neo-go/pkg/core/blockchain.go
Roman Khimov 9a6fa84f70
Merge pull request #2867 from nspcc-dev/store-magic-in-db
core: store magic in the DB version, fix #2847
2023-01-11 20:42:00 +07:00

2868 lines
100 KiB
Go

package core
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/config/limits"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/dao"
"github.com/nspcc-dev/neo-go/pkg/core/interop"
"github.com/nspcc-dev/neo-go/pkg/core/interop/contract"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
"github.com/nspcc-dev/neo-go/pkg/core/mpt"
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/native/noderoles"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/stateroot"
"github.com/nspcc-dev/neo-go/pkg/core/statesync"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/encoding/fixedn"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/smartcontract"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/util/slice"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
"github.com/nspcc-dev/neo-go/pkg/vm/vmstate"
"go.uber.org/zap"
)
// Tuning parameters.
const (
version = "0.2.8"
defaultInitialGAS = 52000000_00000000
defaultGCPeriod = 10000
defaultMemPoolSize = 50000
defaultP2PNotaryRequestPayloadPoolSize = 1000
defaultMaxBlockSize = 262144
defaultMaxBlockSystemFee = 900000000000
defaultMaxTraceableBlocks = 2102400 // 1 year of 15s blocks
defaultMaxTransactionsPerBlock = 512
defaultTimePerBlock = 15 * time.Second
// HeaderVerificationGasLimit is the maximum amount of GAS for block header verification.
HeaderVerificationGasLimit = 3_00000000 // 3 GAS
defaultStateSyncInterval = 40000
)
// stateChangeStage denotes the stage of state modification process.
type stateChangeStage byte
// A set of stages used to split state jump / state reset into atomic operations.
const (
// none means that no state jump or state reset process was initiated yet.
none stateChangeStage = 1 << iota
// stateJumpStarted means that state jump was just initiated, but outdated storage items
// were not yet removed.
stateJumpStarted
// newStorageItemsAdded means that contract storage items are up-to-date with the current
// state.
newStorageItemsAdded
// staleBlocksRemoved means that state corresponding to the stale blocks (genesis block in
// in case of state jump) was removed from the storage.
staleBlocksRemoved
// headersReset denotes stale SYS-prefixed and IX-prefixed information was removed from
// the storage (applicable to state reset only).
headersReset
// transfersReset denotes NEP transfers were successfully updated (applicable to state reset only).
transfersReset
// stateResetBit represents a bit identifier for state reset process. If this bit is not set, then
// it's an unfinished state jump.
stateResetBit byte = 1 << 7
)
var (
// ErrAlreadyExists is returned when trying to add some already existing
// transaction into the pool (not specifying whether it exists in the
// chain or mempool).
ErrAlreadyExists = errors.New("already exists")
// ErrOOM is returned when adding transaction to the memory pool because
// it reached its full capacity.
ErrOOM = errors.New("no space left in the memory pool")
// ErrPolicy is returned on attempt to add transaction that doesn't
// comply with node's configured policy into the mempool.
ErrPolicy = errors.New("not allowed by policy")
// ErrInvalidBlockIndex is returned when trying to add block with index
// other than expected height of the blockchain.
ErrInvalidBlockIndex = errors.New("invalid block index")
// ErrHasConflicts is returned when trying to add some transaction which
// conflicts with other transaction in the chain or pool according to
// Conflicts attribute.
ErrHasConflicts = errors.New("has conflicts")
)
var (
persistInterval = 1 * time.Second
)
// Blockchain represents the blockchain. It maintans internal state representing
// the state of the ledger that can be accessed in various ways and changed by
// adding new blocks or headers.
type Blockchain struct {
HeaderHashes
config config.Blockchain
// The only way chain state changes is by adding blocks, so we can't
// allow concurrent block additions. It differs from the next lock in
// that it's only for AddBlock method itself, the chain state is
// protected by the lock below, but holding it during all of AddBlock
// is too expensive (because the state only changes when persisting
// change cache).
addLock sync.Mutex
// This lock ensures blockchain immutability for operations that need
// that while performing their tasks. It's mostly used as a read lock
// with the only writer being the block addition logic.
lock sync.RWMutex
// Data access object for CRUD operations around storage. It's write-cached.
dao *dao.Simple
// persistent is the same DB as dao, but we never write to it, so all reads
// are directly from underlying persistent store.
persistent *dao.Simple
// Underlying persistent store.
store storage.Store
// Current index/height of the highest block.
// Read access should always be called by BlockHeight().
// Write access should only happen in storeBlock().
blockHeight uint32
// Current top Block wrapped in an atomic.Value for safe access.
topBlock atomic.Value
// Current persisted block count.
persistedHeight uint32
// Stop synchronization mechanisms.
stopCh chan struct{}
runToExitCh chan struct{}
// isRunning denotes whether blockchain routines are currently running.
isRunning atomic.Value
memPool *mempool.Pool
// postBlock is a set of callback methods which should be run under the Blockchain lock after new block is persisted.
// Block's transactions are passed via mempool.
postBlock []func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)
log *zap.Logger
lastBatch *storage.MemBatch
contracts native.Contracts
extensible atomic.Value
// knownValidatorsCount is the latest known validators count used
// for defaultBlockWitness.
knownValidatorsCount atomic.Value
// defaultBlockWitness stores transaction.Witness with m out of n multisig,
// where n = knownValidatorsCount.
defaultBlockWitness atomic.Value
stateRoot *stateroot.Module
// Notification subsystem.
events chan bcEvent
subCh chan interface{}
unsubCh chan interface{}
}
// StateRoot represents local state root module.
type StateRoot interface {
CurrentLocalHeight() uint32
CurrentLocalStateRoot() util.Uint256
CurrentValidatedHeight() uint32
FindStates(root util.Uint256, prefix, start []byte, max int) ([]storage.KeyValue, error)
GetState(root util.Uint256, key []byte) ([]byte, error)
GetStateProof(root util.Uint256, key []byte) ([][]byte, error)
GetStateRoot(height uint32) (*state.MPTRoot, error)
GetLatestStateHeight(root util.Uint256) (uint32, error)
}
// bcEvent is an internal event generated by the Blockchain and then
// broadcasted to other parties. It joins the new block and associated
// invocation logs, all the other events visible from outside can be produced
// from this combination.
type bcEvent struct {
block *block.Block
appExecResults []*state.AppExecResult
}
// transferData is used for transfer caching during storeBlock.
type transferData struct {
Info state.TokenTransferInfo
Log11 state.TokenTransferLog
Log17 state.TokenTransferLog
}
// NewBlockchain returns a new blockchain object the will use the
// given Store as its underlying storage. For it to work correctly you need
// to spawn a goroutine for its Run method after this initialization.
func NewBlockchain(s storage.Store, cfg config.Blockchain, log *zap.Logger) (*Blockchain, error) {
if log == nil {
return nil, errors.New("empty logger")
}
// Protocol configuration fixups/checks.
if cfg.InitialGASSupply <= 0 {
cfg.InitialGASSupply = fixedn.Fixed8(defaultInitialGAS)
log.Info("initial gas supply is not set or wrong, setting default value", zap.Stringer("InitialGASSupply", cfg.InitialGASSupply))
}
if cfg.MemPoolSize <= 0 {
cfg.MemPoolSize = defaultMemPoolSize
log.Info("mempool size is not set or wrong, setting default value", zap.Int("MemPoolSize", cfg.MemPoolSize))
}
if cfg.P2PSigExtensions && cfg.P2PNotaryRequestPayloadPoolSize <= 0 {
cfg.P2PNotaryRequestPayloadPoolSize = defaultP2PNotaryRequestPayloadPoolSize
log.Info("P2PNotaryRequestPayloadPool size is not set or wrong, setting default value", zap.Int("P2PNotaryRequestPayloadPoolSize", cfg.P2PNotaryRequestPayloadPoolSize))
}
if cfg.MaxBlockSize == 0 {
cfg.MaxBlockSize = defaultMaxBlockSize
log.Info("MaxBlockSize is not set or wrong, setting default value", zap.Uint32("MaxBlockSize", cfg.MaxBlockSize))
}
if cfg.MaxBlockSystemFee <= 0 {
cfg.MaxBlockSystemFee = defaultMaxBlockSystemFee
log.Info("MaxBlockSystemFee is not set or wrong, setting default value", zap.Int64("MaxBlockSystemFee", cfg.MaxBlockSystemFee))
}
if cfg.MaxTraceableBlocks == 0 {
cfg.MaxTraceableBlocks = defaultMaxTraceableBlocks
log.Info("MaxTraceableBlocks is not set or wrong, using default value", zap.Uint32("MaxTraceableBlocks", cfg.MaxTraceableBlocks))
}
if cfg.MaxTransactionsPerBlock == 0 {
cfg.MaxTransactionsPerBlock = defaultMaxTransactionsPerBlock
log.Info("MaxTransactionsPerBlock is not set or wrong, using default value",
zap.Uint16("MaxTransactionsPerBlock", cfg.MaxTransactionsPerBlock))
}
if cfg.TimePerBlock <= 0 {
if cfg.SecondsPerBlock > 0 { //nolint:staticcheck // SA1019: cfg.SecondsPerBlock is deprecated
cfg.TimePerBlock = time.Duration(cfg.SecondsPerBlock) * time.Second //nolint:staticcheck // SA1019: cfg.SecondsPerBlock is deprecated
log.Info("TimePerBlock is not set, using deprecated SecondsPerBlock setting, consider updating your config",
zap.Duration("TimePerBlock", cfg.TimePerBlock))
} else {
cfg.TimePerBlock = defaultTimePerBlock
log.Info("TimePerBlock is not set or wrong, using default value",
zap.Duration("TimePerBlock", cfg.TimePerBlock))
}
}
if cfg.MaxValidUntilBlockIncrement == 0 {
const timePerDay = 24 * time.Hour
cfg.MaxValidUntilBlockIncrement = uint32(timePerDay / cfg.TimePerBlock)
log.Info("MaxValidUntilBlockIncrement is not set or wrong, using default value",
zap.Uint32("MaxValidUntilBlockIncrement", cfg.MaxValidUntilBlockIncrement))
}
if cfg.P2PStateExchangeExtensions {
if !cfg.StateRootInHeader {
return nil, errors.New("P2PStatesExchangeExtensions are enabled, but StateRootInHeader is off")
}
if cfg.StateSyncInterval <= 0 {
cfg.StateSyncInterval = defaultStateSyncInterval
log.Info("StateSyncInterval is not set or wrong, using default value",
zap.Int("StateSyncInterval", cfg.StateSyncInterval))
}
}
if len(cfg.NativeUpdateHistories) == 0 {
cfg.NativeUpdateHistories = map[string][]uint32{}
log.Info("NativeActivations are not set, using default values")
}
if cfg.Hardforks == nil {
cfg.Hardforks = map[string]uint32{}
log.Info("Hardforks are not set, using default value")
}
// Compatibility with the old ProtocolConfiguration.
if cfg.ProtocolConfiguration.GarbageCollectionPeriod > 0 && cfg.Ledger.GarbageCollectionPeriod == 0 { //nolint:staticcheck // SA1019: cfg.ProtocolConfiguration.GarbageCollectionPeriod is deprecated
cfg.Ledger.GarbageCollectionPeriod = cfg.ProtocolConfiguration.GarbageCollectionPeriod //nolint:staticcheck // SA1019: cfg.ProtocolConfiguration.GarbageCollectionPeriod is deprecated
}
cfg.Ledger.KeepOnlyLatestState = cfg.Ledger.KeepOnlyLatestState || cfg.ProtocolConfiguration.KeepOnlyLatestState //nolint:staticcheck // SA1019: cfg.ProtocolConfiguration.KeepOnlyLatestState is deprecated
cfg.Ledger.RemoveUntraceableBlocks = cfg.Ledger.RemoveUntraceableBlocks || cfg.ProtocolConfiguration.RemoveUntraceableBlocks //nolint:staticcheck // SA1019: cfg.ProtocolConfiguration.RemoveUntraceableBlocks is deprecated
cfg.Ledger.SaveStorageBatch = cfg.Ledger.SaveStorageBatch || cfg.ProtocolConfiguration.SaveStorageBatch //nolint:staticcheck // SA1019: cfg.ProtocolConfiguration.SaveStorageBatch is deprecated
// Local config consistency checks.
