neo-go/pkg/core/blockchain.go
Roman Khimov 55b2cbb74d core: refactor and improve verification and pooling
Now we have VerifyTx() and PoolTx() APIs that either verify transaction in
isolation or verify it against the mempool (either the primary one or the one
given) and then add it there. There is no possibility to check against the
mempool, but not add a transaction to it, but I doubt we really need it.

It allows to remove some duplication between old PoolTx and verifyTx where
they both tried to check transaction against mempool (verifying first and then
adding it). It also saves us utility token balance check because it's done by
the mempool anyway and we no longer need to do that explicitly in verifyTx.

It makes AddBlock() and verifyBlock() transaction's checks more correct,
because previously they could miss that even though sender S has enough
balance to pay for A, B or C, he can't pay for all of them.

Caveats:
 * consensus is running concurrently to other processes, so things could
   change while verifyBlock() is iterating over transactions, this will be
   mitigated in subsequent commits

Improves TPS value for single node by at least 11%.

Fixes #667, fixes #668.
2020-08-20 18:50:18 +03:00

1599 lines
48 KiB
Go

package core
import (
"errors"
"fmt"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/dao"
"github.com/nspcc-dev/neo-go/pkg/core/interop"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/encoding/bigint"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/smartcontract"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
"go.uber.org/zap"
)
// Tuning parameters.
const (
headerBatchCount = 2000
version = "0.1.0"
defaultMemPoolSize = 50000
verificationGasLimit = 100000000 // 1 GAS
)
var (
// ErrAlreadyExists is returned when trying to add some already existing
// transaction into the pool (not specifying whether it exists in the
// chain or mempool).
ErrAlreadyExists = errors.New("already exists")
// ErrOOM is returned when adding transaction to the memory pool because
// it reached its full capacity.
ErrOOM = errors.New("no space left in the memory pool")
// ErrPolicy is returned on attempt to add transaction that doesn't
// comply with node's configured policy into the mempool.
ErrPolicy = errors.New("not allowed by policy")
// ErrInvalidBlockIndex is returned when trying to add block with index
// other than expected height of the blockchain.
ErrInvalidBlockIndex error = errors.New("invalid block index")
)
var (
genAmount = []int{6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
decrementInterval = 2000000
persistInterval = 1 * time.Second
)
// Blockchain represents the blockchain. It maintans internal state representing
// the state of the ledger that can be accessed in various ways and changed by
// adding new blocks or headers.
type Blockchain struct {
config config.ProtocolConfiguration
// The only way chain state changes is by adding blocks, so we can't
// allow concurrent block additions. It differs from the next lock in
// that it's only for AddBlock method itself, the chain state is
// protected by the lock below, but holding it during all of AddBlock
// is too expensive (because the state only changes when persisting
// change cache).
addLock sync.Mutex
// This lock ensures blockchain immutability for operations that need
// that while performing their tasks. It's mostly used as a read lock
// with the only writer being the block addition logic.
lock sync.RWMutex
// Data access object for CRUD operations around storage.
dao *dao.Simple
// Current index/height of the highest block.
// Read access should always be called by BlockHeight().
// Write access should only happen in storeBlock().
blockHeight uint32
// Current top Block wrapped in an atomic.Value for safe access.
topBlock atomic.Value
// Current persisted block count.
persistedHeight uint32
// Number of headers stored in the chain file.
storedHeaderCount uint32
generationAmount []int
decrementInterval int
// All operations on headerList must be called from an
// headersOp to be routine safe.
headerList *HeaderHashList
// Only for operating on the headerList.
headersOp chan headersOpFunc
headersOpDone chan struct{}
// Stop synchronization mechanisms.
stopCh chan struct{}
runToExitCh chan struct{}
memPool *mempool.Pool
// This lock protects concurrent access to keyCache.
keyCacheLock sync.RWMutex
// cache for block verification keys.
keyCache map[util.Uint160]map[string]*keys.PublicKey
sbCommittee keys.PublicKeys
log *zap.Logger
lastBatch *storage.MemBatch
contracts native.Contracts
// Notification subsystem.
events chan bcEvent
subCh chan interface{}
unsubCh chan interface{}
}
// bcEvent is an internal event generated by the Blockchain and then
// broadcasted to other parties. It joins the new block and associated
// invocation logs, all the other events visible from outside can be produced
// from this combination.
type bcEvent struct {
block *block.Block
appExecResults []*state.AppExecResult
}
type headersOpFunc func(headerList *HeaderHashList)
// NewBlockchain returns a new blockchain object the will use the
// given Store as its underlying storage. For it to work correctly you need
// to spawn a goroutine for its Run method after this initialization.
func NewBlockchain(s storage.Store, cfg config.ProtocolConfiguration, log *zap.Logger) (*Blockchain, error) {
if log == nil {
return nil, errors.New("empty logger")
}
if cfg.MemPoolSize <= 0 {
cfg.MemPoolSize = defaultMemPoolSize
log.Info("mempool size is not set or wrong, setting default value", zap.Int("MemPoolSize", cfg.MemPoolSize))
}
committee, err := committeeFromConfig(cfg)
if err != nil {
return nil, err
}
bc := &Blockchain{
config: cfg,
dao: dao.NewSimple(s, cfg.Magic),
headersOp: make(chan headersOpFunc),
headersOpDone: make(chan struct{}),
stopCh: make(chan struct{}),
runToExitCh: make(chan struct{}),
memPool: mempool.New(cfg.MemPoolSize),
keyCache: make(map[util.Uint160]map[string]*keys.PublicKey),
sbCommittee: committee,
log: log,
events: make(chan bcEvent),
subCh: make(chan interface{}),
unsubCh: make(chan interface{}),
generationAmount: genAmount,
decrementInterval: decrementInterval,
contracts: *native.NewContracts(),
}
if err := bc.init(); err != nil {
return nil, err
}
return bc, nil
}
func (bc *Blockchain) init() error {
// If we could not find the version in the Store, we know that there is nothing stored.
