neo-go/pkg/core/mpt/trie.go
Anna Shaleva 8162e9033d *: replace slice.Copy with bytes.Clone
And refactor some code a bit, don't use bytes.Clone where type-specific
helpers may be used instead.

Close #2907.

Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
2024-03-05 13:54:10 +03:00

632 lines
16 KiB
Go

package mpt
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/util"
)
// TrieMode is the storage mode of a trie, it affects the DB scheme.
type TrieMode byte
// TrieMode is the storage mode of a trie.
const (
// ModeAll is used to store everything.
ModeAll TrieMode = 0
// ModeLatest is used to only store the latest root.
ModeLatest TrieMode = 0x01
// ModeGCFlag is a flag for GC.
ModeGCFlag TrieMode = 0x02
// ModeGC is used to store a set of roots with GC possible, it combines
// GCFlag and Latest (because it needs RC, but it has GC enabled).
ModeGC TrieMode = 0x03
)
// Trie is an MPT trie storing all key-value pairs.
type Trie struct {
Store *storage.MemCachedStore
root Node
mode TrieMode
refcount map[util.Uint256]*cachedNode
}
type cachedNode struct {
bytes []byte
initial int32
refcount int32
}
// ErrNotFound is returned when the requested trie item is missing.
var ErrNotFound = errors.New("item not found")
// RC returns true when reference counting is enabled.
func (m TrieMode) RC() bool {
return m&ModeLatest != 0
}
// GC returns true when garbage collection is enabled.
func (m TrieMode) GC() bool {
return m&ModeGCFlag != 0
}
// NewTrie returns a new MPT trie. It accepts a MemCachedStore to decouple storage errors from logic errors,
// so that all storage errors are processed during `store.Persist()` at the caller.
// Another benefit is that every `Put` can be considered an atomic operation.
func NewTrie(root Node, mode TrieMode, store *storage.MemCachedStore) *Trie {
if root == nil {
root = EmptyNode{}
}
return &Trie{
Store: store,
root: root,
mode: mode,
refcount: make(map[util.Uint256]*cachedNode),
}
}
// Get returns the value for the provided key in t.
func (t *Trie) Get(key []byte) ([]byte, error) {
if len(key) > MaxKeyLength {
return nil, errors.New("key is too big")
}
path := toNibbles(key)
r, leaf, _, err := t.getWithPath(t.root, path, true)
if err != nil {
return nil, err
}
t.root = r
return bytes.Clone(leaf.(*LeafNode).value), nil
}
// getWithPath returns the current node with all hash nodes along the path replaced
// with their "unhashed" counterparts. It also returns node which the provided path in a
// subtrie rooting in curr points to. In case of `strict` set to `false`, the
// provided path can be incomplete, so it also returns the full path that points to
// the node found at the specified incomplete path. In case of `strict` set to `true`,
// the resulting path matches the provided one.
func (t *Trie) getWithPath(curr Node, path []byte, strict bool) (Node, Node, []byte, error) {
switch n := curr.(type) {
case *LeafNode:
if len(path) == 0 {
return curr, n, []byte{}, nil
}
case *BranchNode:
i, path := splitPath(path)
if i == lastChild && !strict {
return curr, n, []byte{}, nil
}
r, res, prefix, err := t.getWithPath(n.Children[i], path, strict)
if err != nil {
return nil, nil, nil, err
}
n.Children[i] = r
return n, res, append([]byte{i}, prefix...), nil
case EmptyNode:
case *HashNode:
if r, err := t.getFromStore(n.hash); err == nil {
return t.getWithPath(r, path, strict)
}
case *ExtensionNode:
if len(path) == 0 && !strict {
return curr, n.next, n.key, nil
}
if bytes.HasPrefix(path, n.key) {
r, res, prefix, err := t.getWithPath(n.next, path[len(n.key):], strict)
if err != nil {
return nil, nil, nil, err
}
n.next = r
return curr, res, append(n.key, prefix...), err
}
if !strict && bytes.HasPrefix(n.key, path) {
// path is shorter than prefix, stop seeking
return curr, n.next, n.key, nil
}
default:
panic("invalid MPT node type")
}
return curr, nil, nil, ErrNotFound
}
// Put puts key-value pair in t.
func (t *Trie) Put(key, value []byte) error {
if len(key) == 0 {
return errors.New("key is empty")
} else if len(key) > MaxKeyLength {
return errors.New("key is too big")
} else if len(value) > MaxValueLength {
return errors.New("value is too big")
} else if value == nil {
// (t *Trie).Delete should be used to remove value
return errors.New("value is nil")
}
path := toNibbles(key)
n := NewLeafNode(value)
r, err := t.putIntoNode(t.root, path, n)
if err != nil {
return err
}
t.root = r
return nil
}
// putIntoLeaf puts the val to the trie if the current node is a Leaf.