if cfg.Ledger.RemoveUntraceableBlocks && cfg.Ledger.GarbageCollectionPeriod == 0 {
cfg.Ledger.GarbageCollectionPeriod = defaultGCPeriod
log.Info("GarbageCollectionPeriod is not set or wrong, using default value", zap.Uint32("GarbageCollectionPeriod", cfg.Ledger.GarbageCollectionPeriod))
}
bc := &Blockchain{
config: cfg,
dao: dao.NewSimple(s, cfg.StateRootInHeader, cfg.P2PSigExtensions),
persistent: dao.NewSimple(s, cfg.StateRootInHeader, cfg.P2PSigExtensions),
store: s,
stopCh: make(chan struct{}),
runToExitCh: make(chan struct{}),
memPool: mempool.New(cfg.MemPoolSize, 0, false),
log: log,
events: make(chan bcEvent),
subCh: make(chan interface{}),
unsubCh: make(chan interface{}),
contracts: *native.NewContracts(cfg.ProtocolConfiguration),
}
bc.stateRoot = stateroot.NewModule(cfg, bc.VerifyWitness, bc.log, bc.dao.Store)
bc.contracts.Designate.StateRootService = bc.stateRoot
if err := bc.init(); err != nil {
return nil, err
}
bc.isRunning.Store(false)
return bc, nil
}
// SetOracle sets oracle module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetOracle(mod native.OracleService) {
orc := bc.contracts.Oracle
if mod != nil {
md, ok := orc.GetMethod(manifest.MethodVerify, -1)
if !ok {
panic(fmt.Errorf("%s method not found", manifest.MethodVerify))
}
mod.UpdateNativeContract(orc.NEF.Script, orc.GetOracleResponseScript(),
orc.Hash, md.MD.Offset)
keys, _, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.Oracle, bc.BlockHeight())
if err != nil {
bc.log.Error("failed to get oracle key list")
return
}
mod.UpdateOracleNodes(keys)
reqs, err := bc.contracts.Oracle.GetRequests(bc.dao)
if err != nil {
bc.log.Error("failed to get current oracle request list")
return
}
mod.AddRequests(reqs)
}
orc.Module.Store(&mod)
bc.contracts.Designate.OracleService.Store(&mod)
}
// SetNotary sets notary module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetNotary(mod native.NotaryService) {
if mod != nil {
keys, _, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.P2PNotary, bc.BlockHeight())
if err != nil {
bc.log.Error("failed to get notary key list")
return
}
mod.UpdateNotaryNodes(keys)
}
bc.contracts.Designate.NotaryService.Store(&mod)
}
func (bc *Blockchain) init() error {
// If we could not find the version in the Store, we know that there is nothing stored.
ver, err := bc.dao.GetVersion()
if err != nil {
bc.log.Info("no storage version found! creating genesis block")
ver = dao.Version{
StoragePrefix: storage.STStorage,
StateRootInHeader: bc.config.StateRootInHeader,
P2PSigExtensions: bc.config.P2PSigExtensions,
P2PStateExchangeExtensions: bc.config.P2PStateExchangeExtensions,
KeepOnlyLatestState: bc.config.Ledger.KeepOnlyLatestState,
Magic: uint32(bc.config.Magic),
Value: version,
}
bc.dao.PutVersion(ver)
bc.dao.Version = ver
bc.persistent.Version = ver
genesisBlock, err := CreateGenesisBlock(bc.config.ProtocolConfiguration)
if err != nil {
return err
}
bc.HeaderHashes.initGenesis(bc.dao, genesisBlock.Hash())
if err := bc.stateRoot.Init(0); err != nil {
return fmt.Errorf("can't init MPT: %w", err)
}
return bc.storeBlock(genesisBlock, nil)
}
if ver.Value != version {
return fmt.Errorf("storage version mismatch (expected=%s, actual=%s)", version, ver.Value)
}
if ver.StateRootInHeader != bc.config.StateRootInHeader {
return fmt.Errorf("StateRootInHeader setting mismatch (config=%t, db=%t)",
bc.config.StateRootInHeader, ver.StateRootInHeader)
}
if ver.P2PSigExtensions != bc.config.P2PSigExtensions {
return fmt.Errorf("P2PSigExtensions setting mismatch (old=%t, new=%t)",
ver.P2PSigExtensions, bc.config.P2PSigExtensions)
}
if ver.P2PStateExchangeExtensions != bc.config.P2PStateExchangeExtensions {
return fmt.Errorf("P2PStateExchangeExtensions setting mismatch (old=%t, new=%t)",
ver.P2PStateExchangeExtensions, bc.config.P2PStateExchangeExtensions)
}
if ver.KeepOnlyLatestState != bc.config.Ledger.KeepOnlyLatestState {
return fmt.Errorf("KeepOnlyLatestState setting mismatch (old=%v, new=%v)",
ver.KeepOnlyLatestState, bc.config.Ledger.KeepOnlyLatestState)
}
if ver.Magic != uint32(bc.config.Magic) {
return fmt.Errorf("protocol configuration Magic mismatch (old=%v, new=%v)",
ver.Magic, bc.config.Magic)
}
bc.dao.Version = ver
bc.persistent.Version = ver
// At this point there was no version found in the storage which
// implies a creating fresh storage with the version specified
// and the genesis block as first block.
bc.log.Info("restoring blockchain", zap.String("version", version))
err = bc.HeaderHashes.init(bc.dao)
if err != nil {
return err
}
// Check whether StateChangeState stage is in the storage and continue interrupted state jump / state reset if so.
stateChStage, err := bc.dao.Store.Get([]byte{byte(storage.SYSStateChangeStage)})
if err == nil {
if len(stateChStage) != 1 {
return fmt.Errorf("invalid state jump stage format")
}
// State jump / state reset wasn't finished yet, thus continue it.
stateSyncPoint, err := bc.dao.GetStateSyncPoint()
if err != nil {
return fmt.Errorf("failed to get state sync point from the storage")
}
if (stateChStage[0] & stateResetBit) != 0 {
return bc.resetStateInternal(stateSyncPoint, stateChangeStage(stateChStage[0]&(^stateResetBit)))
}
if !(bc.config.P2PStateExchangeExtensions && bc.config.Ledger.RemoveUntraceableBlocks) {
return errors.New("state jump was not completed, but P2PStateExchangeExtensions are disabled or archival node capability is on. " +
"To start an archival node drop the database manually and restart the node")
}
return bc.jumpToStateInternal(stateSyncPoint, stateChangeStage(stateChStage[0]))
}
bHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return fmt.Errorf("failed to retrieve current block height: %w", err)
}
bc.blockHeight = bHeight
bc.persistedHeight = bHeight
if err = bc.stateRoot.Init(bHeight); err != nil {
return fmt.Errorf("can't init MPT at height %d: %w", bHeight, err)
}
err = bc.initializeNativeCache(bc.blockHeight, bc.dao)
if err != nil {
return fmt.Errorf("can't init natives cache: %w", err)
}
// Check autogenerated native contracts' manifests and NEFs against the stored ones.
// Need to be done after native Management cache initialization to be able to get
// contract state from DAO via high-level bc API.
for _, c := range bc.contracts.Contracts {
md := c.Metadata()
storedCS := bc.GetContractState(md.Hash)
history := md.UpdateHistory
if len(history) == 0 || history[0] > bHeight {
if storedCS != nil {
return fmt.Errorf("native contract %s is already stored, but marked as inactive for height %d in config", md.Name, bHeight)
}
continue
}
if storedCS == nil {
return fmt.Errorf("native contract %s is not stored, but should be active at height %d according to config", md.Name, bHeight)
}
storedCSBytes, err := stackitem.SerializeConvertible(storedCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
autogenCS := &state.Contract{
ContractBase: md.ContractBase,
UpdateCounter: storedCS.UpdateCounter, // it can be restored only from the DB, so use the stored value.
}
autogenCSBytes, err := stackitem.SerializeConvertible(autogenCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
if !bytes.Equal(storedCSBytes, autogenCSBytes) {
return fmt.Errorf("native %s: version mismatch (stored contract state differs from autogenerated one), "+
"try to resynchronize the node from the genesis", md.Name)
}
}
return bc.updateExtensibleWhitelist(bHeight)
}
// jumpToState is an atomic operation that changes Blockchain state to the one
// specified by the state sync point p. All the data needed for the jump must be
// collected by the state sync module.
func (bc *Blockchain) jumpToState(p uint32) error {
bc.addLock.Lock()
bc.lock.Lock()
defer bc.lock.Unlock()
defer bc.addLock.Unlock()
return bc.jumpToStateInternal(p, none)
}
// jumpToStateInternal is an internal representation of jumpToState callback that
// changes Blockchain state to the one specified by state sync point p and state
// jump stage. All the data needed for the jump must be in the DB, otherwise an
// error is returned. It is not protected by mutex.
func (bc *Blockchain) jumpToStateInternal(p uint32, stage stateChangeStage) error {
if p >= bc.HeaderHeight() {
return fmt.Errorf("invalid state sync point %d: headerHeignt is %d", p, bc.HeaderHeight())
}
bc.log.Info("jumping to state sync point", zap.Uint32("state sync point", p))
jumpStageKey := []byte{byte(storage.SYSStateChangeStage)}
switch stage {
case none:
bc.dao.Store.Put(jumpStageKey, []byte{byte(stateJumpStarted)})
fallthrough
case stateJumpStarted:
newPrefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix)
v, err := bc.dao.GetVersion()
if err != nil {
return fmt.Errorf("failed to get dao.Version: %w", err)
}
v.StoragePrefix = newPrefix
bc.dao.PutVersion(v)
bc.persistent.Version = v
bc.dao.Store.Put(jumpStageKey, []byte{byte(newStorageItemsAdded)})
fallthrough
case newStorageItemsAdded:
cache := bc.dao.GetPrivate()
prefix := statesync.TemporaryPrefix(bc.dao.Version.StoragePrefix)
bc.dao.Store.Seek(storage.SeekRange{Prefix: []byte{byte(prefix)}}, func(k, _ []byte) bool {
// #1468, but don't need to copy here, because it is done by Store.
cache.Store.Delete(k)
return true
})
// After current state is updated, we need to remove outdated state-related data if so.
// The only outdated data we might have is genesis-related data, so check it.
if p-bc.config.MaxTraceableBlocks > 0 {
err := cache.DeleteBlock(bc.GetHeaderHash(0))
if err != nil {
return fmt.Errorf("failed to remove outdated state data for the genesis block: %w", err)
}
prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers), byte(storage.STTokenTransferInfo)}
for i := range prefixes {
cache.Store.Seek(storage.SeekRange{Prefix: prefixes[i : i+1]}, func(k, v []byte) bool {
cache.Store.Delete(k)
return true
})
}
}
// Update SYS-prefixed info.
block, err := bc.dao.GetBlock(bc.GetHeaderHash(p))
if err != nil {
return fmt.Errorf("failed to get current block: %w", err)
}
cache.StoreAsCurrentBlock(block)
cache.Store.Put(jumpStageKey, []byte{byte(staleBlocksRemoved)})
_, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist old items removal: %w", err)
}
case staleBlocksRemoved:
// there's nothing to do after that, so just continue with common operations
// and remove state jump stage in the end.
default:
return fmt.Errorf("unknown state jump stage: %d", stage)
}
block, err := bc.dao.GetBlock(bc.GetHeaderHash(p + 1))
if err != nil {
return fmt.Errorf("failed to get block to init MPT: %w", err)
}
bc.stateRoot.JumpToState(&state.MPTRoot{
Index: p,
Root: block.PrevStateRoot,
})
bc.dao.Store.Delete(jumpStageKey)
err = bc.resetRAMState(p, false)
if err != nil {
return fmt.Errorf("failed to update in-memory blockchain data: %w", err)
}
return nil
}
// resetRAMState resets in-memory cached info.
func (bc *Blockchain) resetRAMState(height uint32, resetHeaders bool) error {
if resetHeaders {
err := bc.HeaderHashes.init(bc.dao)
if err != nil {
return err
}
}
block, err := bc.dao.GetBlock(bc.GetHeaderHash(height))
if err != nil {
return fmt.Errorf("failed to get current block: %w", err)
}
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, height)
atomic.StoreUint32(&bc.persistedHeight, height)
err = bc.initializeNativeCache(block.Index, bc.dao)
if err != nil {
return fmt.Errorf("failed to initialize natives cache: %w", err)
}
if err := bc.updateExtensibleWhitelist(height); err != nil {
return fmt.Errorf("failed to update extensible whitelist: %w", err)
}
updateBlockHeightMetric(height)
return nil
}
// Reset resets chain state to the specified height if possible. This method
// performs direct DB changes and can be called on non-running Blockchain only.
func (bc *Blockchain) Reset(height uint32) error {
if bc.isRunning.Load().(bool) {
return errors.New("can't reset state of the running blockchain")
}
bc.dao.PutStateSyncPoint(height)
return bc.resetStateInternal(height, none)
}
func (bc *Blockchain) resetStateInternal(height uint32, stage stateChangeStage) error {
// Cache isn't yet initialized, so retrieve block height right from DAO.
currHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return fmt.Errorf("failed to retrieve current block height: %w", err)
}
// Headers are already initialized by this moment, thus may use chain's API.
