neo-go/pkg/network/server.go
2020-01-13 18:01:20 +03:00

726 lines
19 KiB
Go

package network
import (
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"net"
"strconv"
"sync"
"time"
"github.com/CityOfZion/neo-go/pkg/consensus"
"github.com/CityOfZion/neo-go/pkg/core"
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/network/payload"
"github.com/CityOfZion/neo-go/pkg/util"
"go.uber.org/atomic"
"go.uber.org/zap"
)
const (
// peer numbers are arbitrary at the moment.
defaultMinPeers = 5
defaultAttemptConnPeers = 20
defaultMaxPeers = 100
maxBlockBatch = 200
maxAddrsToSend = 200
minPoolCount = 30
)
var (
errAlreadyConnected = errors.New("already connected")
errIdenticalID = errors.New("identical node id")
errInvalidHandshake = errors.New("invalid handshake")
errInvalidNetwork = errors.New("invalid network")
errMaxPeers = errors.New("max peers reached")
errServerShutdown = errors.New("server shutdown")
errInvalidInvType = errors.New("invalid inventory type")
errInvalidHashStart = errors.New("invalid requested HashStart")
)
type (
// Server represents the local Node in the network. Its transport could
// be of any kind.
Server struct {
// ServerConfig holds the Server configuration.
ServerConfig
// id also known as the nonce of the server.
id uint32
transport Transporter
discovery Discoverer
chain core.Blockchainer
bQueue *blockQueue
consensus consensus.Service
lock sync.RWMutex
peers map[Peer]bool
addrReq chan *Message
register chan Peer
unregister chan peerDrop
quit chan struct{}
connected *atomic.Bool
log *zap.Logger
}
peerDrop struct {
peer Peer
reason error
}
)
func randomID() uint32 {
buf := make([]byte, 4)
_, _ = rand.Read(buf)
return binary.BigEndian.Uint32(buf)
}
// NewServer returns a new Server, initialized with the given configuration.
func NewServer(config ServerConfig, chain core.Blockchainer, log *zap.Logger) *Server {
if log == nil {
return nil
}
s := &Server{
ServerConfig: config,
chain: chain,
bQueue: newBlockQueue(maxBlockBatch, chain, log),
id: randomID(),
quit: make(chan struct{}),
addrReq: make(chan *Message, config.MinPeers),
register: make(chan Peer),
unregister: make(chan peerDrop),
peers: make(map[Peer]bool),
connected: atomic.NewBool(false),
log: log,
}
srv, err := consensus.NewService(consensus.Config{
Logger: log,
Broadcast: s.handleNewPayload,
RelayBlock: s.relayBlock,
Chain: chain,
RequestTx: s.requestTx,
Wallet: config.Wallet,
TimePerBlock: config.TimePerBlock,
})
if err != nil {
return nil
}
s.consensus = srv
if s.MinPeers < 0 {
s.log.Info("bad MinPeers configured, using the default value",
zap.Int("configured", s.MinPeers),
zap.Int("actual", defaultMinPeers))
s.MinPeers = defaultMinPeers
}
if s.MaxPeers <= 0 {
s.log.Info("bad MaxPeers configured, using the default value",
zap.Int("configured", s.MaxPeers),
zap.Int("actual", defaultMaxPeers))
s.MaxPeers = defaultMaxPeers
}
if s.AttemptConnPeers <= 0 {
s.log.Info("bad AttemptConnPeers configured, using the default value",
zap.Int("configured", s.AttemptConnPeers),
zap.Int("actual", defaultAttemptConnPeers))
s.AttemptConnPeers = defaultAttemptConnPeers
}
s.transport = NewTCPTransport(s, fmt.Sprintf("%s:%d", config.Address, config.Port), s.log)
s.discovery = NewDefaultDiscovery(
s.DialTimeout,
s.transport,
)
return s
}
// ID returns the servers ID.
func (s *Server) ID() uint32 {
return s.id
}
// Start will start the server and its underlying transport.
func (s *Server) Start(errChan chan error) {
s.log.Info("node started",
zap.Uint32("blockHeight", s.chain.BlockHeight()),
zap.Uint32("headerHeight", s.chain.HeaderHeight()))
s.tryStartConsensus()
s.discovery.BackFill(s.Seeds...)