// It returns a Node if curr needs to be replaced and an error has occurred, if any.
func (t *Trie) putIntoLeaf(curr *LeafNode, path []byte, val Node) (Node, error) {
v := val.(*LeafNode)
if len(path) == 0 {
t.removeRef(curr.Hash(), curr.bytes)
t.addRef(val.Hash(), val.Bytes())
return v, nil
}
b := NewBranchNode()
b.Children[path[0]] = t.newSubTrie(path[1:], v, true)
b.Children[lastChild] = curr
t.addRef(b.Hash(), b.bytes)
return b, nil
}
// putIntoBranch puts the val to the trie if the current node is a Branch.
// It returns the Node if curr needs to be replaced and an error has occurred, if any.
func (t *Trie) putIntoBranch(curr *BranchNode, path []byte, val Node) (Node, error) {
i, path := splitPath(path)
t.removeRef(curr.Hash(), curr.bytes)
r, err := t.putIntoNode(curr.Children[i], path, val)
if err != nil {
return nil, err
}
curr.Children[i] = r
curr.invalidateCache()
t.addRef(curr.Hash(), curr.bytes)
return curr, nil
}
// putIntoExtension puts the val to the trie if the current node is an Extension.
// It returns the Node if curr needs to be replaced and an error has occurred, if any.
func (t *Trie) putIntoExtension(curr *ExtensionNode, path []byte, val Node) (Node, error) {
t.removeRef(curr.Hash(), curr.bytes)
if bytes.HasPrefix(path, curr.key) {
r, err := t.putIntoNode(curr.next, path[len(curr.key):], val)
if err != nil {
return nil, err
}
curr.next = r
curr.invalidateCache()
t.addRef(curr.Hash(), curr.bytes)
return curr, nil
}
pref := lcp(curr.key, path)
lp := len(pref)
keyTail := curr.key[lp:]
pathTail := path[lp:]
s1 := t.newSubTrie(keyTail[1:], curr.next, false)
b := NewBranchNode()
b.Children[keyTail[0]] = s1
i, pathTail := splitPath(pathTail)
s2 := t.newSubTrie(pathTail, val, true)
b.Children[i] = s2
t.addRef(b.Hash(), b.bytes)
if lp > 0 {
e := NewExtensionNode(bytes.Clone(pref), b)
t.addRef(e.Hash(), e.bytes)
return e, nil
}
return b, nil
}
func (t *Trie) putIntoEmpty(path []byte, val Node) (Node, error) {
return t.newSubTrie(path, val, true), nil
}
// putIntoHash puts the val to the trie if the current node is a HashNode.
// It returns the Node if curr needs to be replaced and an error has occurred, if any.
func (t *Trie) putIntoHash(curr *HashNode, path []byte, val Node) (Node, error) {
result, err := t.getFromStore(curr.hash)
if err != nil {
return nil, err
}
return t.putIntoNode(result, path, val)
}
// newSubTrie creates a new trie containing the node at the provided path.
func (t *Trie) newSubTrie(path []byte, val Node, newVal bool) Node {
if newVal {
t.addRef(val.Hash(), val.Bytes())
}
if len(path) == 0 {
return val
}
e := NewExtensionNode(path, val)
t.addRef(e.Hash(), e.bytes)
return e
}
// putIntoNode puts the val with the provided path inside curr and returns an updated node.
// Reference counters are updated for both curr and returned value.
func (t *Trie) putIntoNode(curr Node, path []byte, val Node) (Node, error) {
switch n := curr.(type) {
case *LeafNode:
return t.putIntoLeaf(n, path, val)
case *BranchNode:
return t.putIntoBranch(n, path, val)
case *ExtensionNode:
return t.putIntoExtension(n, path, val)
case *HashNode:
return t.putIntoHash(n, path, val)
case EmptyNode:
return t.putIntoEmpty(path, val)
default:
panic("invalid MPT node type")
}
}
// Delete removes the key from the trie.
