neo-go/pkg/compiler/analysis.go
Anna Shaleva 800321db06 compiler: rename named unused global vars to "_"
So that (*codegen).Visit is able to omit code generation for these
unused global vars. The most tricky part is to detect unused global
variables, it is done in several steps:
1. Collect the set of named used/unused global vars.
2. Collect the set of globally declared expressions that contain
function calls.
3. Pick up global vars from the set made at step 2.
4. Traverse used functions and puck up those global vars that are used
from these functions.
5. Rename all globals that are presented in the set made at step 1
but are not presented in the set made on step 3 or step 4.
2022-09-01 13:39:19 +03:00

678 lines
21 KiB
Go

package compiler
import (
"errors"
"fmt"
"go/ast"
"go/token"
"go/types"
"strings"
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
"github.com/nspcc-dev/neo-go/pkg/vm/opcode"
"golang.org/x/tools/go/packages"
)
// Various exported functions usage errors.
var (
// ErrMissingExportedParamName is returned when exported contract method has unnamed parameter.
ErrMissingExportedParamName = errors.New("exported method is not allowed to have unnamed parameter")
// ErrInvalidExportedRetCount is returned when exported contract method has invalid return values count.
ErrInvalidExportedRetCount = errors.New("exported method is not allowed to have more than one return value")
)
var (
// Go language builtin functions.
goBuiltins = []string{"len", "append", "panic", "make", "copy", "recover", "delete"}
// Custom builtin utility functions.
customBuiltins = []string{
"FromAddress",
}
)
// newGlobal creates a new global variable.
func (c *codegen) newGlobal(pkg string, name string) {
name = c.getIdentName(pkg, name)
c.globals[name] = len(c.globals)
}
// getIdentName returns a fully-qualified name for a variable.
func (c *codegen) getIdentName(pkg string, name string) string {
if fullName, ok := c.importMap[pkg]; ok {
pkg = fullName
}
return pkg + "." + name
}
// traverseGlobals visits and initializes global variables.
// It returns `true` if contract has `_deploy` function.
func (c *codegen) traverseGlobals() bool {
var hasDefer bool
var n, nConst int
var hasUnusedCall bool
var hasDeploy bool
c.ForEachFile(func(f *ast.File, pkg *types.Package) {
nv, nc, huc := countGlobals(f, !hasUnusedCall)
n += nv
nConst += nc
if huc {
hasUnusedCall = true
}
if !hasDeploy || !hasDefer {
ast.Inspect(f, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.FuncDecl:
hasDeploy = hasDeploy || isDeployFunc(n)
case *ast.DeferStmt:
hasDefer = true
return false
}
return true
})
}
})
if hasDefer {
n++
}
if n > 255 {
c.prog.BinWriter.Err = errors.New("too many global variables")
return hasDeploy
}
if n != 0 {
emit.Instruction(c.prog.BinWriter, opcode.INITSSLOT, []byte{byte(n)})
}
initOffset := c.prog.Len()
emit.Instruction(c.prog.BinWriter, opcode.INITSLOT, []byte{0, 0})
lastCnt, maxCnt := -1, -1
c.ForEachPackage(func(pkg *packages.Package) {
if n+nConst > 0 || hasUnusedCall {
for _, f := range pkg.Syntax {
c.fillImportMap(f, pkg)
c.convertGlobals(f)
}
}
for _, f := range pkg.Syntax {
c.fillImportMap(f, pkg)
var currMax int
lastCnt, currMax = c.convertInitFuncs(f, pkg.Types, lastCnt)
if currMax > maxCnt {
maxCnt = currMax
}
}
// because we reuse `convertFuncDecl` for init funcs,
// we need to clear scope, so that global variables
// encountered after will be recognized as globals.
c.scope = nil
})
if c.globalInlineCount > maxCnt {
maxCnt = c.globalInlineCount
}
// Here we remove `INITSLOT` if no code was emitted for `init` function.