go s.bQueue.run()
go s.transport.Accept()
setServerAndNodeVersions(s.UserAgent, strconv.FormatUint(uint64(s.id), 10))
s.run()
}
// Shutdown disconnects all peers and stops listening.
func (s *Server) Shutdown() {
s.log.Info("shutting down server", zap.Int("peers", s.PeerCount()))
s.bQueue.discard()
close(s.quit)
}
// UnconnectedPeers returns a list of peers that are in the discovery peer list
// but are not connected to the server.
func (s *Server) UnconnectedPeers() []string {
return []string{}
}
// BadPeers returns a list of peers the are flagged as "bad" peers.
func (s *Server) BadPeers() []string {
return []string{}
}
func (s *Server) run() {
for {
if s.PeerCount() < s.MinPeers {
s.discovery.RequestRemote(s.AttemptConnPeers)
}
if s.discovery.PoolCount() < minPoolCount {
select {
case s.addrReq <- NewMessage(s.Net, CMDGetAddr, payload.NewNullPayload()):
// sent request
default:
// we have one in the queue already that is
// gonna be served by some worker when it's ready
}
}
select {
case <-s.quit:
s.transport.Close()
for p := range s.peers {
p.Disconnect(errServerShutdown)
}
return
case p := <-s.register:
s.lock.Lock()
s.peers[p] = true
s.lock.Unlock()
s.log.Info("new peer connected", zap.Stringer("addr", p.RemoteAddr()))
peerCount := s.PeerCount()
if peerCount > s.MaxPeers {
s.lock.RLock()
// Pick a random peer and drop connection to it.
for peer := range s.peers {
peer.Disconnect(errMaxPeers)
break
}
s.lock.RUnlock()
}
updatePeersConnectedMetric(s.PeerCount())
case drop := <-s.unregister:
s.lock.Lock()
if s.peers[drop.peer] {
delete(s.peers, drop.peer)
s.lock.Unlock()
s.log.Warn("peer disconnected",
zap.Stringer("addr", drop.peer.RemoteAddr()),
zap.String("reason", drop.reason.Error()),
zap.Int("peerCount", s.PeerCount()))
addr := drop.peer.PeerAddr().String()
if drop.reason == errIdenticalID {
s.discovery.RegisterBadAddr(addr)
} else {
s.discovery.UnregisterConnectedAddr(addr)
s.discovery.BackFill(addr)
}
updatePeersConnectedMetric(s.PeerCount())
} else {
// else the peer is already gone, which can happen
// because we have two goroutines sending signals here
s.lock.Unlock()
}
}
}
}
func (s *Server) tryStartConsensus() {
if s.Wallet == nil || s.connected.Load() {
return
}
if s.HandshakedPeersCount() >= s.MinPeers {
s.log.Info("minimum amount of peers were connected to")
if s.connected.CAS(false, true) {
s.consensus.Start()
}
}
}
// Peers returns the current list of peers connected to
// the server.
func (s *Server) Peers() map[Peer]bool {
s.lock.RLock()
defer s.lock.RUnlock()
peers := make(map[Peer]bool, len(s.peers))
for k, v := range s.peers {
peers[k] = v
}
return peers
}
// PeerCount returns the number of current connected peers.
func (s *Server) PeerCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.peers)
}
// HandshakedPeersCount returns the number of connected peers
// which have already performed handshake.
func (s *Server) HandshakedPeersCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
var count int
for p := range s.peers {
if p.Handshaked() {
count++
}
}
return count
}
// startProtocol starts a long running background loop that interacts
// every ProtoTickInterval with the peer.
func (s *Server) startProtocol(p Peer) {
var err error
s.log.Info("started protocol",
zap.Stringer("addr", p.RemoteAddr()),
zap.ByteString("userAgent", p.Version().UserAgent),
zap.Uint32("startHeight", p.Version().StartHeight),
zap.Uint32("id", p.Version().Nonce))
s.discovery.RegisterGoodAddr(p.PeerAddr().String())
if s.chain.HeaderHeight() < p.Version().StartHeight {
err = s.requestHeaders(p)
if err != nil {
p.Disconnect(err)
return
}
}
timer := time.NewTimer(s.ProtoTickInterval)
for {
select {
case err = <-p.Done():
// time to stop
case m := <-s.addrReq:
err = p.WriteMsg(m)
case <-timer.C:
// Try to sync in headers and block with the peer if his block height is higher then ours.