hHeight := bc.HeaderHeight()
// State reset may already be started by this moment, so perform these checks only if it wasn't.
if stage == none {
if height > currHeight {
return fmt.Errorf("current block height is %d, can't reset state to height %d", currHeight, height)
}
if height == currHeight && hHeight == currHeight {
bc.log.Info("chain is at the proper state", zap.Uint32("height", height))
return nil
}
if bc.config.Ledger.KeepOnlyLatestState {
return fmt.Errorf("KeepOnlyLatestState is enabled, state for height %d is outdated and removed from the storage", height)
}
if bc.config.Ledger.RemoveUntraceableBlocks && currHeight >= bc.config.MaxTraceableBlocks {
return fmt.Errorf("RemoveUntraceableBlocks is enabled, a necessary batch of traceable blocks has already been removed")
}
}
// Retrieve necessary state before the DB modification.
b, err := bc.GetBlock(bc.GetHeaderHash(height))
if err != nil {
return fmt.Errorf("failed to retrieve block %d: %w", height, err)
}
sr, err := bc.stateRoot.GetStateRoot(height)
if err != nil {
return fmt.Errorf("failed to retrieve stateroot for height %d: %w", height, err)
}
v := bc.dao.Version
cache := bc.dao // dao is MemCachedStore over DB, so use dao directly to persist cached changes right to the underlying DB
bc.log.Info("initialize state reset", zap.Uint32("target height", height))
start := time.Now()
p := start
keys := 0
resetStageKey := []byte{byte(storage.SYSStateChangeStage)}
switch stage {
case none:
cache.Store.Put(resetStageKey, []byte{stateResetBit | byte(stateJumpStarted)})
_, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist state reset start marker to the DB: %w", err)
}
fallthrough
case stateJumpStarted:
bc.log.Info("trying to reset blocks, transactions and AERs")
// Remove blocks/transactions/aers from currHeight down to height (not including height itself).
// Keep headers for now, they'll be removed later. It's hard to handle the whole set of changes in
// one stage, so persist periodically.
const persistBatchSize = 100 * headerBatchCount // count blocks only, should be enough to avoid OOM killer even for large blocks
var (
pBlocksStart = p
blocksCnt, batchCnt, keysCnt int
)
for i := height + 1; i <= currHeight; i++ {
err := cache.DeleteBlock(bc.GetHeaderHash(i))
if err != nil {
return fmt.Errorf("error while removing block %d: %w", i, err)
}
blocksCnt++
if blocksCnt == persistBatchSize {
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist intermediate batch removed blocks, transactions and AERs: %w", err)
}
blocksCnt = 0
batchCnt++
keysCnt += keys
bc.log.Info("intermediate batch of removed blocks, transactions and AERs is persisted", zap.Int("batches persisted", batchCnt), zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
p = time.Now()
}
}
cache.Store.Put(resetStageKey, []byte{stateResetBit | byte(staleBlocksRemoved)})
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist last batch of removed blocks, transactions ans AERs: %w", err)
}
batchCnt++
keysCnt += keys
bc.log.Info("last batch of removed blocks, transactions and AERs is persisted", zap.Int("batches persisted", batchCnt), zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
bc.log.Info("blocks, transactions ans AERs are reset", zap.Duration("took", time.Since(pBlocksStart)),
zap.Int("overall persisted keys", keysCnt))
p = time.Now()
fallthrough
case staleBlocksRemoved:
bc.log.Info("trying to reset contract storage items")
pStorageStart := p
var mode = mpt.ModeAll
if bc.config.Ledger.RemoveUntraceableBlocks {
mode |= mpt.ModeGCFlag
}
trieStore := mpt.NewTrieStore(sr.Root, mode, cache.Store)
oldStoragePrefix := v.StoragePrefix
newStoragePrefix := statesync.TemporaryPrefix(oldStoragePrefix)
const persistBatchSize = 200000
var (
seekErr error
cnt int
storageItmsCnt int
batchCnt int
)
trieStore.Seek(storage.SeekRange{Prefix: []byte{byte(oldStoragePrefix)}}, func(k, v []byte) bool {
if seekErr != nil {
return false
}
if cnt >= persistBatchSize {
cnt = 0
keys, seekErr = cache.Persist()
if seekErr != nil {
seekErr = fmt.Errorf("failed to persist intermediate batch of contract storage items and IDs: %w", seekErr)
return false
}
batchCnt++
bc.log.Info("intermediate batch of contract storage items and IDs is persisted", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
p = time.Now()
}
// May safely omit KV copying.
k[0] = byte(newStoragePrefix)
cache.Store.Put(k, v)
cnt++
storageItmsCnt++
return true
})
if seekErr != nil {
return fmt.Errorf("failed to reset contract contract storage items and IDs: %w", seekErr)
}
trieStore.Close()
cache.Store.Put(resetStageKey, []byte{stateResetBit | byte(newStorageItemsAdded)})
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist contract storage items and IDs changes to the DB: %w", err)
}
batchCnt++
bc.log.Info("last batch of contract storage items and IDs is persisted", zap.Int("batch", batchCnt), zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
bc.log.Info("contract storage items and IDs are reset", zap.Duration("took", time.Since(pStorageStart)),
zap.Int("keys", storageItmsCnt))
p = time.Now()
fallthrough
case newStorageItemsAdded:
// Reset SYS-prefixed and IX-prefixed information.
bc.log.Info("trying to reset headers information")
for i := height + 1; i <= hHeight; i++ {
cache.PurgeHeader(bc.GetHeaderHash(i))
}
cache.DeleteHeaderHashes(height+1, headerBatchCount)
cache.StoreAsCurrentBlock(b)
cache.PutCurrentHeader(b.Hash(), height)
v.StoragePrefix = statesync.TemporaryPrefix(v.StoragePrefix)
cache.PutVersion(v)
bc.persistent.Version = v
cache.Store.Put(resetStageKey, []byte{stateResetBit | byte(headersReset)})
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist headers changes to the DB: %w", err)
}
bc.log.Info("headers information is reset", zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
p = time.Now()
fallthrough
case headersReset:
// Reset MPT.
bc.log.Info("trying to reset state root information and NEP transfers")
err = bc.stateRoot.ResetState(height, cache.Store)
if err != nil {
return fmt.Errorf("failed to rollback MPT state: %w", err)
}
// Reset transfers.
err = bc.resetTransfers(cache, height)
if err != nil {
return fmt.Errorf("failed to strip transfer log / transfer info: %w", err)
}
cache.Store.Put(resetStageKey, []byte{stateResetBit | byte(transfersReset)})
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed tpo persist contract storage items changes to the DB: %w", err)
}
bc.log.Info("state root information and NEP transfers are reset", zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
p = time.Now()
fallthrough
case transfersReset:
// there's nothing to do after that, so just continue with common operations
// and remove state reset stage in the end.
default:
return fmt.Errorf("unknown state reset stage: %d", stage)
}
// Direct (cache-less) DB operation: remove stale storage items.
bc.log.Info("trying to remove stale storage items")
keys = 0
err = bc.store.SeekGC(storage.SeekRange{
Prefix: []byte{byte(statesync.TemporaryPrefix(v.StoragePrefix))},
}, func(_, _ []byte) bool {
keys++
return false
})
if err != nil {
return fmt.Errorf("faield to remove stale storage items from DB: %w", err)
}
bc.log.Info("stale storage items are reset", zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
p = time.Now()
bc.log.Info("trying to remove state reset point")
cache.Store.Delete(resetStageKey)
// Unlike the state jump, state sync point must be removed as we have complete state for this height.
cache.Store.Delete([]byte{byte(storage.SYSStateSyncPoint)})
keys, err = cache.Persist()
if err != nil {
return fmt.Errorf("failed to persist state reset stage to DAO: %w", err)
}
bc.log.Info("stale reset point is removed", zap.Duration("took", time.Since(p)), zap.Int("keys", keys))
err = bc.resetRAMState(height, true)
if err != nil {
return fmt.Errorf("failed to update in-memory blockchain data: %w", err)
}
bc.log.Info("reset finished successfully", zap.Duration("took", time.Since(start)))
return nil
}
func (bc *Blockchain) initializeNativeCache(blockHeight uint32, d *dao.Simple) error {
err := bc.contracts.NEO.InitializeCache(blockHeight, d)
if err != nil {
return fmt.Errorf("can't init cache for NEO native contract: %w", err)
}
err = bc.contracts.Management.InitializeCache(d)
if err != nil {
return fmt.Errorf("can't init cache for Management native contract: %w", err)
}
err = bc.contracts.Designate.InitializeCache(d)
if err != nil {
return fmt.Errorf("can't init cache for Designation native contract: %w", err)
}
bc.contracts.Oracle.InitializeCache(d)
if bc.P2PSigExtensionsEnabled() {
err = bc.contracts.Notary.InitializeCache(d)
if err != nil {
return fmt.Errorf("can't init cache for Notary native contract: %w", err)
}
}
err = bc.contracts.Policy.InitializeCache(d)
if err != nil {
return fmt.Errorf("can't init cache for Policy native contract: %w", err)
}
return nil
}
// Run runs chain loop, it needs to be run as goroutine and executing it is
// critical for correct Blockchain operation.
func (bc *Blockchain) Run() {
bc.isRunning.Store(true)
persistTimer := time.NewTimer(persistInterval)
defer func() {
persistTimer.Stop()
if _, err := bc.persist(true); err != nil {
bc.log.Warn("failed to persist", zap.Error(err))
}
if err := bc.dao.Store.Close(); err != nil {
bc.log.Warn("failed to close db", zap.Error(err))
}
bc.isRunning.Store(false)
close(bc.runToExitCh)
}()
go bc.notificationDispatcher()
var nextSync bool
for {
select {
case <-bc.stopCh:
return
case <-persistTimer.C:
var oldPersisted uint32
var gcDur time.Duration
if bc.config.Ledger.RemoveUntraceableBlocks {
oldPersisted = atomic.LoadUint32(&bc.persistedHeight)
}
dur, err := bc.persist(nextSync)
if err != nil {
bc.log.Warn("failed to persist blockchain", zap.Error(err))
}
if bc.config.Ledger.RemoveUntraceableBlocks {
gcDur = bc.tryRunGC(oldPersisted)
}
nextSync = dur > persistInterval*2
interval := persistInterval - dur - gcDur
if interval <= 0 {
interval = time.Microsecond // Reset doesn't work with zero value
}
persistTimer.Reset(interval)
}
}
}
func (bc *Blockchain) tryRunGC(oldHeight uint32) time.Duration {
var dur time.Duration
newHeight := atomic.LoadUint32(&bc.persistedHeight)
var tgtBlock = int64(newHeight)
tgtBlock -= int64(bc.config.MaxTraceableBlocks)
if bc.config.P2PStateExchangeExtensions {
syncP := newHeight / uint32(bc.config.StateSyncInterval)
syncP--
syncP *= uint32(bc.config.StateSyncInterval)
if tgtBlock > int64(syncP) {
tgtBlock = int64(syncP)
}
}
// Always round to the GCP.
tgtBlock /= int64(bc.config.Ledger.GarbageCollectionPeriod)
tgtBlock *= int64(bc.config.Ledger.GarbageCollectionPeriod)
// Count periods.
oldHeight /= bc.config.Ledger.GarbageCollectionPeriod
newHeight /= bc.config.Ledger.GarbageCollectionPeriod
if tgtBlock > int64(bc.config.Ledger.GarbageCollectionPeriod) && newHeight != oldHeight {
tgtBlock /= int64(bc.config.Ledger.GarbageCollectionPeriod)
tgtBlock *= int64(bc.config.Ledger.GarbageCollectionPeriod)
dur = bc.stateRoot.GC(uint32(tgtBlock), bc.store)
dur += bc.removeOldTransfers(uint32(tgtBlock))
}
return dur
}
// resetTransfers is a helper function that strips the top newest NEP17 and NEP11 transfer logs
// down to the given height (not including the height itself) and updates corresponding token
// transfer info.
func (bc *Blockchain) resetTransfers(cache *dao.Simple, height uint32) error {
// Completely remove transfer info, updating it takes too much effort. We'll gather new
// transfer info on-the-fly later.
cache.Store.Seek(storage.SeekRange{
Prefix: []byte{byte(storage.STTokenTransferInfo)},
}, func(k, v []byte) bool {
cache.Store.Delete(k)
return true
})
// Look inside each transfer batch and iterate over the batch transfers, picking those that
// not newer than the given height. Also, for each suitable transfer update transfer info
// flushing changes after complete account's transfers processing.
prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers)}
for i := range prefixes {
var (
acc util.Uint160
trInfo *state.TokenTransferInfo
removeFollowing bool
seekErr error
)
cache.Store.Seek(storage.SeekRange{
Prefix: prefixes[i : i+1],
Backwards: false, // From oldest to newest batch.