// Note that the `INITSSLOT` must stay in place.
hasNoInit := initOffset+3 == c.prog.Len()
if hasNoInit {
buf := c.prog.Bytes()
c.prog.Reset()
c.prog.WriteBytes(buf[:initOffset])
}
if initOffset != 0 || !hasNoInit { // if there are some globals or `init()`.
c.initEndOffset = c.prog.Len()
emit.Opcodes(c.prog.BinWriter, opcode.RET)
if maxCnt >= 0 {
c.reverseOffsetMap[initOffset] = nameWithLocals{
name: "init",
count: maxCnt,
}
}
}
// store auxiliary variables after all others.
if hasDefer {
c.exceptionIndex = len(c.globals)
c.globals[exceptionVarName] = c.exceptionIndex
}
return hasDeploy
}
// countGlobals counts the global variables in the program to add
// them with the stack size of the function.
// Second returned argument contains the amount of global constants.
// If checkUnusedCalls set to true then unnamed global variables containing call
// will be searched for and their presence is returned as the last argument.
func countGlobals(f ast.Node, checkUnusedCalls bool) (int, int, bool) {
var numVar, numConst int
var hasUnusedCall bool
ast.Inspect(f, func(node ast.Node) bool {
switch n := node.(type) {
// Skip all function declarations if we have already encountered `defer`.
case *ast.FuncDecl:
return false
// After skipping all funcDecls, we are sure that each value spec
// is a globally declared variable or constant.
case *ast.GenDecl:
isVar := n.Tok == token.VAR
if isVar || n.Tok == token.CONST {
for _, s := range n.Specs {
valueSpec := s.(*ast.ValueSpec)
multiRet := len(valueSpec.Values) != 0 && len(valueSpec.Names) != len(valueSpec.Values) // e.g. var A, B = f() where func f() (int, int)
for j, id := range valueSpec.Names {
if id.Name != "_" { // If variable has name, then it's treated as used - that's countGlobals' caller responsibility to guarantee that.
if isVar {
numVar++
} else {
numConst++
}
} else if isVar && len(valueSpec.Values) != 0 && checkUnusedCalls && !hasUnusedCall {
indexToCheck := j
if multiRet {
indexToCheck = 0
}
hasUnusedCall = containsCall(valueSpec.Values[indexToCheck])
}
}
}
}
return false
}
return true
})
return numVar, numConst, hasUnusedCall
}
// containsCall traverses node and looks if it contains a function or method call.
func containsCall(n ast.Node) bool {
var hasCall bool
ast.Inspect(n, func(node ast.Node) bool {
switch node.(type) {
case *ast.CallExpr:
hasCall = true
case *ast.Ident:
// Can safely skip idents immediately, we're interested at function calls only.
return false
}
return !hasCall
})
return hasCall
}
// isExprNil looks if the given expression is a `nil`.
func isExprNil(e ast.Expr) bool {
v, ok := e.(*ast.Ident)
return ok && v.Name == "nil"
}
// indexOfStruct returns the index of the given field inside that struct.
// If the struct does not contain that field, it will return -1.
func indexOfStruct(strct *types.Struct, fldName string) int {
for i := 0; i < strct.NumFields(); i++ {
if strct.Field(i).Name() == fldName {
return i
}
}
return -1
}
type funcUsage map[string]bool
func (f funcUsage) funcUsed(name string) bool {
_, ok := f[name]
return ok
}
// lastStmtIsReturn checks if the last statement of the declaration was return statement.
func lastStmtIsReturn(body *ast.BlockStmt) (b bool) {
if l := len(body.List); l != 0 {
switch inner := body.List[l-1].(type) {
case *ast.BlockStmt:
return lastStmtIsReturn(inner)
case *ast.ReturnStmt:
return true
default:
return false
}
}
return false
}
// analyzePkgOrder sets the order in which packages should be processed.
// From Go spec:
//
// A package with no imports is initialized by assigning initial values to all its package-level variables
// followed by calling all init functions in the order they appear in the source, possibly in multiple files,
// as presented to the compiler. If a package has imports, the imported packages are initialized before
// initializing the package itself. If multiple packages import a package, the imported package
// will be initialized only once. The importing of packages, by construction, guarantees
// that there can be no cyclic initialization dependencies.