if p.Version().StartHeight > s.chain.BlockHeight() {
err = s.requestBlocks(p)
}
if err == nil {
timer.Reset(s.ProtoTickInterval)
}
}
if err != nil {
s.unregister <- peerDrop{p, err}
timer.Stop()
p.Disconnect(err)
return
}
}
}
// When a peer connects to the server, we will send our version immediately.
func (s *Server) sendVersion(p Peer) error {
payload := payload.NewVersion(
s.id,
s.Port,
s.UserAgent,
s.chain.BlockHeight(),
s.Relay,
)
return p.SendVersion(NewMessage(s.Net, CMDVersion, payload))
}
// When a peer sends out his version we reply with verack after validating
// the version.
func (s *Server) handleVersionCmd(p Peer, version *payload.Version) error {
err := p.HandleVersion(version)
if err != nil {
return err
}
if s.id == version.Nonce {
return errIdenticalID
}
peerAddr := p.PeerAddr().String()
s.lock.RLock()
for peer := range s.peers {
// Already connected, drop this connection.
if peer.Handshaked() && peer.PeerAddr().String() == peerAddr && peer.Version().Nonce == version.Nonce {
s.lock.RUnlock()
return errAlreadyConnected
}
}
s.lock.RUnlock()
return p.SendVersionAck(NewMessage(s.Net, CMDVerack, nil))
}
// handleHeadersCmd processes the headers received from its peer.
// If the headerHeight of the blockchain still smaller then the peer
// the server will request more headers.
// This method could best be called in a separate routine.
func (s *Server) handleHeadersCmd(p Peer, headers *payload.Headers) {
if err := s.chain.AddHeaders(headers.Hdrs...); err != nil {
s.log.Warn("failed processing headers", zap.Error(err))
return
}
// The peer will respond with a maximum of 2000 headers in one batch.
// We will ask one more batch here if needed. Eventually we will get synced
// due to the startProtocol routine that will ask headers every protoTick.
if s.chain.HeaderHeight() < p.Version().StartHeight {
s.requestHeaders(p)
}
}
// handleBlockCmd processes the received block received from its peer.
func (s *Server) handleBlockCmd(p Peer, block *core.Block) error {
return s.bQueue.putBlock(block)
}
// handleInvCmd processes the received inventory.
func (s *Server) handleInvCmd(p Peer, inv *payload.Inventory) error {
reqHashes := make([]util.Uint256, 0)
var typExists = map[payload.InventoryType]func(util.Uint256) bool{
payload.TXType: s.chain.HasTransaction,
payload.BlockType: s.chain.HasBlock,
payload.ConsensusType: func(h util.Uint256) bool {
cp := s.consensus.GetPayload(h)
return cp != nil
},
}
if exists := typExists[inv.Type]; exists != nil {
for _, hash := range inv.Hashes {
if !exists(hash) {
reqHashes = append(reqHashes, hash)
}
}
}
if len(reqHashes) > 0 {
payload := payload.NewInventory(inv.Type, reqHashes)
return p.WriteMsg(NewMessage(s.Net, CMDGetData, payload))
}
return nil
}
// handleInvCmd processes the received inventory.
func (s *Server) handleGetDataCmd(p Peer, inv *payload.Inventory) error {
switch inv.Type {
case payload.TXType:
for _, hash := range inv.Hashes {
tx, _, err := s.chain.GetTransaction(hash)
if err == nil {
err = p.WriteMsg(NewMessage(s.Net, CMDTX, tx))
if err != nil {
return err
}
}
}
case payload.BlockType:
for _, hash := range inv.Hashes {
b, err := s.chain.GetBlock(hash)
if err == nil {
err = p.WriteMsg(NewMessage(s.Net, CMDBlock, b))
if err != nil {
return err
}
}
}
case payload.ConsensusType:
for _, hash := range inv.Hashes {
if cp := s.consensus.GetPayload(hash); cp != nil {
if err := p.WriteMsg(NewMessage(s.Net, CMDConsensus, cp)); err != nil {
return err
}
}
}
}
return nil
}
// handleGetBlocksCmd processes the getblocks request.