}, func(k, v []byte) bool {
var batchAcc util.Uint160
copy(batchAcc[:], k[1:])
if batchAcc != acc { // Some new account we're iterating over.
if trInfo != nil {
seekErr = cache.PutTokenTransferInfo(acc, trInfo)
if seekErr != nil {
return false
}
}
acc = batchAcc
trInfo = nil
removeFollowing = false
} else if removeFollowing {
cache.Store.Delete(slice.Copy(k))
return seekErr == nil
}
r := io.NewBinReaderFromBuf(v[1:])
l := len(v)
bytesRead := 1 // 1 is for batch size byte which is read by default.
var (
oldBatchSize = v[0]
newBatchSize byte
)
for i := byte(0); i < v[0]; i++ { // From oldest to newest transfer of the batch.
var t *state.NEP17Transfer
if k[0] == byte(storage.STNEP11Transfers) {
tr := new(state.NEP11Transfer)
tr.DecodeBinary(r)
t = &tr.NEP17Transfer
} else {
t = new(state.NEP17Transfer)
t.DecodeBinary(r)
}
if r.Err != nil {
seekErr = fmt.Errorf("failed to decode subsequent transfer: %w", r.Err)
break
}
if t.Block > height {
break
}
bytesRead = l - r.Len() // Including batch size byte.
newBatchSize++
if trInfo == nil {
var err error
trInfo, err = cache.GetTokenTransferInfo(batchAcc)
if err != nil {
seekErr = fmt.Errorf("failed to retrieve token transfer info for %s: %w", batchAcc.StringLE(), r.Err)
return false
}
}
appendTokenTransferInfo(trInfo, t.Asset, t.Block, t.Timestamp, k[0] == byte(storage.STNEP11Transfers), newBatchSize >= state.TokenTransferBatchSize)
}
if newBatchSize == oldBatchSize {
// The batch is already in storage and doesn't need to be changed.
return seekErr == nil
}
if newBatchSize > 0 {
v[0] = newBatchSize
cache.Store.Put(k, v[:bytesRead])
} else {
cache.Store.Delete(k)
removeFollowing = true
}
return seekErr == nil
})
if seekErr != nil {
return seekErr
}
if trInfo != nil {
// Flush the last batch of transfer info changes.
err := cache.PutTokenTransferInfo(acc, trInfo)
if err != nil {
return err
}
}
}
return nil
}
// appendTokenTransferInfo is a helper for resetTransfers that updates token transfer info
// wrt the given transfer that was added to the subsequent transfer batch.
func appendTokenTransferInfo(transferData *state.TokenTransferInfo,
token int32, bIndex uint32, bTimestamp uint64, isNEP11 bool, lastTransferInBatch bool) {
var (
newBatch *bool
nextBatch *uint32
currTimestamp *uint64
)
if !isNEP11 {
newBatch = &transferData.NewNEP17Batch
nextBatch = &transferData.NextNEP17Batch
currTimestamp = &transferData.NextNEP17NewestTimestamp
} else {
newBatch = &transferData.NewNEP11Batch
nextBatch = &transferData.NextNEP11Batch
currTimestamp = &transferData.NextNEP11NewestTimestamp
}
transferData.LastUpdated[token] = bIndex
*newBatch = lastTransferInBatch
if *newBatch {
*nextBatch++
*currTimestamp = bTimestamp
}
}
func (bc *Blockchain) removeOldTransfers(index uint32) time.Duration {
bc.log.Info("starting transfer data garbage collection", zap.Uint32("index", index))
start := time.Now()
h, err := bc.GetHeader(bc.GetHeaderHash(index))
if err != nil {
dur := time.Since(start)
bc.log.Error("failed to find block header for transfer GC", zap.Duration("time", dur), zap.Error(err))
return dur
}
var removed, kept int64
var ts = h.Timestamp
prefixes := []byte{byte(storage.STNEP11Transfers), byte(storage.STNEP17Transfers)}
for i := range prefixes {
var acc util.Uint160
var canDrop bool
err = bc.store.SeekGC(storage.SeekRange{
Prefix: prefixes[i : i+1],
Backwards: true, // From new to old.
}, func(k, v []byte) bool {
// We don't look inside of the batches, it requires too much effort, instead
// we drop batches that are confirmed to contain outdated entries.
var batchAcc util.Uint160
var batchTs = binary.BigEndian.Uint64(k[1+util.Uint160Size:])
copy(batchAcc[:], k[1:])
if batchAcc != acc { // Some new account we're iterating over.
acc = batchAcc
} else if canDrop { // We've seen this account and all entries in this batch are guaranteed to be outdated.
removed++
return false
}
// We don't know what's inside, so keep the current
// batch anyway, but allow to drop older ones.
canDrop = batchTs <= ts
kept++
return true
})
if err != nil {
break
}
}
dur := time.Since(start)
if err != nil {
bc.log.Error("failed to flush transfer data GC changeset", zap.Duration("time", dur), zap.Error(err))
} else {
bc.log.Info("finished transfer data garbage collection",
zap.Int64("removed", removed),
zap.Int64("kept", kept),
zap.Duration("time", dur))
}
return dur
}
// notificationDispatcher manages subscription to events and broadcasts new events.
func (bc *Blockchain) notificationDispatcher() {
var (
// These are just sets of subscribers, though modelled as maps
// for ease of management (not a lot of subscriptions is really
// expected, but maps are convenient for adding/deleting elements).
blockFeed = make(map[chan *block.Block]bool)
txFeed = make(map[chan *transaction.Transaction]bool)
notificationFeed = make(map[chan *state.ContainedNotificationEvent]bool)
executionFeed = make(map[chan *state.AppExecResult]bool)
)
for {
select {
case <-bc.stopCh:
return
case sub := <-bc.subCh:
switch ch := sub.(type) {
case chan *block.Block:
blockFeed[ch] = true
case chan *transaction.Transaction:
txFeed[ch] = true
case chan *state.ContainedNotificationEvent:
notificationFeed[ch] = true
case chan *state.AppExecResult:
executionFeed[ch] = true
default:
panic(fmt.Sprintf("bad subscription: %T", sub))
}
case unsub := <-bc.unsubCh:
switch ch := unsub.(type) {
case chan *block.Block:
delete(blockFeed, ch)
case chan *transaction.Transaction:
delete(txFeed, ch)
case chan *state.ContainedNotificationEvent:
delete(notificationFeed, ch)
case chan *state.AppExecResult:
delete(executionFeed, ch)
default:
panic(fmt.Sprintf("bad unsubscription: %T", unsub))
}
case event := <-bc.events:
// We don't want to waste time looping through transactions when there are no
// subscribers.
if len(txFeed) != 0 || len(notificationFeed) != 0 || len(executionFeed) != 0 {
aer := event.appExecResults[0]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &state.ContainedNotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
aerIdx := 1
for _, tx := range event.block.Transactions {
aer := event.appExecResults[aerIdx]
if !aer.Container.Equals(tx.Hash()) {
panic("inconsistent application execution results")
}
aerIdx++
for ch := range executionFeed {
ch <- aer
}
if aer.VMState == vmstate.Halt {
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &state.ContainedNotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
}
for ch := range txFeed {
ch <- tx
}
}
aer = event.appExecResults[aerIdx]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &state.ContainedNotificationEvent{
Container: aer.Container,
NotificationEvent: aer.Events[i],
}
}
}
}
for ch := range blockFeed {
ch <- event.block
}
}
}
}
// Close stops Blockchain's internal loop, syncs changes to persistent storage
// and closes it. The Blockchain is no longer functional after the call to Close.
func (bc *Blockchain) Close() {
// If there is a block addition in progress, wait for it to finish and
// don't allow new ones.
bc.addLock.Lock()
close(bc.stopCh)
<-bc.runToExitCh
bc.addLock.Unlock()
}
// AddBlock accepts successive block for the Blockchain, verifies it and
// stores internally. Eventually it will be persisted to the backing storage.
func (bc *Blockchain) AddBlock(block *block.Block) error {
bc.addLock.Lock()
defer bc.addLock.Unlock()
var mp *mempool.Pool
expectedHeight := bc.BlockHeight() + 1
if expectedHeight != block.Index {
return fmt.Errorf("expected %d, got %d: %w", expectedHeight, block.Index, ErrInvalidBlockIndex)
}
if bc.config.StateRootInHeader != block.StateRootEnabled {
return fmt.Errorf("%w: %v != %v",
ErrHdrStateRootSetting, bc.config.StateRootInHeader, block.StateRootEnabled)
}
if block.Index == bc.HeaderHeight()+1 {
err := bc.addHeaders(!bc.config.SkipBlockVerification, &block.Header)
if err != nil {
return err
}
}
if !bc.config.SkipBlockVerification {
merkle := block.ComputeMerkleRoot()
if !block.MerkleRoot.Equals(merkle) {
return errors.New("invalid block: MerkleRoot mismatch")
}
mp = mempool.New(len(block.Transactions), 0, false)
for _, tx := range block.Transactions {
var err error
// Transactions are verified before adding them
// into the pool, so there is no point in doing
// it again even if we're verifying in-block transactions.
if bc.memPool.ContainsKey(tx.Hash()) {
err = mp.Add(tx, bc)
if err == nil {
continue
}
} else {
err = bc.verifyAndPoolTx(tx, mp, bc)
}
if err != nil && bc.config.VerifyTransactions {
return fmt.Errorf("transaction %s failed to verify: %w", tx.Hash().StringLE(), err)
}
}
}
return bc.storeBlock(block, mp)
}
// AddHeaders processes the given headers and add them to the
// HeaderHashList. It expects headers to be sorted by index.
func (bc *Blockchain) AddHeaders(headers ...*block.Header) error {
return bc.addHeaders(!bc.config.SkipBlockVerification, headers...)
}
// addHeaders is an internal implementation of AddHeaders (`verify` parameter
// tells it to verify or not verify given headers).
func (bc *Blockchain) addHeaders(verify bool, headers ...*block.Header) error {
var (
start = time.Now()
err error
)
if len(headers) > 0 {
var i int
curHeight := bc.HeaderHeight()
for i = range headers {
if headers[i].Index > curHeight {
break
}
}
headers = headers[i:]
}
if len(headers) == 0 {
return nil
} else if verify {
// Verify that the chain of the headers is consistent.
var lastHeader *block.Header
if lastHeader, err = bc.GetHeader(headers[0].PrevHash); err != nil {
return fmt.Errorf("previous header was not found: %w", err)
}
for _, h := range headers {
if err = bc.verifyHeader(h, lastHeader); err != nil {
return err
}
lastHeader = h
}
}
res := bc.HeaderHashes.addHeaders(headers...)
if res == nil {
bc.log.Debug("done processing headers",
zap.Uint32("headerIndex", bc.HeaderHeight()),
zap.Uint32("blockHeight", bc.BlockHeight()),
zap.Duration("took", time.Since(start)))
}
return res
}
// GetStateRoot returns state root for the given height.
func (bc *Blockchain) GetStateRoot(height uint32) (*state.MPTRoot, error) {
return bc.stateRoot.GetStateRoot(height)
}
// GetStateModule returns state root service instance.
func (bc *Blockchain) GetStateModule() StateRoot {
return bc.stateRoot
}
// GetStateSyncModule returns new state sync service instance.
func (bc *Blockchain) GetStateSyncModule() *statesync.Module {
return statesync.NewModule(bc, bc.stateRoot, bc.log, bc.dao, bc.jumpToState)
}
// storeBlock performs chain update using the block given, it executes all
// transactions with all appropriate side-effects and updates Blockchain state.