func (c *codegen) analyzePkgOrder() {
seen := make(map[string]bool)
info := c.buildInfo.program[0]
c.visitPkg(info, seen)
}
func (c *codegen) visitPkg(pkg *packages.Package, seen map[string]bool) {
if seen[pkg.PkgPath] {
return
}
for _, imp := range pkg.Types.Imports() {
c.visitPkg(pkg.Imports[imp.Path()], seen)
}
seen[pkg.PkgPath] = true
c.packages = append(c.packages, pkg.PkgPath)
c.packageCache[pkg.PkgPath] = pkg
}
func (c *codegen) fillDocumentInfo() {
fset := c.buildInfo.config.Fset
fset.Iterate(func(f *token.File) bool {
filePath := f.Position(f.Pos(0)).Filename
c.docIndex[filePath] = len(c.documents)
c.documents = append(c.documents, filePath)
return true
})
}
// analyzeFuncAndGlobalVarUsage traverses all code and returns a map with functions
// which should be present in the emitted code.
// This is done using BFS starting from exported functions or
// the function used in variable declarations (graph edge corresponds to
// the function being called in declaration). It also analyzes global variables
// usage preserving the same traversal strategy and rules. Unused global variables
// are renamed to "_" in the end. Global variable is treated as "used" iff:
// 1. It belongs either to main or to exported package AND is used directly from the exported (or _init\_deploy) method of the main package.
// 2. It belongs either to main or to exported package AND is used non-directly from the exported (or _init\_deploy) method of the main package
// (e.g. via series of function calls or in some expression that is "used").
// 3. It belongs either to main or to exported package AND contains function call inside its value definition.
func (c *codegen) analyzeFuncAndGlobalVarUsage() funcUsage {
type declPair struct {
decl *ast.FuncDecl
importMap map[string]string
path string
}
// globalVar represents a global variable declaration node with the corresponding package context.
type globalVar struct {
decl *ast.GenDecl // decl contains global variables declaration node (there can be multiple declarations in a single node).
specIdx int // specIdx is the index of variable specification in the list of GenDecl specifications.
varIdx int // varIdx is the index of variable name in the specification names.
ident *ast.Ident // ident is a named global variable identifier got from the specified node.
importMap map[string]string
path string
}
// nodeCache contains top-level function declarations.
nodeCache := make(map[string]declPair)
// globalVarsCache contains both used and unused declared named global vars.
globalVarsCache := make(map[string]globalVar)
// diff contains used functions that are not yet marked as "used" and those definition
// requires traversal in the subsequent stages.
diff := funcUsage{}
// globalVarsDiff contains used named global variables that are not yet marked as "used"
// and those declaration requires traversal in the subsequent stages.
globalVarsDiff := funcUsage{}
// usedExpressions contains a set of ast.Nodes that are used in the program and need to be evaluated
// (either they are used from the used functions OR belong to global variable declaration and surrounded by a function call)
var usedExpressions []nodeContext
c.ForEachFile(func(f *ast.File, pkg *types.Package) {
var pkgPath string
isMain := pkg == c.mainPkg.Types
if !isMain {
pkgPath = pkg.Path()
}
ast.Inspect(f, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.CallExpr:
// functions invoked in variable declarations in imported packages
// are marked as used.
var name string
switch t := n.Fun.(type) {
case *ast.Ident:
name = c.getIdentName(pkgPath, t.Name)
case *ast.SelectorExpr:
name, _ = c.getFuncNameFromSelector(t)
default:
return true
}
diff[name] = true
case *ast.FuncDecl:
name := c.getFuncNameFromDecl(pkgPath, n)
// exported functions and methods are always assumed to be used
if isMain && n.Name.IsExported() || isInitFunc(n) || isDeployFunc(n) {
diff[name] = true
}
// exported functions are not allowed to have unnamed parameters or multiple return values
if isMain && n.Name.IsExported() && n.Recv == nil {
if n.Type.Params.List != nil {
for i, param := range n.Type.Params.List {
if param.Names == nil {
c.prog.Err = fmt.Errorf("%w: %s", ErrMissingExportedParamName, n.Name)
return false // Program is invalid.
}
for _, name := range param.Names {
if name == nil || name.Name == "_" {
c.prog.Err = fmt.Errorf("%w: %s/%d", ErrMissingExportedParamName, n.Name, i)
return false // Program is invalid.
