neo-go/pkg/crypto/keys/publickey.go
Roman Khimov 5836ae6873 keys: change Signature() and Address() to not return errors
As they never can return any real one.
2019-08-27 17:46:01 +03:00

206 lines
4.3 KiB
Go

package keys
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/x509"
"encoding/binary"
"encoding/hex"
"io"
"math/big"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/pkg/errors"
)
// PublicKeys is a list of public keys.
type PublicKeys []*PublicKey
func (keys PublicKeys) Len() int { return len(keys) }
func (keys PublicKeys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
func (keys PublicKeys) Less(i, j int) bool {
if keys[i].X.Cmp(keys[j].X) == -1 {
return true
}
if keys[i].X.Cmp(keys[j].X) == 1 {
return false
}
if keys[i].X.Cmp(keys[j].X) == 0 {
return false
}
return keys[i].Y.Cmp(keys[j].Y) == -1
}
// PublicKey represents a public key and provides a high level
// API around the ECPoint.
type PublicKey struct {
crypto.ECPoint
}
// NewPublicKeyFromString return a public key created from the
// given hex string.
func NewPublicKeyFromString(s string) (*PublicKey, error) {
b, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
pubKey := new(PublicKey)
if err := pubKey.DecodeBinary(bytes.NewReader(b)); err != nil {
return nil, err
}
return pubKey, nil
}
// Bytes returns the byte array representation of the public key.
func (p *PublicKey) Bytes() []byte {
if p.IsInfinity() {
return []byte{0x00}
}
var (
x = p.X.Bytes()
paddedX = append(bytes.Repeat([]byte{0x00}, 32-len(x)), x...)
prefix = byte(0x03)
)
if p.Y.Bit(0) == 0 {
prefix = byte(0x02)
}
return append([]byte{prefix}, paddedX...)
}
// NewPublicKeyFromRawBytes returns a NEO PublicKey from the ASN.1 serialized keys.
func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
var (
err error
pubkey interface{}
)
if pubkey, err = x509.ParsePKIXPublicKey(data); err != nil {
return nil, err
}
pk, ok := pubkey.(*ecdsa.PublicKey)
if !ok {
return nil, errors.New("given bytes aren't ECDSA public key")
}
key := PublicKey{
crypto.ECPoint{
X: pk.X,
Y: pk.Y,
},
}
return &key, nil
}
// DecodeBytes decodes a PublicKey from the given slice of bytes.
func (p *PublicKey) DecodeBytes(data []byte) error {
l := len(data)
switch prefix := data[0]; prefix {
// Infinity
case 0x00:
p.ECPoint = crypto.ECPoint{}
// Compressed public keys
case 0x02, 0x03:
if l < 33 {
return errors.Errorf("bad binary size(%d)", l)
}
c := crypto.NewEllipticCurve()
var err error
p.ECPoint, err = c.Decompress(new(big.Int).SetBytes(data[1:]), uint(prefix&0x1))
if err != nil {
return err
}
case 0x04:
if l < 66 {
return errors.Errorf("bad binary size(%d)", l)
}
p.X = new(big.Int).SetBytes(data[2:34])
p.Y = new(big.Int).SetBytes(data[34:66])
default:
return errors.Errorf("invalid prefix %d", prefix)
}
return nil
}
// DecodeBinary decodes a PublicKey from the given io.Reader.
func (p *PublicKey) DecodeBinary(r io.Reader) error {
var prefix, size uint8
if err := binary.Read(r, binary.LittleEndian, &prefix); err != nil {
return err
}
// Infinity
switch prefix {
case 0x00:
p.ECPoint = crypto.ECPoint{}
return nil
// Compressed public keys
case 0x02, 0x03:
size = 32
case 0x04:
size = 65
default:
return errors.Errorf("invalid prefix %d", prefix)
}
data := make([]byte, size+1) // prefix + size
if _, err := io.ReadFull(r, data[1:]); err != nil {
return err
}
data[0] = prefix
return p.DecodeBytes(data)
}
// EncodeBinary encodes a PublicKey to the given io.Writer.
func (p *PublicKey) EncodeBinary(w io.Writer) error {
return binary.Write(w, binary.LittleEndian, p.Bytes())
}
func (p *PublicKey) Signature() []byte {
b := p.Bytes()
b = append([]byte{0x21}, b...)
b = append(b, 0xAC)
sig := hash.Hash160(b)
return sig.Bytes()
}
func (p *PublicKey) Address() string {
var b []byte = p.Signature()
b = append([]byte{0x17}, b...)
csum := hash.Checksum(b)
b = append(b, csum...)
address := crypto.Base58Encode(b)
return address
}
// Verify returns true if the signature is valid and corresponds
// to the hash and public key
func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
publicKey := &ecdsa.PublicKey{}
publicKey.Curve = elliptic.P256()
publicKey.X = p.X
publicKey.Y = p.Y
if p.X == nil || p.Y == nil {
return false
}
rBytes := new(big.Int).SetBytes(signature[0:32])
sBytes := new(big.Int).SetBytes(signature[32:64])
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
}