neo-go/pkg/crypto/keys/private_key.go
Roman Khimov 53c014a0bb crypto/consensus: sign hashes and cache them for consensus payloads
Avoid serializing payload again and again for various purposes. To sign it, we
only need a hash.

Some 2.4% gain in TPS could be achieved with this.
2020-09-09 20:46:31 +03:00

169 lines
4.2 KiB
Go

package keys
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"encoding/hex"
"fmt"
"math/big"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/rfc6979"
)
// PrivateKey represents a NEO private key and provides a high level API around
// ecdsa.PrivateKey.
type PrivateKey struct {
ecdsa.PrivateKey
}
// NewPrivateKey creates a new random Secp256k1 private key.
func NewPrivateKey() (*PrivateKey, error) {
priv, x, y, err := elliptic.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return nil, err
}
return &PrivateKey{
ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: x,
Y: y,
},
D: new(big.Int).SetBytes(priv),
},
}, nil
}
// NewPrivateKeyFromHex returns a Secp256k1 PrivateKey created from the
// given hex string.
func NewPrivateKeyFromHex(str string) (*PrivateKey, error) {
b, err := hex.DecodeString(str)
if err != nil {
return nil, err
}
return NewPrivateKeyFromBytes(b)
}
// NewPrivateKeyFromBytes returns a NEO Secp256r1 PrivateKey from the given
// byte slice.
func NewPrivateKeyFromBytes(b []byte) (*PrivateKey, error) {
if len(b) != 32 {
return nil, fmt.Errorf(
"invalid byte length: expected %d bytes got %d", 32, len(b),
)
}
var (
c = elliptic.P256()
d = new(big.Int).SetBytes(b)
)
x, y := c.ScalarBaseMult(d.Bytes())
return &PrivateKey{
ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: c,
X: x,
Y: y,
},
D: d,
},
}, nil
}
// NewPrivateKeyFromASN1 returns a NEO Secp256k1 PrivateKey from the ASN.1
// serialized key.
func NewPrivateKeyFromASN1(b []byte) (*PrivateKey, error) {
privkey, err := x509.ParseECPrivateKey(b)
if err != nil {
return nil, err
}
return NewPrivateKeyFromBytes(privkey.D.Bytes())
}
// PublicKey derives the public key from the private key.
func (p *PrivateKey) PublicKey() *PublicKey {
result := PublicKey(p.PrivateKey.PublicKey)
return &result
}
// NewPrivateKeyFromWIF returns a NEO PrivateKey from the given
// WIF (wallet import format).
func NewPrivateKeyFromWIF(wif string) (*PrivateKey, error) {
w, err := WIFDecode(wif, WIFVersion)
if err != nil {
return nil, err
}
return w.PrivateKey, nil
}
// WIF returns the (wallet import format) of the PrivateKey.
// Good documentation about this process can be found here:
// https://en.bitcoin.it/wiki/Wallet_import_format
func (p *PrivateKey) WIF() string {
w, err := WIFEncode(p.Bytes(), WIFVersion, true)
// The only way WIFEncode() can fail is if we're to give it a key of
// wrong size, but we have a proper key here, aren't we?
if err != nil {
panic(err)
}
return w
}
// Address derives the public NEO address that is coupled with the private key, and
// returns it as a string.
func (p *PrivateKey) Address() string {
pk := p.PublicKey()
return pk.Address()
}
// GetScriptHash returns verification script hash for public key associated with
// the private key.
func (p *PrivateKey) GetScriptHash() util.Uint160 {
pk := p.PublicKey()
return pk.GetScriptHash()
}
// Sign signs arbitrary length data using the private key. It uses SHA256 to
// calculate hash and then SignHash to create a signature (so you can save on
// hash calculation if you already have it).
func (p *PrivateKey) Sign(data []byte) []byte {
var digest = sha256.Sum256(data)
return p.SignHash(digest)
}
// SignHash signs particular hash the private key.
func (p *PrivateKey) SignHash(digest util.Uint256) []byte {
r, s := rfc6979.SignECDSA(&p.PrivateKey, digest[:], sha256.New)
return getSignatureSlice(p.PrivateKey.Curve, r, s)
}
func getSignatureSlice(curve elliptic.Curve, r, s *big.Int) []byte {
params := curve.Params()
curveOrderByteSize := params.P.BitLen() / 8
rBytes, sBytes := r.Bytes(), s.Bytes()
signature := make([]byte, curveOrderByteSize*2)
copy(signature[curveOrderByteSize-len(rBytes):], rBytes)
copy(signature[curveOrderByteSize*2-len(sBytes):], sBytes)
return signature
}
// String implements the stringer interface.
func (p *PrivateKey) String() string {
return hex.EncodeToString(p.Bytes())
}
// Bytes returns the underlying bytes of the PrivateKey.
func (p *PrivateKey) Bytes() []byte {
bytes := p.D.Bytes()
result := make([]byte, 32)
copy(result[32-len(bytes):], bytes)
return result
}