}
}
}
}
if retCnt := n.Type.Results.NumFields(); retCnt > 1 {
c.prog.Err = fmt.Errorf("%w: %s/%d return values", ErrInvalidExportedRetCount, n.Name, retCnt)
}
}
nodeCache[name] = declPair{n, c.importMap, pkgPath}
return false // will be processed in the next stage
case *ast.GenDecl:
// After skipping all funcDecls, we are sure that each value spec
// is a globally declared variable or constant. We need to gather global
// vars from both main and imported packages.
if n.Tok == token.VAR {
for i, s := range n.Specs {
valSpec := s.(*ast.ValueSpec)
for j, id := range valSpec.Names {
if id.Name != "_" {
name := c.getIdentName(pkgPath, id.Name)
globalVarsCache[name] = globalVar{
decl: n,
specIdx: i,
varIdx: j,
ident: id,
importMap: c.importMap,
path: pkgPath,
}
}
// Traverse both named/unnamed global variables, check whether function/method call
// is present inside variable value and if so, mark all its children as "used" for
// further traversal and evaluation.
if len(valSpec.Values) == 0 {
continue
}
multiRet := len(valSpec.Values) != len(valSpec.Names)
if (j == 0 || !multiRet) && containsCall(valSpec.Values[j]) {
usedExpressions = append(usedExpressions, nodeContext{
node: valSpec.Values[j],
path: pkgPath,
importMap: c.importMap,
typeInfo: c.typeInfo,
currPkg: c.currPkg,
})
}
}
}
}
}
return true
})
})
if c.prog.Err != nil {
return nil
}
// Handle nodes that contain (or surrounded by) function calls and are a part
// of global variable declaration.
c.pickVarsFromNodes(usedExpressions, func(name string) {
if _, gOK := globalVarsCache[name]; gOK {
globalVarsDiff[name] = true
}
})
// Traverse the set of upper-layered used functions and construct the functions' usage map.
// At the same time, go through the whole set of used functions and mark global vars used
// from these functions as "used". Also mark the global variables from the previous step
// and their children as "used".
usage := funcUsage{}
globalVarsUsage := funcUsage{}
for len(diff) != 0 || len(globalVarsDiff) != 0 {
nextDiff := funcUsage{}
nextGlobalVarsDiff := funcUsage{}
usedExpressions = usedExpressions[:0]
for name := range diff {
fd, ok := nodeCache[name]
if !ok || usage[name] {
continue
}
usage[name] = true
pkg := c.mainPkg
if fd.path != "" {
pkg = c.packageCache[fd.path]
}
c.typeInfo = pkg.TypesInfo
c.currPkg = pkg
c.importMap = fd.importMap
ast.Inspect(fd.decl, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.CallExpr:
switch t := n.Fun.(type) {
case *ast.Ident:
nextDiff[c.getIdentName(fd.path, t.Name)] = true
case *ast.SelectorExpr:
name, _ := c.getFuncNameFromSelector(t)
nextDiff[name] = true
}
}
return true
})
usedExpressions = append(usedExpressions, nodeContext{
node: fd.decl.Body,
path: fd.path,
importMap: c.importMap,
typeInfo: c.typeInfo,
currPkg: c.currPkg,
})
}
// Traverse used global vars in a separate cycle so that we're sure there's no other unrelated vars.
// Mark their children as "used".
for name := range globalVarsDiff {
fd, ok := globalVarsCache[name]
if !ok || globalVarsUsage[name] {
continue
}
globalVarsUsage[name] = true
pkg := c.mainPkg
if fd.path != "" {
pkg = c.packageCache[fd.path]
}
valSpec := fd.decl.Specs[fd.specIdx].(*ast.ValueSpec)
if len(valSpec.Values) == 0 {
continue
}
multiRet := len(valSpec.Values) != len(valSpec.Names)
if fd.varIdx == 0 || !multiRet {
usedExpressions = append(usedExpressions, nodeContext{
node: valSpec.Values[fd.varIdx],
path: fd.path,
importMap: fd.importMap,
typeInfo: pkg.TypesInfo,
currPkg: pkg,
})
}
}
c.pickVarsFromNodes(usedExpressions, func(name string) {
if _, gOK := globalVarsCache[name]; gOK {
nextGlobalVarsDiff[name] = true
}
})
diff = nextDiff
globalVarsDiff = nextGlobalVarsDiff
}
// Tiny hack: rename all remaining unused global vars. After that these unused
// vars will be handled as any other unnamed unused variables, i.e.