// This is the only way to change Blockchain state.
func (bc *Blockchain) storeBlock(block *block.Block, txpool *mempool.Pool) error {
var (
cache = bc.dao.GetPrivate()
aerCache = bc.dao.GetPrivate()
appExecResults = make([]*state.AppExecResult, 0, 2+len(block.Transactions))
aerchan = make(chan *state.AppExecResult, len(block.Transactions)/8) // Tested 8 and 4 with no practical difference, but feel free to test more and tune.
aerdone = make(chan error)
)
go func() {
var (
kvcache = aerCache
err error
txCnt int
baer1, baer2 *state.AppExecResult
transCache = make(map[util.Uint160]transferData)
)
kvcache.StoreAsCurrentBlock(block)
if bc.config.Ledger.RemoveUntraceableBlocks {
var start, stop uint32
if bc.config.P2PStateExchangeExtensions {
// remove batch of old blocks starting from P2-MaxTraceableBlocks-StateSyncInterval up to P2-MaxTraceableBlocks
if block.Index >= 2*uint32(bc.config.StateSyncInterval) &&
block.Index >= uint32(bc.config.StateSyncInterval)+bc.config.MaxTraceableBlocks && // check this in case if MaxTraceableBlocks>StateSyncInterval
int(block.Index)%bc.config.StateSyncInterval == 0 {
stop = block.Index - uint32(bc.config.StateSyncInterval) - bc.config.MaxTraceableBlocks
if stop > uint32(bc.config.StateSyncInterval) {
start = stop - uint32(bc.config.StateSyncInterval)
}
}
} else if block.Index > bc.config.MaxTraceableBlocks {
start = block.Index - bc.config.MaxTraceableBlocks // is at least 1
stop = start + 1
}
for index := start; index < stop; index++ {
err := kvcache.DeleteBlock(bc.GetHeaderHash(index))
if err != nil {
bc.log.Warn("error while removing old block",
zap.Uint32("index", index),
zap.Error(err))
}
}
}
for aer := range aerchan {
if aer.Container == block.Hash() {
if baer1 == nil {
baer1 = aer
} else {
baer2 = aer
}
} else {
err = kvcache.StoreAsTransaction(block.Transactions[txCnt], block.Index, aer)
txCnt++
}
if err != nil {
err = fmt.Errorf("failed to store exec result: %w", err)
break
}
if aer.Execution.VMState == vmstate.Halt {
for j := range aer.Execution.Events {
bc.handleNotification(&aer.Execution.Events[j], kvcache, transCache, block, aer.Container)
}
}
}
if err != nil {
aerdone <- err
return
}
if err := kvcache.StoreAsBlock(block, baer1, baer2); err != nil {
aerdone <- err
return
}
for acc, trData := range transCache {
err = kvcache.PutTokenTransferInfo(acc, &trData.Info)
if err != nil {
aerdone <- err
return
}
if !trData.Info.NewNEP11Batch {
kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP11NewestTimestamp, trData.Info.NextNEP11Batch, true, &trData.Log11)
}
if !trData.Info.NewNEP17Batch {
kvcache.PutTokenTransferLog(acc, trData.Info.NextNEP17NewestTimestamp, trData.Info.NextNEP17Batch, false, &trData.Log17)
}
}
close(aerdone)
}()
_ = cache.GetItemCtx() // Prime serialization context cache (it'll be reused by upper layer DAOs).
aer, v, err := bc.runPersist(bc.contracts.GetPersistScript(), block, cache, trigger.OnPersist, nil)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("onPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
for _, tx := range block.Transactions {
systemInterop := bc.newInteropContext(trigger.Application, cache, block, tx)
systemInterop.ReuseVM(v)
v.LoadScriptWithFlags(tx.Script, callflag.All)
v.GasLimit = tx.SystemFee
err := systemInterop.Exec()
var faultException string
if !v.HasFailed() {
_, err := systemInterop.DAO.Persist()
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("failed to persist invocation results: %w", err)
}
} else {
bc.log.Warn("contract invocation failed",
zap.String("tx", tx.Hash().StringLE()),
zap.Uint32("block", block.Index),
zap.Error(err))
faultException = err.Error()
}
aer := &state.AppExecResult{
Container: tx.Hash(),
Execution: state.Execution{
Trigger: trigger.Application,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
FaultException: faultException,
},
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
}
aer, _, err = bc.runPersist(bc.contracts.GetPostPersistScript(), block, cache, trigger.PostPersist, v)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-aerdone
return fmt.Errorf("postPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
aerchan <- aer
close(aerchan)
b := mpt.MapToMPTBatch(cache.Store.GetStorageChanges())
mpt, sr, err := bc.stateRoot.AddMPTBatch(block.Index, b, cache.Store)
if err != nil {
// Release goroutines, don't care about errors, we already have one.
<-aerdone
// Here MPT can be left in a half-applied state.
// However if this error occurs, this is a bug somewhere in code
// because changes applied are the ones from HALTed transactions.
return fmt.Errorf("error while trying to apply MPT changes: %w", err)
}
if bc.config.StateRootInHeader && bc.HeaderHeight() > sr.Index {
h, err := bc.GetHeader(bc.GetHeaderHash(sr.Index + 1))
if err != nil {
err = fmt.Errorf("failed to get next header: %w", err)
} else if h.PrevStateRoot != sr.Root {
err = fmt.Errorf("local stateroot and next header's PrevStateRoot mismatch: %s vs %s", sr.Root.StringBE(), h.PrevStateRoot.StringBE())
}
if err != nil {
// Release goroutines, don't care about errors, we already have one.
<-aerdone
return err
}
}
if bc.config.Ledger.SaveStorageBatch {
bc.lastBatch = cache.GetBatch()
}
// Every persist cycle we also compact our in-memory MPT. It's flushed
// already in AddMPTBatch, so collapsing it is safe.
persistedHeight := atomic.LoadUint32(&bc.persistedHeight)
if persistedHeight == block.Index-1 {
// 10 is good and roughly estimated to fit remaining trie into 1M of memory.
mpt.Collapse(10)
}
aererr := <-aerdone
if aererr != nil {
return aererr
}
bc.lock.Lock()
_, err = aerCache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
_, err = cache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
mpt.Store = bc.dao.Store
bc.stateRoot.UpdateCurrentLocal(mpt, sr)
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, block.Index)
bc.memPool.RemoveStale(func(tx *transaction.Transaction) bool { return bc.IsTxStillRelevant(tx, txpool, false) }, bc)
for _, f := range bc.postBlock {
f(bc.IsTxStillRelevant, txpool, block)
}
if err := bc.updateExtensibleWhitelist(block.Index); err != nil {
bc.lock.Unlock()
return err
}
bc.lock.Unlock()
updateBlockHeightMetric(block.Index)
// Genesis block is stored when Blockchain is not yet running, so there
// is no one to read this event. And it doesn't make much sense as event
// anyway.
if block.Index != 0 {
bc.events <- bcEvent{block, appExecResults}
}
return nil
}
func (bc *Blockchain) updateExtensibleWhitelist(height uint32) error {
updateCommittee := bc.config.ShouldUpdateCommitteeAt(height)
stateVals, sh, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.StateValidator, height)
if err != nil {
return err
}
if bc.extensible.Load() != nil && !updateCommittee && sh != height {
return nil
}
newList := []util.Uint160{bc.contracts.NEO.GetCommitteeAddress(bc.dao)}
nextVals := bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao)
script, err := smartcontract.CreateDefaultMultiSigRedeemScript(nextVals)
if err != nil {
return err
}
newList = append(newList, hash.Hash160(script))
bc.updateExtensibleList(&newList, bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao))
if len(stateVals) > 0 {
h, err := bc.contracts.Designate.GetLastDesignatedHash(bc.dao, noderoles.StateValidator)
if err != nil {
return err
}
newList = append(newList, h)
bc.updateExtensibleList(&newList, stateVals)
}
sort.Slice(newList, func(i, j int) bool {
return newList[i].Less(newList[j])
})
bc.extensible.Store(newList)
return nil
}
func (bc *Blockchain) updateExtensibleList(s *[]util.Uint160, pubs keys.PublicKeys) {
for _, pub := range pubs {
*s = append(*s, pub.GetScriptHash())
}
}
// IsExtensibleAllowed determines if script hash is allowed to send extensible payloads.
func (bc *Blockchain) IsExtensibleAllowed(u util.Uint160) bool {
us := bc.extensible.Load().([]util.Uint160)
n := sort.Search(len(us), func(i int) bool { return !us[i].Less(u) })
return n < len(us)
}
func (bc *Blockchain) runPersist(script []byte, block *block.Block, cache *dao.Simple, trig trigger.Type, v *vm.VM) (*state.AppExecResult, *vm.VM, error) {
systemInterop := bc.newInteropContext(trig, cache, block, nil)
if v == nil {
v = systemInterop.SpawnVM()
} else {
systemInterop.ReuseVM(v)
}
v.LoadScriptWithFlags(script, callflag.All)
if err := systemInterop.Exec(); err != nil {
return nil, v, fmt.Errorf("VM has failed: %w", err)
} else if _, err := systemInterop.DAO.Persist(); err != nil {
return nil, v, fmt.Errorf("can't save changes: %w", err)
}
return &state.AppExecResult{
Container: block.Hash(), // application logs can be retrieved by block hash
Execution: state.Execution{
Trigger: trig,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
},
}, v, nil
}
func (bc *Blockchain) handleNotification(note *state.NotificationEvent, d *dao.Simple,
transCache map[util.Uint160]transferData, b *block.Block, h util.Uint256) {
if note.Name != "Transfer" {
return
}
arr, ok := note.Item.Value().([]stackitem.Item)
if !ok || !(len(arr) == 3 || len(arr) == 4) {
return
}
from, err := parseUint160(arr[0])
if err != nil {
return
}
to, err := parseUint160(arr[1])
if err != nil {
return
}
amount, err := arr[2].TryInteger()
if err != nil {
return
}
var id []byte
if len(arr) == 4 {
id, err = arr[3].TryBytes()
if err != nil || len(id) > limits.MaxStorageKeyLen {
return
}
}
bc.processTokenTransfer(d, transCache, h, b, note.ScriptHash, from, to, amount, id)
}
func parseUint160(itm stackitem.Item) (util.Uint160, error) {
_, ok := itm.(stackitem.Null) // Minting or burning.
if ok {
return util.Uint160{}, nil
}
bytes, err := itm.TryBytes()
if err != nil {
return util.Uint160{}, err
}
return util.Uint160DecodeBytesBE(bytes)
}
func (bc *Blockchain) processTokenTransfer(cache *dao.Simple, transCache map[util.Uint160]transferData,
h util.Uint256, b *block.Block, sc util.Uint160, from util.Uint160, to util.Uint160,
amount *big.Int, tokenID []byte) {
var id int32
nativeContract := bc.contracts.ByHash(sc)
if nativeContract != nil {
id = nativeContract.Metadata().ID
} else {
assetContract, err := native.GetContract(cache, sc)
if err != nil {
return
}
id = assetContract.ID
}
var transfer io.Serializable
var nep17xfer *state.NEP17Transfer
var isNEP11 = (tokenID != nil)
if !isNEP11 {
nep17xfer = &state.NEP17Transfer{
Asset: id,
Amount: amount,
Block: b.Index,
Counterparty: to,
Timestamp: b.Timestamp,
Tx: h,
}
transfer = nep17xfer
} else {
nep11xfer := &state.NEP11Transfer{
NEP17Transfer: state.NEP17Transfer{
Asset: id,
Amount: amount,
Block: b.Index,
Counterparty: to,
Timestamp: b.Timestamp,
Tx: h,
},
ID: tokenID,
}
transfer = nep11xfer
nep17xfer = &nep11xfer.NEP17Transfer
}
if !from.Equals(util.Uint160{}) {
_ = nep17xfer.Amount.Neg(nep17xfer.Amount)
err := appendTokenTransfer(cache, transCache, from, transfer, id, b.Index, b.Timestamp, isNEP11)
_ = nep17xfer.Amount.Neg(nep17xfer.Amount)
if err != nil {
return
}
}
if !to.Equals(util.Uint160{}) {
nep17xfer.Counterparty = from
_ = appendTokenTransfer(cache, transCache, to, transfer, id, b.Index, b.Timestamp, isNEP11) // Nothing useful we can do.