// It returns no error on a missing key.
func (t *Trie) Delete(key []byte) error {
if len(key) > MaxKeyLength {
return errors.New("key is too big")
}
path := toNibbles(key)
r, err := t.deleteFromNode(t.root, path)
if err != nil {
return err
}
t.root = r
return nil
}
func (t *Trie) deleteFromBranch(b *BranchNode, path []byte) (Node, error) {
i, path := splitPath(path)
h := b.Hash()
bs := b.bytes
r, err := t.deleteFromNode(b.Children[i], path)
if err != nil {
return nil, err
}
t.removeRef(h, bs)
b.Children[i] = r
b.invalidateCache()
var count, index int
for i := range b.Children {
if !isEmpty(b.Children[i]) {
index = i
count++
}
}
// count is >= 1 because branch node had at least 2 children before deletion.
if count > 1 {
t.addRef(b.Hash(), b.bytes)
return b, nil
}
c := b.Children[index]
if index == lastChild {
return c, nil
}
if h, ok := c.(*HashNode); ok {
c, err = t.getFromStore(h.Hash())
if err != nil {
return nil, err
}
}
if e, ok := c.(*ExtensionNode); ok {
t.removeRef(e.Hash(), e.bytes)
e.key = append([]byte{byte(index)}, e.key...)
e.invalidateCache()
t.addRef(e.Hash(), e.bytes)
return e, nil
}
e := NewExtensionNode([]byte{byte(index)}, c)
t.addRef(e.Hash(), e.bytes)
return e, nil
}
func (t *Trie) deleteFromExtension(n *ExtensionNode, path []byte) (Node, error) {
if !bytes.HasPrefix(path, n.key) {
return n, nil
}
h := n.Hash()
bs := n.bytes
r, err := t.deleteFromNode(n.next, path[len(n.key):])
if err != nil {
return nil, err
}
t.removeRef(h, bs)
switch nxt := r.(type) {
case *ExtensionNode:
t.removeRef(nxt.Hash(), nxt.bytes)
n.key = append(n.key, nxt.key...)
n.next = nxt.next
case EmptyNode:
return nxt, nil
case *HashNode:
n.next = nxt
default:
n.next = r
}
n.invalidateCache()
t.addRef(n.Hash(), n.bytes)
return n, nil
}
// deleteFromNode removes the value with the provided path from curr and returns an updated node.
// Reference counters are updated for both curr and returned value.
func (t *Trie) deleteFromNode(curr Node, path []byte) (Node, error) {
switch n := curr.(type) {
case *LeafNode:
if len(path) == 0 {
t.removeRef(curr.Hash(), curr.Bytes())
return EmptyNode{}, nil
}
return curr, nil
case *BranchNode:
return t.deleteFromBranch(n, path)
case *ExtensionNode:
return t.deleteFromExtension(n, path)
case EmptyNode:
return n, nil
case *HashNode:
newNode, err := t.getFromStore(n.Hash())
if err != nil {
return nil, err
}
return t.deleteFromNode(newNode, path)
default:
panic("invalid MPT node type")
}
}
// StateRoot returns root hash of t.
func (t *Trie) StateRoot() util.Uint256 {
if isEmpty(t.root) {
return util.Uint256{}
}
return t.root.Hash()
}
func makeStorageKey(mptKey util.Uint256) []byte {
return append([]byte{byte(storage.DataMPT)}, mptKey[:]...)
}
// Flush puts every node (except Hash ones) in the trie to the storage.
// Because we care about block-level changes only, there is no need to put every
// new node to the storage. Normally, flush should be called with every StateRoot persist, i.e.
// after every block.
func (t *Trie) Flush(index uint32) {
key := makeStorageKey(util.Uint256{})
for h, node := range t.refcount {
if node.refcount != 0 {
copy(key[1:], h[:])
if node.bytes == nil {
panic("item not in trie")
}
if t.mode.RC() {
node.initial = t.updateRefCount(h, key, index)
if node.initial == 0 {
delete(t.refcount, h)
}
} else if node.refcount > 0 {
t.Store.Put(key, node.bytes)
}
node.refcount = 0
} else {
delete(t.refcount, h)
}
}
}
func IsActiveValue(v []byte) bool {
return len(v) > 4 && v[len(v)-5] == 1
}
func getFromStore(key []byte, mode TrieMode, store *storage.MemCachedStore) ([]byte, error) {
data, err := store.Get(key)
if err == nil && mode.GC() && !IsActiveValue(data) {
return nil, storage.ErrKeyNotFound
}
return data, err
}
// updateRefCount should be called only when refcounting is enabled.
func (t *Trie) updateRefCount(h util.Uint256, key []byte, index uint32) int32 {
if !t.mode.RC() {
panic("`updateRefCount` is called, but GC is disabled")
}
var data []byte
node := t.refcount[h]
cnt := node.initial
if cnt == 0 {
// A newly created item which may be in store.