ver, err := bc.dao.GetVersion()
if err != nil {
bc.log.Info("no storage version found! creating genesis block")
if err = bc.dao.PutVersion(version); err != nil {
return err
}
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
bc.headerList = NewHeaderHashList(genesisBlock.Hash())
err = bc.dao.PutCurrentHeader(hashAndIndexToBytes(genesisBlock.Hash(), genesisBlock.Index))
if err != nil {
return err
}
return bc.storeBlock(genesisBlock)
}
if ver != version {
return fmt.Errorf("storage version mismatch betweeen %s and %s", version, ver)
}
// At this point there was no version found in the storage which
// implies a creating fresh storage with the version specified
// and the genesis block as first block.
bc.log.Info("restoring blockchain", zap.String("version", version))
bHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return err
}
bc.blockHeight = bHeight
bc.persistedHeight = bHeight
if err = bc.dao.InitMPT(bHeight); err != nil {
return fmt.Errorf("can't init MPT at height %d: %w", bHeight, err)
}
hashes, err := bc.dao.GetHeaderHashes()
if err != nil {
return err
}
bc.headerList = NewHeaderHashList(hashes...)
bc.storedHeaderCount = uint32(len(hashes))
currHeaderHeight, currHeaderHash, err := bc.dao.GetCurrentHeaderHeight()
if err != nil {
return err
}
if bc.storedHeaderCount == 0 && currHeaderHeight == 0 {
bc.headerList.Add(currHeaderHash)
}
// There is a high chance that the Node is stopped before the next
// batch of 2000 headers was stored. Via the currentHeaders stored we can sync
// that with stored blocks.
if currHeaderHeight >= bc.storedHeaderCount {
hash := currHeaderHash
var targetHash util.Uint256
if bc.headerList.Len() > 0 {
targetHash = bc.headerList.Get(bc.headerList.Len() - 1)
} else {
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
targetHash = genesisBlock.Hash()
bc.headerList.Add(targetHash)
}
headers := make([]*block.Header, 0)
for hash != targetHash {
header, err := bc.GetHeader(hash)
if err != nil {
return fmt.Errorf("could not get header %s: %w", hash, err)
}
headers = append(headers, header)
hash = header.PrevHash
}
headerSliceReverse(headers)
for _, h := range headers {
if !h.Verify() {
return fmt.Errorf("bad header %d/%s in the storage", h.Index, h.Hash())
}
bc.headerList.Add(h.Hash())
}
}
return nil
}
// Run runs chain loop, it needs to be run as goroutine and executing it is
// critical for correct Blockchain operation.
func (bc *Blockchain) Run() {
persistTimer := time.NewTimer(persistInterval)
defer func() {
persistTimer.Stop()
if err := bc.persist(); err != nil {
bc.log.Warn("failed to persist", zap.Error(err))
}
if err := bc.dao.Store.Close(); err != nil {
bc.log.Warn("failed to close db", zap.Error(err))
}
close(bc.runToExitCh)
}()
go bc.notificationDispatcher()
for {
select {
case <-bc.stopCh:
return
case op := <-bc.headersOp:
op(bc.headerList)
bc.headersOpDone <- struct{}{}
case <-persistTimer.C:
go func() {
err := bc.persist()
if err != nil {
bc.log.Warn("failed to persist blockchain", zap.Error(err))
}
persistTimer.Reset(persistInterval)
}()
}
}
}
// notificationDispatcher manages subscription to events and broadcasts new events.
func (bc *Blockchain) notificationDispatcher() {
var (
// These are just sets of subscribers, though modelled as maps
// for ease of management (not a lot of subscriptions is really
// expected, but maps are convenient for adding/deleting elements).
blockFeed = make(map[chan<- *block.Block]bool)
txFeed = make(map[chan<- *transaction.Transaction]bool)
notificationFeed = make(map[chan<- *state.NotificationEvent]bool)
executionFeed = make(map[chan<- *state.AppExecResult]bool)
)
for {
select {
case <-bc.stopCh:
return
case sub := <-bc.subCh:
switch ch := sub.(type) {
case chan<- *block.Block:
blockFeed[ch] = true
case chan<- *transaction.Transaction:
txFeed[ch] = true
case chan<- *state.NotificationEvent:
notificationFeed[ch] = true
case chan<- *state.AppExecResult:
executionFeed[ch] = true
default:
panic(fmt.Sprintf("bad subscription: %T", sub))
}
case unsub := <-bc.unsubCh:
switch ch := unsub.(type) {
case chan<- *block.Block:
delete(blockFeed, ch)
case chan<- *transaction.Transaction:
delete(txFeed, ch)
case chan<- *state.NotificationEvent:
delete(notificationFeed, ch)
case chan<- *state.AppExecResult:
delete(executionFeed, ch)
default:
panic(fmt.Sprintf("bad unsubscription: %T", unsub))
}
case event := <-bc.events:
// We don't want to waste time looping through transactions when there are no
// subscribers.
if len(txFeed) != 0 || len(notificationFeed) != 0 || len(executionFeed) != 0 {
aer := event.appExecResults[0]
if !aer.TxHash.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &aer.Events[i]
}
}
aerIdx := 1
for _, tx := range event.block.Transactions {
aer := event.appExecResults[aerIdx]
if !aer.TxHash.Equals(tx.Hash()) {
panic("inconsistent application execution results")
}
aerIdx++
for ch := range executionFeed {
ch <- aer
}
if aer.VMState == vm.HaltState {
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &aer.Events[i]
}
}
}
for ch := range txFeed {
ch <- tx
}
}
}
for ch := range blockFeed {
ch <- event.block
}
}
}
}
// Close stops Blockchain's internal loop, syncs changes to persistent storage
// and closes it. The Blockchain is no longer functional after the call to Close.
func (bc *Blockchain) Close() {
// If there is a block addition in progress, wait for it to finish and
// don't allow new ones.
bc.addLock.Lock()
close(bc.stopCh)
<-bc.runToExitCh
bc.addLock.Unlock()
}
// AddBlock accepts successive block for the Blockchain, verifies it and
// stores internally. Eventually it will be persisted to the backing storage.
func (bc *Blockchain) AddBlock(block *block.Block) error {
bc.addLock.Lock()
defer bc.addLock.Unlock()
expectedHeight := bc.BlockHeight() + 1
if expectedHeight != block.Index {
return fmt.Errorf("expected %d, got %d: %w", expectedHeight, block.Index, ErrInvalidBlockIndex)
}
headerLen := bc.headerListLen()
if int(block.Index) == headerLen {
err := bc.addHeaders(bc.config.VerifyBlocks, block.Header())
if err != nil {
return err
}
}
if bc.config.VerifyBlocks {
err := block.Verify()
if err != nil {
return fmt.Errorf("block %s is invalid: %w", block.Hash().StringLE(), err)
}
if bc.config.VerifyTransactions {
var mp = mempool.New(len(block.Transactions))
for _, tx := range block.Transactions {
var err error
// Transactions are verified before adding them
// into the pool, so there is no point in doing
// it again even if we're verifying in-block transactions.