func (s *Server) handleGetBlocksCmd(p Peer, gb *payload.GetBlocks) error {
if len(gb.HashStart) < 1 {
return errInvalidHashStart
}
startHash := gb.HashStart[0]
if startHash.Equals(gb.HashStop) {
return nil
}
start, err := s.chain.GetHeader(startHash)
if err != nil {
return err
}
blockHashes := make([]util.Uint256, 0)
for i := start.Index + 1; i < start.Index+1+payload.MaxHashesCount; i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) || hash.Equals(gb.HashStop) {
break
}
blockHashes = append(blockHashes, hash)
}
if len(blockHashes) == 0 {
return nil
}
payload := payload.NewInventory(payload.BlockType, blockHashes)
return p.WriteMsg(NewMessage(s.Net, CMDInv, payload))
}
// handleGetHeadersCmd processes the getheaders request.
func (s *Server) handleGetHeadersCmd(p Peer, gh *payload.GetBlocks) error {
if len(gh.HashStart) < 1 {
return errInvalidHashStart
}
startHash := gh.HashStart[0]
start, err := s.chain.GetHeader(startHash)
if err != nil {
return err
}
resp := payload.Headers{}
resp.Hdrs = make([]*core.Header, 0, payload.MaxHeadersAllowed)
for i := start.Index + 1; i < start.Index+1+payload.MaxHeadersAllowed; i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) || hash.Equals(gh.HashStop) {
break
}
header, err := s.chain.GetHeader(hash)
if err != nil {
break
}
resp.Hdrs = append(resp.Hdrs, header)
}
if len(resp.Hdrs) == 0 {
return nil
}
return p.WriteMsg(NewMessage(s.Net, CMDHeaders, &resp))
}
// handleConsensusCmd processes received consensus payload.
// It never returns an error.
func (s *Server) handleConsensusCmd(cp *consensus.Payload) error {
s.consensus.OnPayload(cp)
return nil
}
// handleTxCmd processes received transaction.
// It never returns an error.
func (s *Server) handleTxCmd(tx *transaction.Transaction) error {
s.consensus.OnTransaction(tx)
// It's OK for it to fail for various reasons like tx already existing
// in the pool.
_ = s.RelayTxn(tx)
return nil
}
// handleAddrCmd will process received addresses.
func (s *Server) handleAddrCmd(p Peer, addrs *payload.AddressList) error {
for _, a := range addrs.Addrs {
s.discovery.BackFill(a.IPPortString())
}
return nil
}
// handleGetAddrCmd sends to the peer some good addresses that we know of.
func (s *Server) handleGetAddrCmd(p Peer) error {
addrs := s.discovery.GoodPeers()
if len(addrs) > maxAddrsToSend {
addrs = addrs[:maxAddrsToSend]
}
alist := payload.NewAddressList(len(addrs))
ts := time.Now()
for i, addr := range addrs {
// we know it's a good address, so it can't fail
netaddr, _ := net.ResolveTCPAddr("tcp", addr)
alist.Addrs[i] = payload.NewAddressAndTime(netaddr, ts)
}
return p.WriteMsg(NewMessage(s.Net, CMDAddr, alist))
}
// requestHeaders sends a getheaders message to the peer.
// The peer will respond with headers op to a count of 2000.
func (s *Server) requestHeaders(p Peer) error {
start := []util.Uint256{s.chain.CurrentHeaderHash()}
payload := payload.NewGetBlocks(start, util.Uint256{})
return p.WriteMsg(NewMessage(s.Net, CMDGetHeaders, payload))
}
// requestBlocks sends a getdata message to the peer
// to sync up in blocks. A maximum of maxBlockBatch will
// send at once.
func (s *Server) requestBlocks(p Peer) error {
var (
hashes []util.Uint256
hashStart = s.chain.BlockHeight() + 1
headerHeight = s.chain.HeaderHeight()
)
for hashStart <= headerHeight && len(hashes) < maxBlockBatch {
hash := s.chain.GetHeaderHash(int(hashStart))
hashes = append(hashes, hash)
hashStart++
}
if len(hashes) > 0 {
payload := payload.NewInventory(payload.BlockType, hashes)
return p.WriteMsg(NewMessage(s.Net, CMDGetData, payload))
} else if s.chain.HeaderHeight() < p.Version().StartHeight {
return s.requestHeaders(p)
}
return nil
}
// handleMessage processes the given message.
