mirror of
https://github.com/nspcc-dev/neo-go.git
synced 2024-11-25 13:47:19 +00:00
189 lines
5 KiB
Go
189 lines
5 KiB
Go
package keys
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/decred/dcrd/dcrec/secp256k1/v4"
|
|
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
|
|
"github.com/nspcc-dev/neo-go/pkg/util"
|
|
"github.com/nspcc-dev/neo-go/pkg/util/slice"
|
|
"github.com/nspcc-dev/rfc6979"
|
|
)
|
|
|
|
// PrivateKey represents a Neo private key and provides a high level API around
|
|
// ecdsa.PrivateKey.
|
|
type PrivateKey struct {
|
|
ecdsa.PrivateKey
|
|
}
|
|
|
|
// NewPrivateKey creates a new random Secp256r1 private key.
|
|
func NewPrivateKey() (*PrivateKey, error) {
|
|
return newPrivateKeyOnCurve(elliptic.P256())
|
|
}
|
|
|
|
// NewSecp256k1PrivateKey creates a new random Secp256k1 private key.
|
|
func NewSecp256k1PrivateKey() (*PrivateKey, error) {
|
|
return newPrivateKeyOnCurve(secp256k1.S256())
|
|
}
|
|
|
|
// newPrivateKeyOnCurve creates a new random private key using curve c.
|
|
func newPrivateKeyOnCurve(c elliptic.Curve) (*PrivateKey, error) {
|
|
pk, err := ecdsa.GenerateKey(c, rand.Reader)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &PrivateKey{*pk}, nil
|
|
}
|
|
|
|
// NewPrivateKeyFromHex returns a Secp256k1 PrivateKey created from the
|
|
// given hex string.
|
|
func NewPrivateKeyFromHex(str string) (*PrivateKey, error) {
|
|
b, err := hex.DecodeString(str)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer slice.Clean(b)
|
|
return NewPrivateKeyFromBytes(b)
|
|
}
|
|
|
|
// NewPrivateKeyFromBytes returns a NEO Secp256r1 PrivateKey from the given
|
|
// byte slice.
|
|
func NewPrivateKeyFromBytes(b []byte) (*PrivateKey, error) {
|
|
if len(b) != 32 {
|
|
return nil, fmt.Errorf(
|
|
"invalid byte length: expected %d bytes got %d", 32, len(b),
|
|
)
|
|
}
|
|
var (
|
|
c = elliptic.P256()
|
|
d = new(big.Int).SetBytes(b)
|
|
)
|
|
|
|
x, y := c.ScalarBaseMult(b)
|
|
|
|
return &PrivateKey{
|
|
ecdsa.PrivateKey{
|
|
PublicKey: ecdsa.PublicKey{
|
|
Curve: c,
|
|
X: x,
|
|
Y: y,
|
|
},
|
|
D: d,
|
|
},
|
|
}, nil
|
|
}
|
|
|
|
// NewPrivateKeyFromASN1 returns a NEO Secp256k1 PrivateKey from the ASN.1
|
|
// serialized key.
|
|
func NewPrivateKeyFromASN1(b []byte) (*PrivateKey, error) {
|
|
privkey, err := x509.ParseECPrivateKey(b)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &PrivateKey{*privkey}, nil
|
|
}
|
|
|
|
// PublicKey derives the public key from the private key.
|
|
func (p *PrivateKey) PublicKey() *PublicKey {
|
|
result := PublicKey(p.PrivateKey.PublicKey)
|
|
return &result
|
|
}
|
|
|
|
// NewPrivateKeyFromWIF returns a NEO PrivateKey from the given
|
|
// WIF (wallet import format).
|
|
func NewPrivateKeyFromWIF(wif string) (*PrivateKey, error) {
|
|
w, err := WIFDecode(wif, WIFVersion)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return w.PrivateKey, nil
|
|
}
|
|
|
|
// WIF returns the (wallet import format) of the PrivateKey.
|
|
// Good documentation about this process can be found here:
|
|
// https://en.bitcoin.it/wiki/Wallet_import_format
|
|
func (p *PrivateKey) WIF() string {
|
|
pb := p.Bytes()
|
|
defer slice.Clean(pb)
|
|
w, err := WIFEncode(pb, WIFVersion, true)
|
|
// The only way WIFEncode() can fail is if we're to give it a key of
|
|
// wrong size, but we have a proper key here, aren't we?
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return w
|
|
}
|
|
|
|
// Destroy wipes the contents of the private key from memory. Any operations
|
|
// with the key after call to Destroy have undefined behavior.
|
|
func (p *PrivateKey) Destroy() {
|
|
bits := p.D.Bits()
|
|
for i := range bits {
|
|
bits[i] = 0
|
|
}
|
|
}
|
|
|
|
// Address derives the public NEO address that is coupled with the private key, and
|
|
// returns it as a string.
|
|
func (p *PrivateKey) Address() string {
|
|
pk := p.PublicKey()
|
|
return pk.Address()
|
|
}
|
|
|
|
// GetScriptHash returns verification script hash for the public key associated with
|
|
// the private key.
|
|
func (p *PrivateKey) GetScriptHash() util.Uint160 {
|
|
pk := p.PublicKey()
|
|
return pk.GetScriptHash()
|
|
}
|
|
|
|
// Sign signs arbitrary length data using the private key. It uses SHA256 to
|
|
// calculate hash and then SignHash to create a signature (so you can save on
|
|
// hash calculation if you already have it).
|
|
func (p *PrivateKey) Sign(data []byte) []byte {
|
|
var digest = sha256.Sum256(data)
|
|
|
|
return p.SignHash(digest)
|
|
}
|
|
|
|
// SignHash signs a particular hash with the private key.
|
|
func (p *PrivateKey) SignHash(digest util.Uint256) []byte {
|
|
r, s := rfc6979.SignECDSA(&p.PrivateKey, digest[:], sha256.New)
|
|
return getSignatureSlice(p.PrivateKey.Curve, r, s)
|
|
}
|
|
|
|
// SignHashable signs some Hashable item for the network specified using
|
|
// hash.NetSha256() with the private key.
|
|
func (p *PrivateKey) SignHashable(net uint32, hh hash.Hashable) []byte {
|
|
return p.SignHash(hash.NetSha256(net, hh))
|
|
}
|
|
|
|
func getSignatureSlice(curve elliptic.Curve, r, s *big.Int) []byte {
|
|
params := curve.Params()
|
|
curveOrderByteSize := params.P.BitLen() / 8
|
|
signature := make([]byte, curveOrderByteSize*2)
|
|
_ = r.FillBytes(signature[:curveOrderByteSize])
|
|
_ = s.FillBytes(signature[curveOrderByteSize:])
|
|
|
|
return signature
|
|
}
|
|
|
|
// String implements the stringer interface.
|
|
func (p *PrivateKey) String() string {
|
|
return hex.EncodeToString(p.Bytes())
|
|
}
|
|
|
|
// Bytes returns the underlying bytes of the PrivateKey.
|
|
func (p *PrivateKey) Bytes() []byte {
|
|
result := make([]byte, 32)
|
|
_ = p.D.FillBytes(result)
|
|
|
|
return result
|
|
}
|