if bc.memPool.ContainsKey(tx.Hash()) {
err = mp.Add(tx, bc)
if err == nil {
continue
}
} else {
err = bc.verifyAndPoolTx(tx, mp)
}
if err != nil {
return fmt.Errorf("transaction %s failed to verify: %w", tx.Hash().StringLE(), err)
}
}
}
}
return bc.storeBlock(block)
}
// AddHeaders processes the given headers and add them to the
// HeaderHashList. It expects headers to be sorted by index.
func (bc *Blockchain) AddHeaders(headers ...*block.Header) error {
return bc.addHeaders(bc.config.VerifyBlocks, headers...)
}
// addHeaders is an internal implementation of AddHeaders (`verify` parameter
// tells it to verify or not verify given headers).
func (bc *Blockchain) addHeaders(verify bool, headers ...*block.Header) (err error) {
var (
start = time.Now()
batch = bc.dao.Store.Batch()
)
if len(headers) > 0 {
var i int
curHeight := bc.HeaderHeight()
for i = range headers {
if headers[i].Index > curHeight {
break
}
}
headers = headers[i:]
}
if len(headers) == 0 {
return nil
} else if verify {
// Verify that the chain of the headers is consistent.
var lastHeader *block.Header
if lastHeader, err = bc.GetHeader(headers[0].PrevHash); err != nil {
return fmt.Errorf("previous header was not found: %w", err)
}
for _, h := range headers {
if err = bc.verifyHeader(h, lastHeader); err != nil {
return
}
lastHeader = h
}
}
bc.headersOp <- func(headerList *HeaderHashList) {
oldlen := headerList.Len()
for _, h := range headers {
if int(h.Index-1) >= headerList.Len() {
err = fmt.Errorf(
"height of received header %d is higher then the current header %d",
h.Index, headerList.Len(),
)
return
}
if int(h.Index) < headerList.Len() {
continue
}
if !h.Verify() {
err = fmt.Errorf("header %v is invalid", h)
return
}
if err = bc.processHeader(h, batch, headerList); err != nil {
return
}
}
if oldlen != headerList.Len() {
updateHeaderHeightMetric(headerList.Len() - 1)
if err = bc.dao.Store.PutBatch(batch); err != nil {
return
}
bc.log.Debug("done processing headers",
zap.Int("headerIndex", headerList.Len()-1),
zap.Uint32("blockHeight", bc.BlockHeight()),
zap.Duration("took", time.Since(start)))
}
}
<-bc.headersOpDone
return err
}
// processHeader processes the given header. Note that this is only thread safe
// if executed in headers operation.
func (bc *Blockchain) processHeader(h *block.Header, batch storage.Batch, headerList *HeaderHashList) error {
headerList.Add(h.Hash())
buf := io.NewBufBinWriter()
for int(h.Index)-headerBatchCount >= int(bc.storedHeaderCount) {
if err := headerList.Write(buf.BinWriter, int(bc.storedHeaderCount), headerBatchCount); err != nil {
return err
}
key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount))
batch.Put(key, buf.Bytes())
bc.storedHeaderCount += headerBatchCount
buf.Reset()
}
buf.Reset()
h.EncodeBinary(buf.BinWriter)
if buf.Err != nil {
return buf.Err
}
key := storage.AppendPrefix(storage.DataBlock, h.Hash().BytesLE())
batch.Put(key, buf.Bytes())
batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(h.Hash(), h.Index))
return nil
}
// GetStateRoot returns state root for a given height.
func (bc *Blockchain) GetStateRoot(height uint32) (*state.MPTRootState, error) {
return bc.dao.GetStateRoot(height)
}
// storeBlock performs chain update using the block given, it executes all
// transactions with all appropriate side-effects and updates Blockchain state.
// This is the only way to change Blockchain state.
func (bc *Blockchain) storeBlock(block *block.Block) error {
cache := dao.NewCached(bc.dao)
appExecResults := make([]*state.AppExecResult, 0, 1+len(block.Transactions))
if err := cache.StoreAsBlock(block); err != nil {
return err
}
if err := cache.StoreAsCurrentBlock(block); err != nil {
return err
}
if block.Index > 0 {
systemInterop := bc.newInteropContext(trigger.System, cache, block, nil)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(bc.contracts.GetPersistScript(), smartcontract.AllowModifyStates|smartcontract.AllowCall)
v.SetPriceGetter(getPrice)
if err := v.Run(); err != nil {
return fmt.Errorf("onPersist run failed: %w", err)
} else if _, err := systemInterop.DAO.Persist(); err != nil {
return fmt.Errorf("can't save onPersist changes: %w", err)
}
for i := range systemInterop.Notifications {
bc.handleNotification(&systemInterop.Notifications[i], cache, block, block.Hash())
}
aer := &state.AppExecResult{
TxHash: block.Hash(), // application logs can be retrieved by block hash
Trigger: trigger.System,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
}
appExecResults = append(appExecResults, aer)
err := cache.PutAppExecResult(aer)
if err != nil {
return fmt.Errorf("failed to store onPersist exec result: %w", err)
}
}
var txHashes = make([]util.Uint256, len(block.Transactions))
for i, tx := range block.Transactions {
if err := cache.StoreAsTransaction(tx, block.Index); err != nil {
return err
}
systemInterop := bc.newInteropContext(trigger.Application, cache, block, tx)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(tx.Script, smartcontract.All)
v.SetPriceGetter(getPrice)
v.GasLimit = tx.SystemFee
err := v.Run()
if !v.HasFailed() {
_, err := systemInterop.DAO.Persist()
if err != nil {
return fmt.Errorf("failed to persist invocation results: %w", err)
}
for j := range systemInterop.Notifications {
bc.handleNotification(&systemInterop.Notifications[j], cache, block, tx.Hash())
}
} else {
bc.log.Warn("contract invocation failed",
zap.String("tx", tx.Hash().StringLE()),
zap.Uint32("block", block.Index),
zap.Error(err))
}
aer := &state.AppExecResult{
TxHash: tx.Hash(),
Trigger: trigger.Application,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
}
appExecResults = append(appExecResults, aer)
err = cache.PutAppExecResult(aer)
if err != nil {
return fmt.Errorf("failed to store tx exec result: %w", err)
}
txHashes[i] = tx.Hash()
}
sort.Slice(txHashes, func(i, j int) bool {
return txHashes[i].CompareTo(txHashes[j]) < 0
})
root := bc.dao.MPT.StateRoot()
var prevHash util.Uint256
if block.Index > 0 {
prev, err := bc.dao.GetStateRoot(block.Index - 1)
if err != nil {
return fmt.Errorf("can't get previous state root: %w", err)
}
prevHash = hash.DoubleSha256(prev.GetSignedPart())
}
err := bc.AddStateRoot(&state.MPTRoot{
MPTRootBase: state.MPTRootBase{
Index: block.Index,
PrevHash: prevHash,
Root: root,
},
})
if err != nil {
return err
}
if bc.config.SaveStorageBatch {
bc.lastBatch = cache.DAO.GetBatch()
}
bc.lock.Lock()
_, err = cache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
bc.contracts.Policy.OnPersistEnd(bc.dao)
bc.dao.MPT.Flush()
// Every persist cycle we also compact our in-memory MPT.