func (s *Server) handleMessage(peer Peer, msg *Message) error {
// Make sure both server and peer are operating on
// the same network.
if msg.Magic != s.Net {
return errInvalidNetwork
}
if peer.Handshaked() {
if inv, ok := msg.Payload.(*payload.Inventory); ok {
if !inv.Type.Valid() || len(inv.Hashes) == 0 {
return errInvalidInvType
}
}
switch msg.CommandType() {
case CMDAddr:
addrs := msg.Payload.(*payload.AddressList)
return s.handleAddrCmd(peer, addrs)
case CMDGetAddr:
// it has no payload
return s.handleGetAddrCmd(peer)
case CMDGetBlocks:
gb := msg.Payload.(*payload.GetBlocks)
return s.handleGetBlocksCmd(peer, gb)
case CMDGetData:
inv := msg.Payload.(*payload.Inventory)
return s.handleGetDataCmd(peer, inv)
case CMDGetHeaders:
gh := msg.Payload.(*payload.GetBlocks)
return s.handleGetHeadersCmd(peer, gh)
case CMDHeaders:
headers := msg.Payload.(*payload.Headers)
go s.handleHeadersCmd(peer, headers)
case CMDInv:
inventory := msg.Payload.(*payload.Inventory)
return s.handleInvCmd(peer, inventory)
case CMDBlock:
block := msg.Payload.(*core.Block)
return s.handleBlockCmd(peer, block)
case CMDConsensus:
cp := msg.Payload.(*consensus.Payload)
return s.handleConsensusCmd(cp)
case CMDTX:
tx := msg.Payload.(*transaction.Transaction)
return s.handleTxCmd(tx)
case CMDVersion, CMDVerack:
return fmt.Errorf("received '%s' after the handshake", msg.CommandType())
}
} else {
switch msg.CommandType() {
case CMDVersion:
version := msg.Payload.(*payload.Version)
return s.handleVersionCmd(peer, version)
case CMDVerack:
err := peer.HandleVersionAck()
if err != nil {
return err
}
go s.startProtocol(peer)
s.tryStartConsensus()
default:
return fmt.Errorf("received '%s' during handshake", msg.CommandType())
}
}
return nil
}
func (s *Server) handleNewPayload(p *consensus.Payload) {
s.relayInventory(payload.ConsensusType, p.Hash())
}
func (s *Server) requestTx(hashes ...util.Uint256) {
if len(hashes) == 0 {
return
}
s.relayInventory(payload.TXType, hashes...)
}
func (s *Server) relayInventory(t payload.InventoryType, hashes ...util.Uint256) {
for peer := range s.Peers() {
if !peer.Handshaked() {
continue
}
payload := payload.NewInventory(t, hashes)
s.RelayDirectly(peer, payload)
}
}
// relayBlock tells all the other connected nodes about the given block.
func (s *Server) relayBlock(b *core.Block) {
s.relayInventory(payload.BlockType, b.Hash())
}
// RelayTxn a new transaction to the local node and the connected peers.
// Reference: the method OnRelay in C#: https://github.com/neo-project/neo/blob/master/neo/Network/P2P/LocalNode.cs#L159
func (s *Server) RelayTxn(t *transaction.Transaction) RelayReason {
if t.Type == transaction.MinerType {
return RelayInvalid
}
if s.chain.HasTransaction(t.Hash()) {
return RelayAlreadyExists
}
if err := s.chain.VerifyTx(t, nil); err != nil {
return RelayInvalid
}
// TODO: Implement Plugin.CheckPolicy?
//if (!Plugin.CheckPolicy(transaction))
// return RelayResultReason.PolicyFail;
if ok := s.chain.GetMemPool().TryAdd(t.Hash(), core.NewPoolItem(t, s.chain)); !ok {
return RelayOutOfMemory
}
s.relayInventory(payload.TXType, t.Hash())
return RelaySucceed
}
// RelayDirectly relays directly the inventory to the remote peers.
// Reference: the method OnRelayDirectly in C#: https://github.com/neo-project/neo/blob/master/neo/Network/P2P/LocalNode.cs#L166
func (s *Server) RelayDirectly(p Peer, inv *payload.Inventory) {
if !p.Version().Relay {
return
}
p.WriteMsg(NewMessage(s.Net, CMDInv, inv))
}