.HFSpecificMethodAndPrice) } if w.Err != nil { panic(fmt.Errorf("can't create native contract script: %w", w.Err)) } for i := range c.events { e := c.events[i] if (e.ActiveFrom != nil && (*e.ActiveFrom).Cmp(hf) > 0) || (e.ActiveTill != nil && (*e.ActiveTill).Cmp(hf) <= 0) { continue } abiEvents = append(abiEvents, *e.MD) events = append(events, e.HFSpecificEvent) } // NEF is now stored in the contract state and affects state dump. // Therefore, values are taken from C# node. nf := nef.File{ Header: nef.Header{ Magic: nef.Magic, Compiler: "neo-core-v3.0", }, Tokens: []nef.MethodToken{}, // avoid `nil` result during JSON marshalling, Script: w.Bytes(), } nf.Checksum = nf.CalculateChecksum() m := manifest.DefaultManifest(c.Name) m.ABI.Methods = abiMethods m.ABI.Events = abiEvents if c.onManifestConstruction != nil { c.onManifestConstruction(m) } md := &HFSpecificContractMD{ ContractBase: state.ContractBase{ ID: c.ID, Hash: c.Hash, NEF: nf, Manifest: *m, }, Methods: methods, Events: events, } c.mdCache[hf] = md } // AddMethod adds a new method to a native contract. func (c *ContractMD) AddMethod(md *MethodAndPrice, desc *manifest.Method) { md.MD = desc desc.Safe = md.RequiredFlags&(callflag.All^callflag.ReadOnly) == 0 index, _ := slices.BinarySearchFunc(c.methods, *md, func(e, t MethodAndPrice) int { return cmp.Or( cmp.Compare(e.MD.Name, t.MD.Name), cmp.Compare(len(e.MD.Parameters), len(t.MD.Parameters)), ) }) c.methods = slices.Insert(c.methods, index, *md) if md.ActiveFrom != nil { c.ActiveHFs[*md.ActiveFrom] = struct{}{} } if md.ActiveTill != nil { c.ActiveHFs[*md.ActiveTill] = struct{}{} } } // GetMethodByOffset returns method with the provided offset. // Offset is offset of `System.Contract.CallNative` syscall. func (c *HFSpecificContractMD) GetMethodByOffset(offset int) (HFSpecificMethodAndPrice, bool) { for k := range c.Methods { if c.Methods[k].SyscallOffset == offset { return c.Methods[k], true } } return HFSpecificMethodAndPrice{}, false } // GetMethod returns method `name` with the specified number of parameters. func (c *HFSpecificContractMD) GetMethod(name string, paramCount int) (HFSpecificMethodAndPrice, bool) { index, ok := slices.BinarySearchFunc(c.Methods, HFSpecificMethodAndPrice{}, func(a, _ HFSpecificMethodAndPrice) int { res := strings.Compare(a.MD.Name, name) if res != 0 { return res } return cmp.Compare(len(a.MD.Parameters), paramCount) }) // Exact match is possible only for specific paramCount, but if we're // searching for _some_ method with this name (-1) we're taking the // first one. if ok || (index < len(c.Methods) && c.Methods[index].MD.Name == name && paramCount == -1) { return c.Methods[index], true } return HFSpecificMethodAndPrice{}, false } // AddEvent adds a new event to the native contract. func (c *ContractMD) AddEvent(md Event) { c.events = append(c.events, md) if md.ActiveFrom != nil { c.ActiveHFs[*md.ActiveFrom] = struct{}{} } if md.ActiveTill != nil { c.ActiveHFs[*md.ActiveTill] = struct{}{} } } // Sort sorts interop functions by id. func Sort(fs []Function) { slices.SortFunc(fs, func(a, b Function) int { return cmp.Compare(a.ID, b.ID) }) } // GetContract returns a contract by its hash in the current interop context. func (ic *Context) GetContract(hash util.Uint160) (*state.Contract, error) { return ic.getContract(ic.DAO, hash) } // GetFunction returns metadata for interop with the specified id. func (ic *Context) GetFunction(id uint32) *Function { n, ok := slices.BinarySearchFunc(ic.Functions, Function{}, func(a, _ Function) int { return cmp.Compare(a.ID, id) }) if !ok { return nil } return &ic.Functions[n] } // BaseExecFee represents factor to multiply syscall prices with. func (ic *Context) BaseExecFee() int64 { return ic.baseExecFee } // BaseStorageFee represents price for storing one byte of data in the contract storage. func (ic *Context) BaseStorageFee() int64 { return ic.baseStorageFee } // LoadToken wraps externally provided load-token loading function providing it with context, // this function can then be easily used by VM. func (ic *Context) LoadToken(id int32) error { return ic.loadToken(ic, id) } // SyscallHandler handles syscall with id. func (ic *Context) SyscallHandler(_ *vm.VM, id uint32) error { f := ic.GetFunction(id) if f == nil { return errors.New("syscall not found") } cf := ic.VM.Context().GetCallFlags() if !cf.Has(f.RequiredFlags) { return fmt.Errorf("missing call flags: %05b vs %05b", cf, f.RequiredFlags) } if !ic.VM.AddGas(f.Price * ic.BaseExecFee()) { return errors.New("insufficient amount of gas") } return f.Func(ic) } // SpawnVM spawns a new VM with the specified gas limit and set context.VM field. func (ic *Context) SpawnVM() *vm.VM { v := vm.NewWithTrigger(ic.Trigger) ic.initVM(v) return v } func (ic *Context) initVM(v *vm.VM) { v.LoadToken = ic.LoadToken v.GasLimit = -1 v.SyscallHandler = ic.SyscallHandler v.SetPriceGetter(ic.GetPrice) ic.VM = v } // ReuseVM resets given VM and allows to reuse it in the current context. func (ic *Context) ReuseVM(v *vm.VM) { v.Reset(ic.Trigger) ic.initVM(v) } // RegisterCancelFunc adds the given function to the list of functions to be called after the VM // finishes script execution. func (ic *Context) RegisterCancelFunc(f context.CancelFunc) { if f != nil { ic.cancelFuncs = append(ic.cancelFuncs, f) } } // Finalize calls all registered cancel functions to release the occupied resources. func (ic *Context) Finalize() { for _, f := range ic.cancelFuncs { f() } ic.cancelFuncs = nil } // Exec executes loaded VM script and calls registered finalizers to release the occupied resources. func (ic *Context) Exec() error { defer ic.Finalize() return ic.VM.Run() } // BlockHeight returns the latest persisted and stored block height/index. // Persisting block index is not taken into account. If Context's block is set, // then BlockHeight calculations relies on persisting block index. func (ic *Context) BlockHeight() uint32 { if ic.Block != nil { return ic.Block.Index - 1 // Persisting block is not yet stored. } return ic.Chain.BlockHeight() } // CurrentBlockHash returns current block hash got from Context's block if it's set. func (ic *Context) CurrentBlockHash() util.Uint256 { if ic.Block != nil { return ic.Chain.GetHeaderHash(ic.Block.Index - 1) // Persisting block is not yet stored. } return ic.Chain.CurrentBlockHash() } // GetBlock returns block if it exists and available at the current Context's height. func (ic *Context) GetBlock(hash util.Uint256) (*block.Block, error) { block, err := ic.Chain.GetBlock(hash) if err != nil { return nil, err } if block.Index > ic.BlockHeight() { // persisting block is not reachable. return nil, storage.ErrKeyNotFound } return block, nil } // IsHardforkEnabled tells whether specified hard-fork enabled at the current context height. func (ic *Context) IsHardforkEnabled(hf config.Hardfork) bool { height, ok := ic.Hardforks[hf.String()] if ok { return (ic.BlockHeight() + 1) >= height // persisting block should be taken into account. } // Completely rely on proper hardforks initialisation made by core.NewBlockchain. return false } // IsHardforkActivation denotes whether current block height is the height of // specified hardfork activation. func (ic *Context) IsHardforkActivation(hf config.Hardfork) bool { // Completely rely on proper hardforks initialisation made by core.NewBlockchain. height, ok := ic.Hardforks[hf.String()] return ok && ic.Block.Index == height } // AddNotification creates notification event and appends it to the notification list. func (ic *Context) AddNotification(hash util.Uint160, name string, item *stackitem.Array) { ic.Notifications = append(ic.Notifications, state.NotificationEvent{ ScriptHash: hash, Name: name, Item: item, }) }