persistedHeight := atomic.LoadUint32(&bc.persistedHeight)
if persistedHeight == block.Index-1 {
// 10 is good and roughly estimated to fit remaining trie into 1M of memory.
bc.dao.MPT.Collapse(10)
}
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, block.Index)
bc.memPool.RemoveStale(func(tx *transaction.Transaction) bool { return bc.isTxStillRelevant(tx, txHashes) }, bc)
bc.lock.Unlock()
updateBlockHeightMetric(block.Index)
// Genesis block is stored when Blockchain is not yet running, so there
// is no one to read this event. And it doesn't make much sense as event
// anyway.
if block.Index != 0 {
bc.events <- bcEvent{block, appExecResults}
}
return nil
}
func (bc *Blockchain) handleNotification(note *state.NotificationEvent, d *dao.Cached, b *block.Block, h util.Uint256) {
if note.Name != "transfer" && note.Name != "Transfer" {
return
}
arr, ok := note.Item.Value().([]stackitem.Item)
if !ok || len(arr) != 3 {
return
}
var from []byte
fromValue := arr[0].Value()
// we don't have `from` set when we are minting tokens
if fromValue != nil {
from, ok = fromValue.([]byte)
if !ok {
return
}
}
var to []byte
toValue := arr[1].Value()
// we don't have `to` set when we are burning tokens
if toValue != nil {
to, ok = toValue.([]byte)
if !ok {
return
}
}
amount, ok := arr[2].Value().(*big.Int)
if !ok {
bs, ok := arr[2].Value().([]byte)
if !ok {
return
}
amount = bigint.FromBytes(bs)
}
bc.processNEP5Transfer(d, h, b, note.ScriptHash, from, to, amount)
}
func parseUint160(addr []byte) util.Uint160 {
if u, err := util.Uint160DecodeBytesBE(addr); err == nil {
return u
}
return util.Uint160{}
}
func (bc *Blockchain) processNEP5Transfer(cache *dao.Cached, h util.Uint256, b *block.Block, sc util.Uint160, from, to []byte, amount *big.Int) {
toAddr := parseUint160(to)
fromAddr := parseUint160(from)
var id int32
nativeContract := bc.contracts.ByHash(sc)
if nativeContract != nil {
id = nativeContract.Metadata().ContractID
} else {
assetContract := bc.GetContractState(sc)
if assetContract == nil {
return
}
id = assetContract.ID
}
transfer := &state.NEP5Transfer{
Asset: id,
From: fromAddr,
To: toAddr,
Block: b.Index,
Timestamp: b.Timestamp,
Tx: h,
}
if !fromAddr.Equals(util.Uint160{}) {
balances, err := cache.GetNEP5Balances(fromAddr)
if err != nil {
return
}
bs := balances.Trackers[id]
bs.Balance = *new(big.Int).Sub(&bs.Balance, amount)
bs.LastUpdatedBlock = b.Index
balances.Trackers[id] = bs
transfer.Amount = *new(big.Int).Sub(&transfer.Amount, amount)
isBig, err := cache.AppendNEP5Transfer(fromAddr, balances.NextTransferBatch, transfer)
if err != nil {
return
}
if isBig {
balances.NextTransferBatch++
}
if err := cache.PutNEP5Balances(fromAddr, balances); err != nil {
return
}
}
if !toAddr.Equals(util.Uint160{}) {
balances, err := cache.GetNEP5Balances(toAddr)
if err != nil {
return
}
bs := balances.Trackers[id]
bs.Balance = *new(big.Int).Add(&bs.Balance, amount)
bs.LastUpdatedBlock = b.Index
balances.Trackers[id] = bs
transfer.Amount = *amount
isBig, err := cache.AppendNEP5Transfer(toAddr, balances.NextTransferBatch, transfer)
if err != nil {
return
}
if isBig {
balances.NextTransferBatch++
}
if err := cache.PutNEP5Balances(toAddr, balances); err != nil {
return
}
}
}
// ForEachNEP5Transfer executes f for each nep5 transfer in log.
func (bc *Blockchain) ForEachNEP5Transfer(acc util.Uint160, f func(*state.NEP5Transfer) error) error {
balances, err := bc.dao.GetNEP5Balances(acc)
if err != nil {
return nil
}
for i := uint32(0); i <= balances.NextTransferBatch; i++ {
lg, err := bc.dao.GetNEP5TransferLog(acc, i)
if err != nil {
return nil
}
err = lg.ForEach(f)
if err != nil {
return err
}
}
return nil
}
// GetNEP5Balances returns NEP5 balances for the acc.
func (bc *Blockchain) GetNEP5Balances(acc util.Uint160) *state.NEP5Balances {
bs, err := bc.dao.GetNEP5Balances(acc)
if err != nil {
return nil
}
return bs
}
// GetUtilityTokenBalance returns utility token (GAS) balance for the acc.