}
}
func appendTokenTransfer(cache *dao.Simple, transCache map[util.Uint160]transferData, addr util.Uint160, transfer io.Serializable,
token int32, bIndex uint32, bTimestamp uint64, isNEP11 bool) error {
transferData, ok := transCache[addr]
if !ok {
balances, err := cache.GetTokenTransferInfo(addr)
if err != nil {
return err
}
if !balances.NewNEP11Batch {
trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP11NewestTimestamp, balances.NextNEP11Batch, true)
if err != nil {
return err
}
transferData.Log11 = *trLog
}
if !balances.NewNEP17Batch {
trLog, err := cache.GetTokenTransferLog(addr, balances.NextNEP17NewestTimestamp, balances.NextNEP17Batch, false)
if err != nil {
return err
}
transferData.Log17 = *trLog
}
transferData.Info = *balances
}
var (
log *state.TokenTransferLog
nextBatch uint32
currTimestamp uint64
)
if !isNEP11 {
log = &transferData.Log17
nextBatch = transferData.Info.NextNEP17Batch
currTimestamp = transferData.Info.NextNEP17NewestTimestamp
} else {
log = &transferData.Log11
nextBatch = transferData.Info.NextNEP11Batch
currTimestamp = transferData.Info.NextNEP11NewestTimestamp
}
err := log.Append(transfer)
if err != nil {
return err
}
newBatch := log.Size() >= state.TokenTransferBatchSize
if newBatch {
cache.PutTokenTransferLog(addr, currTimestamp, nextBatch, isNEP11, log)
// Put makes a copy of it anyway.
log.Reset()
}
appendTokenTransferInfo(&transferData.Info, token, bIndex, bTimestamp, isNEP11, newBatch)
transCache[addr] = transferData
return nil
}
// ForEachNEP17Transfer executes f for each NEP-17 transfer in log starting from
// the transfer with the newest timestamp up to the oldest transfer. It continues
// iteration until false is returned from f. The last non-nil error is returned.
func (bc *Blockchain) ForEachNEP17Transfer(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP17Transfer) (bool, error)) error {
return bc.dao.SeekNEP17TransferLog(acc, newestTimestamp, f)
}
// ForEachNEP11Transfer executes f for each NEP-11 transfer in log starting from
// the transfer with the newest timestamp up to the oldest transfer. It continues
// iteration until false is returned from f. The last non-nil error is returned.
func (bc *Blockchain) ForEachNEP11Transfer(acc util.Uint160, newestTimestamp uint64, f func(*state.NEP11Transfer) (bool, error)) error {
return bc.dao.SeekNEP11TransferLog(acc, newestTimestamp, f)
}
// GetNEP17Contracts returns the list of deployed NEP-17 contracts.
func (bc *Blockchain) GetNEP17Contracts() []util.Uint160 {
return bc.contracts.Management.GetNEP17Contracts(bc.dao)
}
// GetNEP11Contracts returns the list of deployed NEP-11 contracts.
func (bc *Blockchain) GetNEP11Contracts() []util.Uint160 {
return bc.contracts.Management.GetNEP11Contracts(bc.dao)
}
// GetTokenLastUpdated returns a set of contract ids with the corresponding last updated
// block indexes. In case of an empty account, latest stored state synchronisation point
// is returned under Math.MinInt32 key.
func (bc *Blockchain) GetTokenLastUpdated(acc util.Uint160) (map[int32]uint32, error) {
info, err := bc.dao.GetTokenTransferInfo(acc)
if err != nil {
return nil, err
}
if bc.config.P2PStateExchangeExtensions && bc.config.Ledger.RemoveUntraceableBlocks {
if _, ok := info.LastUpdated[bc.contracts.NEO.ID]; !ok {
nBalance, lub := bc.contracts.NEO.BalanceOf(bc.dao, acc)
if nBalance.Sign() != 0 {
info.LastUpdated[bc.contracts.NEO.ID] = lub
}
}
}
stateSyncPoint, err := bc.dao.GetStateSyncPoint()
if err == nil {
info.LastUpdated[math.MinInt32] = stateSyncPoint
}
return info.LastUpdated, nil
}
// GetUtilityTokenBalance returns utility token (GAS) balance for the acc.
func (bc *Blockchain) GetUtilityTokenBalance(acc util.Uint160) *big.Int {
bs := bc.contracts.GAS.BalanceOf(bc.dao, acc)
if bs == nil {
return big.NewInt(0)
}
return bs
}
// GetGoverningTokenBalance returns governing token (NEO) balance and the height
// of the last balance change for the account.
func (bc *Blockchain) GetGoverningTokenBalance(acc util.Uint160) (*big.Int, uint32) {
return bc.contracts.NEO.BalanceOf(bc.dao, acc)
}
// GetNotaryBalance returns Notary deposit amount for the specified account.
func (bc *Blockchain) GetNotaryBalance(acc util.Uint160) *big.Int {
return bc.contracts.Notary.BalanceOf(bc.dao, acc)
}
// GetNotaryServiceFeePerKey returns NotaryServiceFeePerKey which is a reward per
// notary request key for designated notary nodes.
func (bc *Blockchain) GetNotaryServiceFeePerKey() int64 {
return bc.contracts.Notary.GetNotaryServiceFeePerKey(bc.dao)
}
// GetNotaryContractScriptHash returns Notary native contract hash.
func (bc *Blockchain) GetNotaryContractScriptHash() util.Uint160 {
if bc.P2PSigExtensionsEnabled() {
return bc.contracts.Notary.Hash
}
return util.Uint160{}
}
// GetNotaryDepositExpiration returns Notary deposit expiration height for the specified account.
func (bc *Blockchain) GetNotaryDepositExpiration(acc util.Uint160) uint32 {
return bc.contracts.Notary.ExpirationOf(bc.dao, acc)
}
// LastBatch returns last persisted storage batch.
func (bc *Blockchain) LastBatch() *storage.MemBatch {
return bc.lastBatch
}
// persist flushes current in-memory Store contents to the persistent storage.
func (bc *Blockchain) persist(isSync bool) (time.Duration, error) {
var (
start = time.Now()
duration time.Duration
persisted int
err error
)
if isSync {
persisted, err = bc.dao.PersistSync()
} else {
persisted, err = bc.dao.Persist()
}
if err != nil {
return 0, err
}
if persisted > 0 {
bHeight, err := bc.persistent.GetCurrentBlockHeight()
if err != nil {
return 0, err
}
oldHeight := atomic.SwapUint32(&bc.persistedHeight, bHeight)
diff := bHeight - oldHeight
storedHeaderHeight, _, err := bc.persistent.GetCurrentHeaderHeight()
if err != nil {
return 0, err
}
duration = time.Since(start)
bc.log.Info("persisted to disk",
zap.Uint32("blocks", diff),
zap.Int("keys", persisted),
zap.Uint32("headerHeight", storedHeaderHeight),
zap.Uint32("blockHeight", bHeight),
zap.Duration("took", duration))
// update monitoring metrics.
updatePersistedHeightMetric(bHeight)
}
return duration, nil
}
// GetTransaction returns a TX and its height by the given hash. The height is MaxUint32 if tx is in the mempool.
func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
if tx, ok := bc.memPool.TryGetValue(hash); ok {
return tx, math.MaxUint32, nil // the height is not actually defined for memPool transaction.
}
return bc.dao.GetTransaction(hash)
}
// GetAppExecResults returns application execution results with the specified trigger by the given
// tx hash or block hash.
func (bc *Blockchain) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) {
return bc.dao.GetAppExecResults(hash, trig)
}
// GetStorageItem returns an item from storage.
func (bc *Blockchain) GetStorageItem(id int32, key []byte) state.StorageItem {
return bc.dao.GetStorageItem(id, key)
}
// GetBlock returns a Block by the given hash.
func (bc *Blockchain) GetBlock(hash util.Uint256) (*block.Block, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
return tb, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
if !block.MerkleRoot.Equals(util.Uint256{}) && len(block.Transactions) == 0 {
return nil, errors.New("only header is found")
}
for _, tx := range block.Transactions {
stx, _, err := bc.dao.GetTransaction(tx.Hash())
if err != nil {
return nil, err
}
*tx = *stx
}
return block, nil
}
// GetHeader returns data block header identified with the given hash value.
func (bc *Blockchain) GetHeader(hash util.Uint256) (*block.Header, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
return &tb.Header, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
return &block.Header, nil
}
// HasTransaction returns true if the blockchain contains he given
// transaction hash.
func (bc *Blockchain) HasTransaction(hash util.Uint256) bool {
if bc.memPool.ContainsKey(hash) {
return true
}
return errors.Is(bc.dao.HasTransaction(hash), dao.ErrAlreadyExists)
}
// HasBlock returns true if the blockchain contains the given
// block hash.
func (bc *Blockchain) HasBlock(hash util.Uint256) bool {
if bc.HeaderHashes.haveRecentHash(hash, bc.BlockHeight()) {
return true
}
if header, err := bc.GetHeader(hash); err == nil {
return header.Index <= bc.BlockHeight()
}
return false
}
// CurrentBlockHash returns the highest processed block hash.
func (bc *Blockchain) CurrentBlockHash() util.Uint256 {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
return tb.Hash()
}
return bc.GetHeaderHash(bc.BlockHeight())
}
// BlockHeight returns the height/index of the highest block.
func (bc *Blockchain) BlockHeight() uint32 {
return atomic.LoadUint32(&bc.blockHeight)
}
// GetContractState returns contract by its script hash.
func (bc *Blockchain) GetContractState(hash util.Uint160) *state.Contract {
contract, err := native.GetContract(bc.dao, hash)
if contract == nil && !errors.Is(err, storage.ErrKeyNotFound) {
bc.log.Warn("failed to get contract state", zap.Error(err))
}
return contract
}
// GetContractScriptHash returns contract script hash by its ID.
func (bc *Blockchain) GetContractScriptHash(id int32) (util.Uint160, error) {
if id < 0 {
for _, n := range bc.contracts.Contracts {
nc := n.Metadata().NativeContract
if nc.ID == id {
return nc.Hash, nil
}
}
}
return native.GetContractScriptHash(bc.dao, id)
}
// GetNativeContractScriptHash returns native contract script hash by its name.
func (bc *Blockchain) GetNativeContractScriptHash(name string) (util.Uint160, error) {
c := bc.contracts.ByName(name)
if c != nil {
return c.Metadata().Hash, nil
}
return util.Uint160{}, errors.New("Unknown native contract")
}
// GetNatives returns list of native contracts.
func (bc *Blockchain) GetNatives() []state.NativeContract {
res := make([]state.NativeContract, 0, len(bc.contracts.Contracts))
for _, c := range bc.contracts.Contracts {
res = append(res, c.Metadata().NativeContract)
}
return res
}
// GetConfig returns the config stored in the blockchain.
func (bc *Blockchain) GetConfig() config.Blockchain {
return bc.config
}
// SubscribeForBlocks adds given channel to new block event broadcasting, so when
// there is a new block added to the chain you'll receive it via this channel.
// Make sure it's read from regularly as not reading these events might affect
// other Blockchain functions.
func (bc *Blockchain) SubscribeForBlocks(ch chan *block.Block) {
bc.subCh <- ch
}
// SubscribeForTransactions adds given channel to new transaction event
// broadcasting, so when there is a new transaction added to the chain (in a
// block) you'll receive it via this channel. Make sure it's read from regularly
// as not reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForTransactions(ch chan *transaction.Transaction) {
bc.subCh <- ch
}
// SubscribeForNotifications adds given channel to new notifications event
// broadcasting, so when an in-block transaction execution generates a
// notification you'll receive it via this channel. Only notifications from
// successful transactions are broadcasted, if you're interested in failed
// transactions use SubscribeForExecutions instead. Make sure this channel is
// read from regularly as not reading these events might affect other Blockchain
// functions.
func (bc *Blockchain) SubscribeForNotifications(ch chan *state.ContainedNotificationEvent) {
bc.subCh <- ch
}
// SubscribeForExecutions adds given channel to new transaction execution event
// broadcasting, so when an in-block transaction execution happens you'll receive
// the result of it via this channel. Make sure it's read from regularly as not
// reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForExecutions(ch chan *state.AppExecResult) {
bc.subCh <- ch
}
// UnsubscribeFromBlocks unsubscribes given channel from new block notifications,
// you can close it afterwards. Passing non-subscribed channel is a no-op, but
// the method can read from this channel (discarding any read data).
func (bc *Blockchain) UnsubscribeFromBlocks(ch chan *block.Block) {
unsubloop:
for {
select {
case <-ch:
case bc.unsubCh <- ch:
break unsubloop
}
}
}
// UnsubscribeFromTransactions unsubscribes given channel from new transaction
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op, but the method can read from this channel (discarding any read data).
func (bc *Blockchain) UnsubscribeFromTransactions(ch chan *transaction.Transaction) {
unsubloop:
for {
select {
case <-ch:
case bc.unsubCh <- ch:
break unsubloop
}
}
}
// UnsubscribeFromNotifications unsubscribes given channel from new
// execution-generated notifications, you can close it afterwards. Passing
// non-subscribed channel is a no-op, but the method can read from this channel
// (discarding any read data).
func (bc *Blockchain) UnsubscribeFromNotifications(ch chan *state.ContainedNotificationEvent) {
unsubloop:
for {
select {
case <-ch:
case bc.unsubCh <- ch:
break unsubloop
}
}
}
// UnsubscribeFromExecutions unsubscribes given channel from new execution
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op, but the method can read from this channel (discarding any read data).
func (bc *Blockchain) UnsubscribeFromExecutions(ch chan *state.AppExecResult) {
unsubloop:
for {
select {
case <-ch:
case bc.unsubCh <- ch:
break unsubloop
}
}
}
// CalculateClaimable calculates the amount of GAS generated by owning specified
// amount of NEO between specified blocks.
func (bc *Blockchain) CalculateClaimable(acc util.Uint160, endHeight uint32) (*big.Int, error) {
return bc.contracts.NEO.CalculateBonus(bc.dao, acc, endHeight)
}
// FeePerByte returns transaction network fee per byte.
func (bc *Blockchain) FeePerByte() int64 {
return bc.contracts.Policy.GetFeePerByteInternal(bc.dao)
}
// GetMemPool returns the memory pool of the blockchain.