var err error
data, err = getFromStore(key, t.mode, t.Store)
if err == nil {
cnt = int32(binary.LittleEndian.Uint32(data[len(data)-4:]))
}
}
if len(data) == 0 {
data = append(node.bytes, 1, 0, 0, 0, 0)
}
cnt += node.refcount
switch {
case cnt < 0:
// BUG: negative reference count
panic(fmt.Sprintf("negative reference count: %s new %d, upd %d", h.StringBE(), cnt, t.refcount[h]))
case cnt == 0:
if !t.mode.GC() {
t.Store.Delete(key)
} else {
data[len(data)-5] = 0
binary.LittleEndian.PutUint32(data[len(data)-4:], index)
t.Store.Put(key, data)
}
default:
binary.LittleEndian.PutUint32(data[len(data)-4:], uint32(cnt))
t.Store.Put(key, data)
}
return cnt
}
func (t *Trie) addRef(h util.Uint256, bs []byte) {
node := t.refcount[h]
if node == nil {
t.refcount[h] = &cachedNode{
refcount: 1,
bytes: bs,
}
return
}
node.refcount++
if node.bytes == nil {
node.bytes = bs
}
}
func (t *Trie) removeRef(h util.Uint256, bs []byte) {
node := t.refcount[h]
if node == nil {
t.refcount[h] = &cachedNode{
refcount: -1,
bytes: bs,
}
return
}
node.refcount--
if node.bytes == nil {
node.bytes = bs
}
}
func (t *Trie) getFromStore(h util.Uint256) (Node, error) {
data, err := getFromStore(makeStorageKey(h), t.mode, t.Store)
if err != nil {
return nil, err
}
var n NodeObject
r := io.NewBinReaderFromBuf(data)
n.DecodeBinary(r)
if r.Err != nil {
return nil, r.Err
}
if t.mode.RC() {
data = data[:len(data)-5]
node := t.refcount[h]
if node != nil {
node.bytes = data
_ = r.ReadB()
node.initial = int32(r.ReadU32LE())
}
}
n.Node.(flushedNode).setCache(data, h)
return n.Node, nil
}
// Collapse compresses all nodes at depth n to the hash nodes.
// Note: this function does not perform any kind of storage flushing so
// `Flush()` should be called explicitly before invoking function.
func (t *Trie) Collapse(depth int) {
if depth < 0 {
panic("negative depth")
}
t.root = collapse(depth, t.root)
t.refcount = make(map[util.Uint256]*cachedNode)
}
func collapse(depth int, node Node) Node {
switch node.(type) {
case *HashNode, EmptyNode:
return node
}
if depth == 0 {
return NewHashNode(node.Hash())
}
switch n := node.(type) {
case *BranchNode:
for i := range n.Children {
n.Children[i] = collapse(depth-1, n.Children[i])
}
case *ExtensionNode:
n.next = collapse(depth-1, n.next)
case *LeafNode:
case *HashNode:
default:
panic("invalid MPT node type")
}
return node
}
// Find returns a list of storage key-value pairs whose key is prefixed by the specified
// prefix starting from the specified `prefix`+`from` path (not including the item at
// the specified `prefix`+`from` path if so). The `max` number of elements is returned at max.
func (t *Trie) Find(prefix, from []byte, max int) ([]storage.KeyValue, error) {
if len(prefix) > MaxKeyLength {
return nil, errors.New("invalid prefix length")
}
if len(from) > MaxKeyLength-len(prefix) {
return nil, errors.New("invalid from length")
}
prefixP := toNibbles(prefix)
fromP := []byte{}
if len(from) > 0 {
fromP = toNibbles(from)
}
_, start, path, err := t.getWithPath(t.root, prefixP, false)
if err != nil {
return nil, fmt.Errorf("failed to determine the start node: %w", err)
}
path = path[len(prefixP):]
if len(fromP) > 0 {
if len(path) <= len(fromP) && bytes.HasPrefix(fromP, path) {
fromP = fromP[len(path):]
} else if len(path) > len(fromP) && bytes.HasPrefix(path, fromP) {
fromP = []byte{}
} else {
cmp := bytes.Compare(path, fromP)
switch {
case cmp < 0:
return []storage.KeyValue{}, nil
case cmp > 0:
fromP = []byte{}
}
}
}
var (
res []storage.KeyValue
count int
)
b := NewBillet(t.root.Hash(), t.mode, 0, t.Store)
process := func(pathToNode []byte, node Node, _ []byte) bool {
if leaf, ok := node.(*LeafNode); ok {
if from == nil || !bytes.Equal(pathToNode, from) { // (*Billet).traverse includes `from` path into result if so. Need to filter out manually.
res = append(res, storage.KeyValue{
Key: append(bytes.Clone(prefix), pathToNode...),
Value: bytes.Clone(leaf.value),
})
count++
}
}
return count >= max
}
_, err = b.traverse(start, path, fromP, process, false, false)
if err != nil && !errors.Is(err, errStop) {
return nil, err
}
return res, nil
}