func (bc *Blockchain) GetUtilityTokenBalance(acc util.Uint160) *big.Int {
bs, err := bc.dao.GetNEP5Balances(acc)
if err != nil {
return big.NewInt(0)
}
balance := bs.Trackers[bc.contracts.GAS.ContractID].Balance
return &balance
}
// GetGoverningTokenBalance returns governing token (NEO) balance and the height
// of the last balance change for the account.
func (bc *Blockchain) GetGoverningTokenBalance(acc util.Uint160) (*big.Int, uint32) {
bs, err := bc.dao.GetNEP5Balances(acc)
if err != nil {
return big.NewInt(0), 0
}
neo := bs.Trackers[bc.contracts.NEO.ContractID]
return &neo.Balance, neo.LastUpdatedBlock
}
// LastBatch returns last persisted storage batch.
func (bc *Blockchain) LastBatch() *storage.MemBatch {
return bc.lastBatch
}
// persist flushes current in-memory Store contents to the persistent storage.
func (bc *Blockchain) persist() error {
var (
start = time.Now()
persisted int
err error
)
persisted, err = bc.dao.Persist()
if err != nil {
return err
}
if persisted > 0 {
bHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return err
}
oldHeight := atomic.SwapUint32(&bc.persistedHeight, bHeight)
diff := bHeight - oldHeight
storedHeaderHeight, _, err := bc.dao.GetCurrentHeaderHeight()
if err != nil {
return err
}
bc.log.Info("blockchain persist completed",
zap.Uint32("persistedBlocks", diff),
zap.Int("persistedKeys", persisted),
zap.Uint32("headerHeight", storedHeaderHeight),
zap.Uint32("blockHeight", bHeight),
zap.Duration("took", time.Since(start)))
// update monitoring metrics.
updatePersistedHeightMetric(bHeight)
}
return nil
}
func (bc *Blockchain) headerListLen() (n int) {
bc.headersOp <- func(headerList *HeaderHashList) {
n = headerList.Len()
}
<-bc.headersOpDone
return
}
// GetTransaction returns a TX and its height by the given hash.
func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
if tx, ok := bc.memPool.TryGetValue(hash); ok {
return tx, 0, nil // the height is not actually defined for memPool transaction. Not sure if zero is a good number in this case.
}
return bc.dao.GetTransaction(hash)
}
// GetAppExecResult returns application execution result by the given
// tx hash.
func (bc *Blockchain) GetAppExecResult(hash util.Uint256) (*state.AppExecResult, error) {
return bc.dao.GetAppExecResult(hash)
}
// GetStorageItem returns an item from storage.
func (bc *Blockchain) GetStorageItem(id int32, key []byte) *state.StorageItem {
return bc.dao.GetStorageItem(id, key)
}
// GetStorageItems returns all storage items for a given contract id.
func (bc *Blockchain) GetStorageItems(id int32) (map[string]*state.StorageItem, error) {
return bc.dao.GetStorageItems(id)
}
// GetBlock returns a Block by the given hash.
func (bc *Blockchain) GetBlock(hash util.Uint256) (*block.Block, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
if tb, ok := topBlock.(*block.Block); ok && tb.Hash().Equals(hash) {
return tb, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
for _, tx := range block.Transactions {
stx, _, err := bc.dao.GetTransaction(tx.Hash())
if err != nil {
return nil, err
}
*tx = *stx
}
return block, nil
}
// GetHeader returns data block header identified with the given hash value.
func (bc *Blockchain) GetHeader(hash util.Uint256) (*block.Header, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
if tb, ok := topBlock.(*block.Block); ok && tb.Hash().Equals(hash) {
return tb.Header(), nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
return block.Header(), nil
}
// HasTransaction returns true if the blockchain contains he given
// transaction hash.
func (bc *Blockchain) HasTransaction(hash util.Uint256) bool {
return bc.memPool.ContainsKey(hash) || bc.dao.HasTransaction(hash)
}
// HasBlock returns true if the blockchain contains the given
// block hash.
func (bc *Blockchain) HasBlock(hash util.Uint256) bool {
if header, err := bc.GetHeader(hash); err == nil {
return header.Index <= bc.BlockHeight()
}
return false
}
// CurrentBlockHash returns the highest processed block hash.
func (bc *Blockchain) CurrentBlockHash() (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Get(int(bc.BlockHeight()))
}
<-bc.headersOpDone
return
}
// CurrentHeaderHash returns the hash of the latest known header.
func (bc *Blockchain) CurrentHeaderHash() (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Last()
}
<-bc.headersOpDone
return
}
// GetHeaderHash returns the hash from the headerList by its
// height/index.
func (bc *Blockchain) GetHeaderHash(i int) (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Get(i)
}
<-bc.headersOpDone
return
}
// BlockHeight returns the height/index of the highest block.
func (bc *Blockchain) BlockHeight() uint32 {
return atomic.LoadUint32(&bc.blockHeight)
}
// HeaderHeight returns the index/height of the highest header.
func (bc *Blockchain) HeaderHeight() uint32 {
return uint32(bc.headerListLen() - 1)
}
// GetContractState returns contract by its script hash.
func (bc *Blockchain) GetContractState(hash util.Uint160) *state.Contract {
contract, err := bc.dao.GetContractState(hash)
if contract == nil && err != storage.ErrKeyNotFound {
bc.log.Warn("failed to get contract state", zap.Error(err))
}
return contract
}
// GetContractScriptHash returns contract script hash by its ID.
func (bc *Blockchain) GetContractScriptHash(id int32) (util.Uint160, error) {
return bc.dao.GetContractScriptHash(id)
}
// GetConfig returns the config stored in the blockchain.
func (bc *Blockchain) GetConfig() config.ProtocolConfiguration {
return bc.config
}
// SubscribeForBlocks adds given channel to new block event broadcasting, so when
// there is a new block added to the chain you'll receive it via this channel.