func (bc *Blockchain) GetMemPool() *mempool.Pool {
return bc.memPool
}
// ApplyPolicyToTxSet applies configured policies to given transaction set. It
// expects slice to be ordered by fee and returns a subslice of it.
func (bc *Blockchain) ApplyPolicyToTxSet(txes []*transaction.Transaction) []*transaction.Transaction {
maxTx := bc.config.MaxTransactionsPerBlock
if maxTx != 0 && len(txes) > int(maxTx) {
txes = txes[:maxTx]
}
maxBlockSize := bc.config.MaxBlockSize
maxBlockSysFee := bc.config.MaxBlockSystemFee
oldVC := bc.knownValidatorsCount.Load()
defaultWitness := bc.defaultBlockWitness.Load()
curVC := bc.config.GetNumOfCNs(bc.BlockHeight() + 1)
if oldVC == nil || oldVC != curVC {
m := smartcontract.GetDefaultHonestNodeCount(curVC)
verification, _ := smartcontract.CreateDefaultMultiSigRedeemScript(bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao))
defaultWitness = transaction.Witness{
InvocationScript: make([]byte, 66*m),
VerificationScript: verification,
}
bc.knownValidatorsCount.Store(curVC)
bc.defaultBlockWitness.Store(defaultWitness)
}
var (
b = &block.Block{Header: block.Header{Script: defaultWitness.(transaction.Witness)}}
blockSize = uint32(b.GetExpectedBlockSizeWithoutTransactions(len(txes)))
blockSysFee int64
)
for i, tx := range txes {
blockSize += uint32(tx.Size())
blockSysFee += tx.SystemFee
if blockSize > maxBlockSize || blockSysFee > maxBlockSysFee {
txes = txes[:i]
break
}
}
return txes
}
// Various errors that could be returns upon header verification.
var (
ErrHdrHashMismatch = errors.New("previous header hash doesn't match")
ErrHdrIndexMismatch = errors.New("previous header index doesn't match")
ErrHdrInvalidTimestamp = errors.New("block is not newer than the previous one")
ErrHdrStateRootSetting = errors.New("state root setting mismatch")
ErrHdrInvalidStateRoot = errors.New("state root for previous block is invalid")
)
func (bc *Blockchain) verifyHeader(currHeader, prevHeader *block.Header) error {
if bc.config.StateRootInHeader {
if bc.stateRoot.CurrentLocalHeight() == prevHeader.Index {
if sr := bc.stateRoot.CurrentLocalStateRoot(); currHeader.PrevStateRoot != sr {
return fmt.Errorf("%w: %s != %s",
ErrHdrInvalidStateRoot, currHeader.PrevStateRoot.StringLE(), sr.StringLE())
}
}
}
if prevHeader.Hash() != currHeader.PrevHash {
return ErrHdrHashMismatch
}
if prevHeader.Index+1 != currHeader.Index {
return ErrHdrIndexMismatch
}
if prevHeader.Timestamp >= currHeader.Timestamp {
return ErrHdrInvalidTimestamp
}
return bc.verifyHeaderWitnesses(currHeader, prevHeader)
}
// Various errors that could be returned upon verification.
var (
ErrTxExpired = errors.New("transaction has expired")
ErrInsufficientFunds = errors.New("insufficient funds")
ErrTxSmallNetworkFee = errors.New("too small network fee")
ErrTxTooBig = errors.New("too big transaction")
ErrMemPoolConflict = errors.New("invalid transaction due to conflicts with the memory pool")
ErrInvalidScript = errors.New("invalid script")
ErrInvalidAttribute = errors.New("invalid attribute")
)
// verifyAndPoolTx verifies whether a transaction is bonafide or not and tries
// to add it to the mempool given.
func (bc *Blockchain) verifyAndPoolTx(t *transaction.Transaction, pool *mempool.Pool, feer mempool.Feer, data ...interface{}) error {
// This code can technically be moved out of here, because it doesn't
// really require a chain lock.
err := vm.IsScriptCorrect(t.Script, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidScript, err)
}
height := bc.BlockHeight()
isPartialTx := data != nil
if t.ValidUntilBlock <= height || !isPartialTx && t.ValidUntilBlock > height+bc.config.MaxValidUntilBlockIncrement {
return fmt.Errorf("%w: ValidUntilBlock = %d, current height = %d", ErrTxExpired, t.ValidUntilBlock, height)
}
// Policying.
if err := bc.contracts.Policy.CheckPolicy(bc.dao, t); err != nil {
// Only one %w can be used.
return fmt.Errorf("%w: %v", ErrPolicy, err)
}
if t.SystemFee > bc.config.MaxBlockSystemFee {
return fmt.Errorf("%w: too big system fee (%d > MaxBlockSystemFee %d)", ErrPolicy, t.SystemFee, bc.config.MaxBlockSystemFee)
}
size := t.Size()
if size > transaction.MaxTransactionSize {
return fmt.Errorf("%w: (%d > MaxTransactionSize %d)", ErrTxTooBig, size, transaction.MaxTransactionSize)
}
needNetworkFee := int64(size) * bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
needNetworkFee += (int64(na.NKeys) + 1) * bc.contracts.Notary.GetNotaryServiceFeePerKey(bc.dao)
}
}
netFee := t.NetworkFee - needNetworkFee
if netFee < 0 {
return fmt.Errorf("%w: net fee is %v, need %v", ErrTxSmallNetworkFee, t.NetworkFee, needNetworkFee)
}
// check that current tx wasn't included in the conflicts attributes of some other transaction which is already in the chain
if err := bc.dao.HasTransaction(t.Hash()); err != nil {
switch {
case errors.Is(err, dao.ErrAlreadyExists):
return fmt.Errorf("blockchain: %w", ErrAlreadyExists)
case errors.Is(err, dao.ErrHasConflicts):
return fmt.Errorf("blockchain: %w", ErrHasConflicts)
default:
return err
}
}
err = bc.verifyTxWitnesses(t, nil, isPartialTx)
if err != nil {
return err
}
if err := bc.verifyTxAttributes(bc.dao, t, isPartialTx); err != nil {
return err
}
err = pool.Add(t, feer, data...)
if err != nil {
switch {
case errors.Is(err, mempool.ErrConflict):
return ErrMemPoolConflict
case errors.Is(err, mempool.ErrDup):
return fmt.Errorf("mempool: %w", ErrAlreadyExists)
case errors.Is(err, mempool.ErrInsufficientFunds):
return ErrInsufficientFunds
case errors.Is(err, mempool.ErrOOM):
return ErrOOM
case errors.Is(err, mempool.ErrConflictsAttribute):
return fmt.Errorf("mempool: %w: %s", ErrHasConflicts, err)
default:
return err
}
}
return nil
}
func (bc *Blockchain) verifyTxAttributes(d *dao.Simple, tx *transaction.Transaction, isPartialTx bool) error {
for i := range tx.Attributes {
switch attrType := tx.Attributes[i].Type; attrType {
case transaction.HighPriority:
h := bc.contracts.NEO.GetCommitteeAddress(d)
if !tx.HasSigner(h) {
return fmt.Errorf("%w: high priority tx is not signed by committee", ErrInvalidAttribute)
}
case transaction.OracleResponseT:
h, err := bc.contracts.Oracle.GetScriptHash(bc.dao)
if err != nil || h.Equals(util.Uint160{}) {
return fmt.Errorf("%w: %v", ErrInvalidAttribute, err)
}
hasOracle := false
for i := range tx.Signers {
if tx.Signers[i].Scopes != transaction.None {
return fmt.Errorf("%w: oracle tx has invalid signer scope", ErrInvalidAttribute)
}
if tx.Signers[i].Account.Equals(h) {
hasOracle = true
}
}
if !hasOracle {
return fmt.Errorf("%w: oracle tx is not signed by oracle nodes", ErrInvalidAttribute)
}
if !bytes.Equal(tx.Script, bc.contracts.Oracle.GetOracleResponseScript()) {
return fmt.Errorf("%w: oracle tx has invalid script", ErrInvalidAttribute)
}
resp := tx.Attributes[i].Value.(*transaction.OracleResponse)
req, err := bc.contracts.Oracle.GetRequestInternal(bc.dao, resp.ID)
if err != nil {
return fmt.Errorf("%w: oracle tx points to invalid request: %v", ErrInvalidAttribute, err)
}
if uint64(tx.NetworkFee+tx.SystemFee) < req.GasForResponse {
return fmt.Errorf("%w: oracle tx has insufficient gas", ErrInvalidAttribute)
}
case transaction.NotValidBeforeT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotValidBefore attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
nvb := tx.Attributes[i].Value.(*transaction.NotValidBefore).Height
curHeight := bc.BlockHeight()
if isPartialTx {
maxNVBDelta := bc.contracts.Notary.GetMaxNotValidBeforeDelta(bc.dao)
if curHeight+maxNVBDelta < nvb {
return fmt.Errorf("%w: NotValidBefore (%d) bigger than MaxNVBDelta (%d) allows at height %d", ErrInvalidAttribute, nvb, maxNVBDelta, curHeight)
}
if nvb+maxNVBDelta < tx.ValidUntilBlock {
return fmt.Errorf("%w: NotValidBefore (%d) set more than MaxNVBDelta (%d) away from VUB (%d)", ErrInvalidAttribute, nvb, maxNVBDelta, tx.ValidUntilBlock)
}
} else {
if curHeight < nvb {
return fmt.Errorf("%w: transaction is not yet valid: NotValidBefore = %d, current height = %d", ErrInvalidAttribute, nvb, curHeight)
}
}
case transaction.ConflictsT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: Conflicts attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
conflicts := tx.Attributes[i].Value.(*transaction.Conflicts)
if err := bc.dao.HasTransaction(conflicts.Hash); errors.Is(err, dao.ErrAlreadyExists) {
return fmt.Errorf("%w: conflicting transaction %s is already on chain", ErrInvalidAttribute, conflicts.Hash.StringLE())
}
case transaction.NotaryAssistedT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
if !tx.HasSigner(bc.contracts.Notary.Hash) {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but transaction is not signed by the Notary native contract", ErrInvalidAttribute)
}
default:
if !bc.config.ReservedAttributes && attrType >= transaction.ReservedLowerBound && attrType <= transaction.ReservedUpperBound {
return fmt.Errorf("%w: attribute of reserved type was found, but ReservedAttributes are disabled", ErrInvalidAttribute)
}
}
}
return nil
}
// IsTxStillRelevant is a callback for mempool transaction filtering after the
// new block addition. It returns false for transactions added by the new block
// (passed via txpool) and does witness reverification for non-standard
// contracts. It operates under the assumption that full transaction verification
// was already done so we don't need to check basic things like size, input/output
// correctness, presence in blocks before the new one, etc.
func (bc *Blockchain) IsTxStillRelevant(t *transaction.Transaction, txpool *mempool.Pool, isPartialTx bool) bool {
var recheckWitness bool
var curheight = bc.BlockHeight()
if t.ValidUntilBlock <= curheight {
return false
}
if txpool == nil {
if bc.dao.HasTransaction(t.Hash()) != nil {
return false
}
} else if txpool.HasConflicts(t, bc) {
return false
}
if err := bc.verifyTxAttributes(bc.dao, t, isPartialTx); err != nil {
return false
}
for i := range t.Scripts {
if !vm.IsStandardContract(t.Scripts[i].VerificationScript) {
recheckWitness = true
break
}
}
if recheckWitness {
return bc.verifyTxWitnesses(t, nil, isPartialTx) == nil
}
return true
}
// VerifyTx verifies whether transaction is bonafide or not relative to the
// current blockchain state. Note that this verification is completely isolated
// from the main node's mempool.
func (bc *Blockchain) VerifyTx(t *transaction.Transaction) error {
var mp = mempool.New(1, 0, false)
bc.lock.RLock()
defer bc.lock.RUnlock()
return bc.verifyAndPoolTx(t, mp, bc)
}
// PoolTx verifies and tries to add given transaction into the mempool. If not
// given, the default mempool is used. Passing multiple pools is not supported.
func (bc *Blockchain) PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error {
var pool = bc.memPool
bc.lock.RLock()
defer bc.lock.RUnlock()
// Programmer error.
if len(pools) > 1 {
panic("too many pools given")
}
if len(pools) == 1 {
pool = pools[0]
}
return bc.verifyAndPoolTx(t, pool, bc)
}
// PoolTxWithData verifies and tries to add given transaction with additional data into the mempool.
func (bc *Blockchain) PoolTxWithData(t *transaction.Transaction, data interface{}, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(tx *transaction.Transaction, data interface{}) error) error {
bc.lock.RLock()
defer bc.lock.RUnlock()
if verificationFunction != nil {
err := verificationFunction(t, data)
if err != nil {
return err
}
}
return bc.verifyAndPoolTx(t, mp, feer, data)
}
// GetCommittee returns the sorted list of public keys of nodes in committee.