// Make sure it's read from regularly as not reading these events might affect
// other Blockchain functions.
func (bc *Blockchain) SubscribeForBlocks(ch chan<- *block.Block) {
bc.subCh <- ch
}
// SubscribeForTransactions adds given channel to new transaction event
// broadcasting, so when there is a new transaction added to the chain (in a
// block) you'll receive it via this channel. Make sure it's read from regularly
// as not reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForTransactions(ch chan<- *transaction.Transaction) {
bc.subCh <- ch
}
// SubscribeForNotifications adds given channel to new notifications event
// broadcasting, so when an in-block transaction execution generates a
// notification you'll receive it via this channel. Only notifications from
// successful transactions are broadcasted, if you're interested in failed
// transactions use SubscribeForExecutions instead. Make sure this channel is
// read from regularly as not reading these events might affect other Blockchain
// functions.
func (bc *Blockchain) SubscribeForNotifications(ch chan<- *state.NotificationEvent) {
bc.subCh <- ch
}
// SubscribeForExecutions adds given channel to new transaction execution event
// broadcasting, so when an in-block transaction execution happens you'll receive
// the result of it via this channel. Make sure it's read from regularly as not
// reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForExecutions(ch chan<- *state.AppExecResult) {
bc.subCh <- ch
}
// UnsubscribeFromBlocks unsubscribes given channel from new block notifications,
// you can close it afterwards. Passing non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromBlocks(ch chan<- *block.Block) {
bc.unsubCh <- ch
}
// UnsubscribeFromTransactions unsubscribes given channel from new transaction
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromTransactions(ch chan<- *transaction.Transaction) {
bc.unsubCh <- ch
}
// UnsubscribeFromNotifications unsubscribes given channel from new
// execution-generated notifications, you can close it afterwards. Passing
// non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromNotifications(ch chan<- *state.NotificationEvent) {
bc.unsubCh <- ch
}
// UnsubscribeFromExecutions unsubscribes given channel from new execution
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromExecutions(ch chan<- *state.AppExecResult) {
bc.unsubCh <- ch
}
// CalculateClaimable calculates the amount of GAS generated by owning specified
// amount of NEO between specified blocks. The amount of NEO being passed is in
// its natural non-divisible form (1 NEO as 1, 2 NEO as 2, no multiplication by
// 10⁸ is needed as for Fixed8).
func (bc *Blockchain) CalculateClaimable(value *big.Int, startHeight, endHeight uint32) *big.Int {
var amount int64
di := uint32(bc.decrementInterval)
ustart := startHeight / di
if genSize := uint32(len(bc.generationAmount)); ustart < genSize {
uend := endHeight / di
iend := endHeight % di
if uend >= genSize {
uend = genSize - 1
iend = di
} else if iend == 0 {
uend--
iend = di
}
istart := startHeight % di
for ustart < uend {
amount += int64(di-istart) * int64(bc.generationAmount[ustart])
ustart++
istart = 0
}
amount += int64(iend-istart) * int64(bc.generationAmount[ustart])
}
return new(big.Int).Mul(big.NewInt(amount), value)
}
// FeePerByte returns transaction network fee per byte.
func (bc *Blockchain) FeePerByte() int64 {
return bc.contracts.Policy.GetFeePerByteInternal(bc.dao)
}
// GetMaxBlockSize returns maximum allowed block size from native Policy contract.
func (bc *Blockchain) GetMaxBlockSize() uint32 {
return bc.contracts.Policy.GetMaxBlockSizeInternal(bc.dao)
}
// GetMaxBlockSystemFee returns maximum block system fee from native Policy contract.
func (bc *Blockchain) GetMaxBlockSystemFee() int64 {
return bc.contracts.Policy.GetMaxBlockSystemFeeInternal(bc.dao)
}
// GetMemPool returns the memory pool of the blockchain.
func (bc *Blockchain) GetMemPool() *mempool.Pool {
return bc.memPool
}
// ApplyPolicyToTxSet applies configured policies to given transaction set. It
// expects slice to be ordered by fee and returns a subslice of it.
func (bc *Blockchain) ApplyPolicyToTxSet(txes []*transaction.Transaction) []*transaction.Transaction {
maxTx := bc.contracts.Policy.GetMaxTransactionsPerBlockInternal(bc.dao)
if maxTx != 0 && len(txes) > int(maxTx) {
txes = txes[:maxTx]
}
maxBlockSize := bc.contracts.Policy.GetMaxBlockSizeInternal(bc.dao)
maxBlockSysFee := bc.contracts.Policy.GetMaxBlockSystemFeeInternal(bc.dao)
var (
blockSize uint32
sysFee int64
)
blockSize = uint32(io.GetVarSize(new(block.Block)) + io.GetVarSize(len(txes)+1))
for i, tx := range txes {
blockSize += uint32(io.GetVarSize(tx))
sysFee += tx.SystemFee
if blockSize > maxBlockSize || sysFee > maxBlockSysFee {
txes = txes[:i]
break
}
}
return txes
}
// Various errors that could be returns upon header verification.
var (
ErrHdrHashMismatch = errors.New("previous header hash doesn't match")
ErrHdrIndexMismatch = errors.New("previous header index doesn't match")
ErrHdrInvalidTimestamp = errors.New("block is not newer than the previous one")
)
func (bc *Blockchain) verifyHeader(currHeader, prevHeader *block.Header) error {
if prevHeader.Hash() != currHeader.PrevHash {
return ErrHdrHashMismatch
}
if prevHeader.Index+1 != currHeader.Index {
return ErrHdrIndexMismatch
}
if prevHeader.Timestamp >= currHeader.Timestamp {
return ErrHdrInvalidTimestamp
}
return bc.verifyHeaderWitnesses(currHeader, prevHeader)
}
// Various errors that could be returned upon verification.
var (
ErrTxExpired = errors.New("transaction has expired")
ErrInsufficientFunds = errors.New("insufficient funds")
ErrTxSmallNetworkFee = errors.New("too small network fee")
ErrTxTooBig = errors.New("too big transaction")
ErrMemPoolConflict = errors.New("invalid transaction due to conflicts with the memory pool")
ErrTxInvalidWitnessNum = errors.New("number of signers doesn't match witnesses")
)
// verifyAndPoolTx verifies whether a transaction is bonafide or not and tries
// to add it to the mempool given.
func (bc *Blockchain) verifyAndPoolTx(t *transaction.Transaction, pool *mempool.Pool) error {
height := bc.BlockHeight()
if t.ValidUntilBlock <= height || t.ValidUntilBlock > height+transaction.MaxValidUntilBlockIncrement {
return fmt.Errorf("%w: ValidUntilBlock = %d, current height = %d", ErrTxExpired, t.ValidUntilBlock, height)
}
// Policying.