func (bc *Blockchain) GetCommittee() (keys.PublicKeys, error) {
pubs := bc.contracts.NEO.GetCommitteeMembers(bc.dao)
sort.Sort(pubs)
return pubs, nil
}
// GetValidators returns current validators.
func (bc *Blockchain) GetValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.ComputeNextBlockValidators(bc.blockHeight, bc.dao)
}
// GetNextBlockValidators returns next block validators.
func (bc *Blockchain) GetNextBlockValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.GetNextBlockValidatorsInternal(bc.dao), nil
}
// GetEnrollments returns all registered validators.
func (bc *Blockchain) GetEnrollments() ([]state.Validator, error) {
return bc.contracts.NEO.GetCandidates(bc.dao)
}
// GetTestVM returns an interop context with VM set up for a test run.
func (bc *Blockchain) GetTestVM(t trigger.Type, tx *transaction.Transaction, b *block.Block) (*interop.Context, error) {
if b == nil {
var err error
h := bc.BlockHeight() + 1
b, err = bc.getFakeNextBlock(h)
if err != nil {
return nil, fmt.Errorf("failed to create fake block for height %d: %w", h, err)
}
}
systemInterop := bc.newInteropContext(t, bc.dao, b, tx)
_ = systemInterop.SpawnVM() // All the other code suppose that the VM is ready.
return systemInterop, nil
}
// GetTestHistoricVM returns an interop context with VM set up for a test run.
func (bc *Blockchain) GetTestHistoricVM(t trigger.Type, tx *transaction.Transaction, nextBlockHeight uint32) (*interop.Context, error) {
if bc.config.Ledger.KeepOnlyLatestState {
return nil, errors.New("only latest state is supported")
}
b, err := bc.getFakeNextBlock(nextBlockHeight)
if err != nil {
return nil, fmt.Errorf("failed to create fake block for height %d: %w", nextBlockHeight, err)
}
var mode = mpt.ModeAll
if bc.config.Ledger.RemoveUntraceableBlocks {
if b.Index < bc.BlockHeight()-bc.config.MaxTraceableBlocks {
return nil, fmt.Errorf("state for height %d is outdated and removed from the storage", b.Index)
}
mode |= mpt.ModeGCFlag
}
if b.Index < 1 || b.Index > bc.BlockHeight()+1 {
return nil, fmt.Errorf("unsupported historic chain's height: requested state for %d, chain height %d", b.Index, bc.blockHeight)
}
// Assuming that block N-th is processing during historic call, the historic invocation should be based on the storage state of height N-1.
sr, err := bc.stateRoot.GetStateRoot(b.Index - 1)
if err != nil {
return nil, fmt.Errorf("failed to retrieve stateroot for height %d: %w", b.Index, err)
}
s := mpt.NewTrieStore(sr.Root, mode, storage.NewPrivateMemCachedStore(bc.dao.Store))
dTrie := dao.NewSimple(s, bc.config.StateRootInHeader, bc.config.P2PSigExtensions)
dTrie.Version = bc.dao.Version
// Initialize native cache before passing DAO to interop context constructor, because
// the constructor will call BaseExecFee/StoragePrice policy methods on the passed DAO.
err = bc.initializeNativeCache(b.Index, dTrie)
if err != nil {
return nil, fmt.Errorf("failed to initialize native cache backed by historic DAO: %w", err)
}
systemInterop := bc.newInteropContext(t, dTrie, b, tx)
_ = systemInterop.SpawnVM() // All the other code suppose that the VM is ready.
return systemInterop, nil
}
// getFakeNextBlock returns fake block with the specified index and pre-filled Timestamp field.
func (bc *Blockchain) getFakeNextBlock(nextBlockHeight uint32) (*block.Block, error) {
b := block.New(bc.config.StateRootInHeader)
b.Index = nextBlockHeight
hdr, err := bc.GetHeader(bc.GetHeaderHash(nextBlockHeight - 1))
if err != nil {
return nil, err
}
b.Timestamp = hdr.Timestamp + uint64(bc.config.TimePerBlock/time.Millisecond)
return b, nil
}
// Various witness verification errors.
var (
ErrWitnessHashMismatch = errors.New("witness hash mismatch")
ErrNativeContractWitness = errors.New("native contract witness must have empty verification script")
ErrVerificationFailed = errors.New("signature check failed")
ErrInvalidInvocation = errors.New("invalid invocation script")
ErrInvalidSignature = fmt.Errorf("%w: invalid signature", ErrVerificationFailed)
ErrInvalidVerification = errors.New("invalid verification script")
ErrUnknownVerificationContract = errors.New("unknown verification contract")
ErrInvalidVerificationContract = errors.New("verification contract is missing `verify` method")
)
// InitVerificationContext initializes context for witness check.
func (bc *Blockchain) InitVerificationContext(ic *interop.Context, hash util.Uint160, witness *transaction.Witness) error {
if len(witness.VerificationScript) != 0 {
if witness.ScriptHash() != hash {
return ErrWitnessHashMismatch
}
if bc.contracts.ByHash(hash) != nil {
return ErrNativeContractWitness
}
err := vm.IsScriptCorrect(witness.VerificationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidVerification, err)
}
ic.VM.LoadScriptWithHash(witness.VerificationScript, hash, callflag.ReadOnly)
} else {
cs, err := ic.GetContract(hash)
if err != nil {
return ErrUnknownVerificationContract
}
md := cs.Manifest.ABI.GetMethod(manifest.MethodVerify, -1)
if md == nil || md.ReturnType != smartcontract.BoolType {
return ErrInvalidVerificationContract
}
verifyOffset := md.Offset
initOffset := -1
md = cs.Manifest.ABI.GetMethod(manifest.MethodInit, 0)
if md != nil {
initOffset = md.Offset
}
ic.Invocations[cs.Hash]++
ic.VM.LoadNEFMethod(&cs.NEF, util.Uint160{}, hash, callflag.ReadOnly,
true, verifyOffset, initOffset, nil)
}
if len(witness.InvocationScript) != 0 {
err := vm.IsScriptCorrect(witness.InvocationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidInvocation, err)
}
ic.VM.LoadScript(witness.InvocationScript)
}
return nil
}
// VerifyWitness checks that w is a correct witness for c signed by h. It returns
// the amount of GAS consumed during verification and an error.
func (bc *Blockchain) VerifyWitness(h util.Uint160, c hash.Hashable, w *transaction.Witness, gas int64) (int64, error) {
ic := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil)
ic.Container = c
if tx, ok := c.(*transaction.Transaction); ok {
ic.Tx = tx
}
return bc.verifyHashAgainstScript(h, w, ic, gas)
}
// verifyHashAgainstScript verifies given hash against the given witness and returns the amount of GAS consumed.
func (bc *Blockchain) verifyHashAgainstScript(hash util.Uint160, witness *transaction.Witness, interopCtx *interop.Context, gas int64) (int64, error) {
gasPolicy := bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO)
if gas > gasPolicy {
gas = gasPolicy
}
vm := interopCtx.SpawnVM()
vm.GasLimit = gas
if err := bc.InitVerificationContext(interopCtx, hash, witness); err != nil {
return 0, err
}
err := interopCtx.Exec()
if vm.HasFailed() {
return 0, fmt.Errorf("%w: vm execution has failed: %v", ErrVerificationFailed, err)
}
estack := vm.Estack()
if estack.Len() > 0 {
resEl := estack.Pop()
res, err := resEl.Item().TryBool()
if err != nil {
return 0, fmt.Errorf("%w: invalid return value", ErrVerificationFailed)
}
if vm.Estack().Len() != 0 {
return 0, fmt.Errorf("%w: expected exactly one returned value", ErrVerificationFailed)
}
if !res {
return vm.GasConsumed(), ErrInvalidSignature
}
} else {
return 0, fmt.Errorf("%w: no result returned from the script", ErrVerificationFailed)
}
return vm.GasConsumed(), nil
}
// verifyTxWitnesses verifies the scripts (witnesses) that come with a given
// transaction. It can reorder them by ScriptHash, because that's required to
// match a slice of script hashes from the Blockchain. Block parameter
// is used for easy interop access and can be omitted for transactions that are
// not yet added into any block.
// Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87).
func (bc *Blockchain) verifyTxWitnesses(t *transaction.Transaction, block *block.Block, isPartialTx bool) error {
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, block, t)
gasLimit := t.NetworkFee - int64(t.Size())*bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
gasLimit -= (int64(na.NKeys) + 1) * bc.contracts.Notary.GetNotaryServiceFeePerKey(bc.dao)
}
}
for i := range t.Signers {
gasConsumed, err := bc.verifyHashAgainstScript(t.Signers[i].Account, &t.Scripts[i], interopCtx, gasLimit)
if err != nil &&
!(i == 0 && isPartialTx && errors.Is(err, ErrInvalidSignature)) { // it's OK for partially-filled transaction with dummy first witness.
return fmt.Errorf("witness #%d: %w", i, err)
}
gasLimit -= gasConsumed
}
return nil
}
// verifyHeaderWitnesses is a block-specific implementation of VerifyWitnesses logic.
func (bc *Blockchain) verifyHeaderWitnesses(currHeader, prevHeader *block.Header) error {
var hash util.Uint160
if prevHeader == nil && currHeader.PrevHash.Equals(util.Uint256{}) {
hash = currHeader.Script.ScriptHash()
} else {
hash = prevHeader.NextConsensus
}
_, err := bc.VerifyWitness(hash, currHeader, &currHeader.Script, HeaderVerificationGasLimit)
return err
}
// GoverningTokenHash returns the governing token (NEO) native contract hash.
func (bc *Blockchain) GoverningTokenHash() util.Uint160 {
return bc.contracts.NEO.Hash
}
// UtilityTokenHash returns the utility token (GAS) native contract hash.
func (bc *Blockchain) UtilityTokenHash() util.Uint160 {
return bc.contracts.GAS.Hash
}
// ManagementContractHash returns management contract's hash.
func (bc *Blockchain) ManagementContractHash() util.Uint160 {
return bc.contracts.Management.Hash
}
func (bc *Blockchain) newInteropContext(trigger trigger.Type, d *dao.Simple, block *block.Block, tx *transaction.Transaction) *interop.Context {
baseExecFee := int64(interop.DefaultBaseExecFee)
if block == nil || block.Index != 0 {
// Use provided dao instead of Blockchain's one to fetch possible ExecFeeFactor
// changes that were not yet persisted to Blockchain's dao.
baseExecFee = bc.contracts.Policy.GetExecFeeFactorInternal(d)
}
baseStorageFee := int64(native.DefaultStoragePrice)
if block == nil || block.Index != 0 {
// Use provided dao instead of Blockchain's one to fetch possible StoragePrice
// changes that were not yet persisted to Blockchain's dao.
baseStorageFee = bc.contracts.Policy.GetStoragePriceInternal(d)
}
ic := interop.NewContext(trigger, bc, d, baseExecFee, baseStorageFee, native.GetContract, bc.contracts.Contracts, contract.LoadToken, block, tx, bc.log)
ic.Functions = systemInterops
switch {
case tx != nil:
ic.Container = tx
case block != nil:
ic.Container = block
}
ic.InitNonceData()
return ic
}
// P2PSigExtensionsEnabled defines whether P2P signature extensions are enabled.
func (bc *Blockchain) P2PSigExtensionsEnabled() bool {
return bc.config.P2PSigExtensions
}
// RegisterPostBlock appends provided function to the list of functions which should be run after new block
// is stored.
func (bc *Blockchain) RegisterPostBlock(f func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)) {
bc.postBlock = append(bc.postBlock, f)
}
// GetBaseExecFee return execution price for `NOP`.
func (bc *Blockchain) GetBaseExecFee() int64 {
if bc.BlockHeight() == 0 {
return interop.DefaultBaseExecFee
}
return bc.contracts.Policy.GetExecFeeFactorInternal(bc.dao)
}
// GetMaxVerificationGAS returns maximum verification GAS Policy limit.
func (bc *Blockchain) GetMaxVerificationGAS() int64 {
return bc.contracts.Policy.GetMaxVerificationGas(bc.dao)
}
// GetMaxNotValidBeforeDelta returns maximum NotValidBeforeDelta Notary limit.
func (bc *Blockchain) GetMaxNotValidBeforeDelta() uint32 {
if !bc.config.P2PSigExtensions {
panic("disallowed call to Notary")
}
return bc.contracts.Notary.GetMaxNotValidBeforeDelta(bc.dao)
}
// GetStoragePrice returns current storage price.
func (bc *Blockchain) GetStoragePrice() int64 {
if bc.BlockHeight() == 0 {
return native.DefaultStoragePrice
}
return bc.contracts.Policy.GetStoragePriceInternal(bc.dao)
}