if err := bc.contracts.Policy.CheckPolicy(bc.dao, t); err != nil {
// Only one %w can be used.
return fmt.Errorf("%w: %v", ErrPolicy, err)
}
size := io.GetVarSize(t)
if size > transaction.MaxTransactionSize {
return fmt.Errorf("%w: (%d > MaxTransactionSize %d)", ErrTxTooBig, size, transaction.MaxTransactionSize)
}
needNetworkFee := int64(size) * bc.FeePerByte()
netFee := t.NetworkFee - needNetworkFee
if netFee < 0 {
return fmt.Errorf("%w: net fee is %v, need %v", ErrTxSmallNetworkFee, t.NetworkFee, needNetworkFee)
}
if bc.dao.HasTransaction(t.Hash()) {
return fmt.Errorf("blockchain: %w", ErrAlreadyExists)
}
err := bc.verifyTxWitnesses(t, nil)
if err != nil {
return err
}
err = pool.Add(t, bc)
if err != nil {
switch {
case errors.Is(err, mempool.ErrConflict):
return ErrMemPoolConflict
case errors.Is(err, mempool.ErrDup):
return fmt.Errorf("mempool: %w", ErrAlreadyExists)
case errors.Is(err, mempool.ErrInsufficientFunds):
return ErrInsufficientFunds
case errors.Is(err, mempool.ErrOOM):
return ErrOOM
default:
return err
}
}
return nil
}
// isTxStillRelevant is a callback for mempool transaction filtering after the
// new block addition. It returns false for transactions added by the new block
// (passed via txHashes) and does witness reverification for non-standard
// contracts. It operates under the assumption that full transaction verification
// was already done so we don't need to check basic things like size, input/output
// correctness, presence in blocks before the new one, etc.
func (bc *Blockchain) isTxStillRelevant(t *transaction.Transaction, txHashes []util.Uint256) bool {
var recheckWitness bool
index := sort.Search(len(txHashes), func(i int) bool {
return txHashes[i].CompareTo(t.Hash()) >= 0
})
if index < len(txHashes) && txHashes[index].Equals(t.Hash()) {
return false
}
for i := range t.Scripts {
if !vm.IsStandardContract(t.Scripts[i].VerificationScript) {
recheckWitness = true
break
}
}
if recheckWitness {
return bc.verifyTxWitnesses(t, nil) == nil
}
return true
}
// AddStateRoot add new (possibly unverified) state root to the blockchain.
func (bc *Blockchain) AddStateRoot(r *state.MPTRoot) error {
our, err := bc.GetStateRoot(r.Index)
if err == nil {
if our.Flag == state.Verified {
return bc.updateStateHeight(r.Index)
} else if r.Witness == nil && our.Witness != nil {
r.Witness = our.Witness
}
}
if err := bc.verifyStateRoot(r); err != nil {
return fmt.Errorf("invalid state root: %w", err)
}
if r.Index > bc.BlockHeight() { // just put it into the store for future checks
return bc.dao.PutStateRoot(&state.MPTRootState{
MPTRoot: *r,
Flag: state.Unverified,
})
}
flag := state.Unverified
if r.Witness != nil {
if err := bc.verifyStateRootWitness(r); err != nil {
return fmt.Errorf("can't verify signature: %w", err)
}
flag = state.Verified
}
err = bc.dao.PutStateRoot(&state.MPTRootState{
MPTRoot: *r,
Flag: flag,
})
if err != nil {
return err
}
return bc.updateStateHeight(r.Index)
}
func (bc *Blockchain) updateStateHeight(newHeight uint32) error {
h, err := bc.dao.GetCurrentStateRootHeight()
if err != nil {
return fmt.Errorf("can't get current state root height: %w", err)
} else if newHeight == h+1 {
updateStateHeightMetric(newHeight)
return bc.dao.PutCurrentStateRootHeight(h + 1)
}
return nil
}
// verifyStateRoot checks if state root is valid.
func (bc *Blockchain) verifyStateRoot(r *state.MPTRoot) error {
if r.Index == 0 {
return nil
}
prev, err := bc.GetStateRoot(r.Index - 1)
if err != nil {
return errors.New("can't get previous state root")
} else if !r.PrevHash.Equals(hash.DoubleSha256(prev.GetSignedPart())) {
return errors.New("previous hash mismatch")
} else if prev.Version != r.Version {
return errors.New("version mismatch")
}
return nil
}
// verifyStateRootWitness verifies that state root signature is correct.
func (bc *Blockchain) verifyStateRootWitness(r *state.MPTRoot) error {
b, err := bc.GetBlock(bc.GetHeaderHash(int(r.Index)))
if err != nil {
return err
}
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil)
interopCtx.Container = r
return bc.verifyHashAgainstScript(b.NextConsensus, r.Witness, interopCtx, true,
bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO))
}
// VerifyTx verifies whether transaction is bonafide or not relative to the
// current blockchain state. Note that this verification is completely isolated
// from the main node's mempool.
func (bc *Blockchain) VerifyTx(t *transaction.Transaction) error {
var mp = mempool.New(1)
bc.lock.RLock()
defer bc.lock.RUnlock()
return bc.verifyAndPoolTx(t, mp)
}
// PoolTx verifies and tries to add given transaction into the mempool. If not
// given, the default mempool is used. Passing multiple pools is not supported.
func (bc *Blockchain) PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error {
var pool = bc.memPool
bc.lock.RLock()
defer bc.lock.RUnlock()
// Programmer error.
if len(pools) > 1 {
panic("too many pools given")
}
if len(pools) == 1 {
pool = pools[0]
}
return bc.verifyAndPoolTx(t, pool)
}
//GetStandByValidators returns validators from the configuration.
func (bc *Blockchain) GetStandByValidators() keys.PublicKeys {
return bc.sbCommittee[:bc.config.ValidatorsCount].Copy()
}
// GetStandByCommittee returns standby committee from the configuration.
func (bc *Blockchain) GetStandByCommittee() keys.PublicKeys {
return bc.sbCommittee.Copy()
}
// GetValidators returns current validators.
func (bc *Blockchain) GetValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.GetValidatorsInternal(bc, bc.dao)
}
// GetNextBlockValidators returns next block validators.
func (bc *Blockchain) GetNextBlockValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.GetNextBlockValidatorsInternal(bc, bc.dao)
}
// GetEnrollments returns all registered validators.
func (bc *Blockchain) GetEnrollments() ([]state.Validator, error) {
return bc.contracts.NEO.GetCandidates(bc.dao)
}
// GetTestVM returns a VM and a Store setup for a test run of some sort of code.
func (bc *Blockchain) GetTestVM(tx *transaction.Transaction) *vm.VM {
systemInterop := bc.newInteropContext(trigger.Application, bc.dao, nil, tx)
vm := systemInterop.SpawnVM()
vm.SetPriceGetter(getPrice)
return vm
}
// ScriptFromWitness returns verification script for provided witness.
// If hash is not equal to the witness script hash, error is returned.
func ScriptFromWitness(hash util.Uint160, witness *transaction.Witness) ([]byte, error) {
verification := witness.VerificationScript
if len(verification) == 0 {
bb := io.NewBufBinWriter()
emit.AppCall(bb.BinWriter, hash)
verification = bb.Bytes()
} else if h := witness.ScriptHash(); hash != h {
return nil, ErrWitnessHashMismatch
}
return verification, nil
}
// Various witness verification errors.
var (
ErrWitnessHashMismatch = errors.New("witness hash mismatch")
ErrVerificationFailed = errors.New("signature check failed")
ErrUnknownVerificationContract = errors.New("unknown verification contract")
ErrInvalidVerificationContract = errors.New("verification contract is missing `verify` method")
)
// verifyHashAgainstScript verifies given hash against the given witness.
func (bc *Blockchain) verifyHashAgainstScript(hash util.Uint160, witness *transaction.Witness, interopCtx *interop.Context, useKeys bool, gas int64) error {
var offset int
var initMD *manifest.Method
verification := witness.VerificationScript
if len(verification) != 0 {
if witness.ScriptHash() != hash {
return ErrWitnessHashMismatch
}
} else {
cs, err := interopCtx.DAO.GetContractState(hash)
if err != nil {
return ErrUnknownVerificationContract
}
md := cs.Manifest.ABI.GetMethod(manifest.MethodVerify)
if md == nil {
return ErrInvalidVerificationContract
}
verification = cs.Script
offset = md.Offset
initMD = cs.Manifest.ABI.GetMethod(manifest.MethodInit)
}
gasPolicy := bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO)
if gas > gasPolicy {
gas = gasPolicy
}
vm := interopCtx.SpawnVM()
vm.SetPriceGetter(getPrice)
vm.GasLimit = gas
vm.LoadScriptWithFlags(verification, smartcontract.NoneFlag)
vm.Jump(vm.Context(), offset)
if initMD != nil {
vm.Call(vm.Context(), initMD.Offset)
}
vm.LoadScript(witness.InvocationScript)
if useKeys {
bc.keyCacheLock.RLock()
if bc.keyCache[hash] != nil {
vm.SetPublicKeys(bc.keyCache[hash])
}
bc.keyCacheLock.RUnlock()
}
err := vm.Run()
if vm.HasFailed() {
return fmt.Errorf("%w: vm execution has failed: %v", ErrVerificationFailed, err)
}
resEl := vm.Estack().Pop()
if resEl != nil {
if !resEl.Bool() {
return fmt.Errorf("%w: invalid signature", ErrVerificationFailed)
}
if vm.Estack().Len() != 0 {
return fmt.Errorf("%w: expected exactly one returned value", ErrVerificationFailed)
}
if useKeys {
bc.keyCacheLock.RLock()
_, ok := bc.keyCache[hash]
bc.keyCacheLock.RUnlock()
if !ok {
bc.keyCacheLock.Lock()
bc.keyCache[hash] = vm.GetPublicKeys()
bc.keyCacheLock.Unlock()
}
}
} else {
return fmt.Errorf("%w: no result returned from the script", ErrVerificationFailed)
}
return nil
}
// verifyTxWitnesses verifies the scripts (witnesses) that come with a given
// transaction. It can reorder them by ScriptHash, because that's required to
// match a slice of script hashes from the Blockchain. Block parameter
// is used for easy interop access and can be omitted for transactions that are
// not yet added into any block.
// Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87).
func (bc *Blockchain) verifyTxWitnesses(t *transaction.Transaction, block *block.Block) error {
if len(t.Signers) != len(t.Scripts) {
return fmt.Errorf("%w: %d vs %d", ErrTxInvalidWitnessNum, len(t.Signers), len(t.Scripts))
}
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, block, t)
for i := range t.Signers {
err := bc.verifyHashAgainstScript(t.Signers[i].Account, &t.Scripts[i], interopCtx, false, t.NetworkFee)
if err != nil {
return fmt.Errorf("witness #%d: %w", i, err)
}
}
return nil
}
// verifyHeaderWitnesses is a block-specific implementation of VerifyWitnesses logic.
func (bc *Blockchain) verifyHeaderWitnesses(currHeader, prevHeader *block.Header) error {
var hash util.Uint160
if prevHeader == nil && currHeader.PrevHash.Equals(util.Uint256{}) {
hash = currHeader.Script.ScriptHash()
} else {
hash = prevHeader.NextConsensus
}
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil)
interopCtx.Container = currHeader
return bc.verifyHashAgainstScript(hash, &currHeader.Script, interopCtx, true, verificationGasLimit)
}
// GoverningTokenHash returns the governing token (NEO) native contract hash.
func (bc *Blockchain) GoverningTokenHash() util.Uint160 {
return bc.contracts.NEO.Hash
}
// UtilityTokenHash returns the utility token (GAS) native contract hash.
func (bc *Blockchain) UtilityTokenHash() util.Uint160 {
return bc.contracts.GAS.Hash
}
func hashAndIndexToBytes(h util.Uint256, index uint32) []byte {
buf := io.NewBufBinWriter()
buf.WriteBytes(h.BytesLE())
buf.WriteU32LE(index)
return buf.Bytes()
}
func (bc *Blockchain) newInteropContext(trigger trigger.Type, d dao.DAO, block *block.Block, tx *transaction.Transaction) *interop.Context {
ic := interop.NewContext(trigger, bc, d, bc.contracts.Contracts, block, tx, bc.log)
ic.Functions = [][]interop.Function{systemInterops, neoInterops}
switch {
case tx != nil:
ic.Container = tx
case block != nil:
ic.Container = block
}
return ic
}