// c.traverseGlobals() won't take them into account during static slot creation
// and the code won't be emitted for them.
for name, node := range globalVarsCache {
if _, ok := globalVarsUsage[name]; !ok {
node.ident.Name = "_"
}
}
return usage
}
// nodeContext contains ast node with the corresponding import map, type info and package information
// required to retrieve fully qualified node name (if so).
type nodeContext struct {
node ast.Node
path string
importMap map[string]string
typeInfo *types.Info
currPkg *packages.Package
}
// derive returns provided node with the parent's context.
func (c nodeContext) derive(n ast.Node) nodeContext {
return nodeContext{
node: n,
path: c.path,
importMap: c.importMap,
typeInfo: c.typeInfo,
currPkg: c.currPkg,
}
}
// pickVarsFromNodes searches for variables used in the given set of nodes
// calling markAsUsed for each variable. Be careful while using codegen after
// pickVarsFromNodes, it changes importMap, currPkg and typeInfo.
func (c *codegen) pickVarsFromNodes(nodes []nodeContext, markAsUsed func(name string)) {
for len(nodes) != 0 {
var nextExprToCheck []nodeContext
for _, val := range nodes {
// Set variable context for proper name extraction.
c.importMap = val.importMap
c.currPkg = val.currPkg
c.typeInfo = val.typeInfo
ast.Inspect(val.node, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.KeyValueExpr: // var _ = f() + CustomInt{Int: Unused}.Int + 3 => mark Unused as "used".
nextExprToCheck = append(nextExprToCheck, val.derive(n.Value))
return false
case *ast.CallExpr:
switch t := n.Fun.(type) {
case *ast.Ident:
// Do nothing, used functions are handled in a separate cycle.
case *ast.SelectorExpr:
nextExprToCheck = append(nextExprToCheck, val.derive(t))
}
for _, arg := range n.Args {
switch arg.(type) {
case *ast.BasicLit:
default:
nextExprToCheck = append(nextExprToCheck, val.derive(arg))
}
}
return false
case *ast.SelectorExpr:
if c.typeInfo.Selections[n] != nil {
switch t := n.X.(type) {
case *ast.Ident:
nextExprToCheck = append(nextExprToCheck, val.derive(t))
case *ast.CompositeLit:
nextExprToCheck = append(nextExprToCheck, val.derive(t))
case *ast.SelectorExpr: // imp_pkg.Anna.GetAge() => mark Anna (exported global struct) as used.
nextExprToCheck = append(nextExprToCheck, val.derive(t))
}
} else {
ident := n.X.(*ast.Ident)
name := c.getIdentName(ident.Name, n.Sel.Name)
markAsUsed(name)
}
return false
case *ast.CompositeLit: // var _ = f(1) + []int{1, Unused, 3}[1] => mark Unused as "used".
for _, e := range n.Elts {
switch e.(type) {
case *ast.BasicLit:
default:
nextExprToCheck = append(nextExprToCheck, val.derive(e))
}
}
return false
case *ast.Ident:
name := c.getIdentName(val.path, n.Name)
markAsUsed(name)
return false
case *ast.DeferStmt:
nextExprToCheck = append(nextExprToCheck, val.derive(n.Call.Fun))
return false
case *ast.BasicLit:
return false
}
return true
})
}
nodes = nextExprToCheck
}
}
func isGoBuiltin(name string) bool {
for i := range goBuiltins {
if name == goBuiltins[i] {
return true
}
}
return false
}
func isCustomBuiltin(f *funcScope) bool {
if !isInteropPath(f.pkg.Path()) {
return false
}
for _, n := range customBuiltins {
if f.name == n {
return true
}
}
return false
}
func isSyscall(fun *funcScope) bool {
if fun.selector == nil || fun.pkg == nil || !isInteropPath(fun.pkg.Path()) {
return false
}
return fun.pkg.Name() == "neogointernal" && (strings.HasPrefix(fun.name, "Syscall") ||
strings.HasPrefix(fun.name, "Opcode") || strings.HasPrefix(fun.name, "CallWithToken"))
}
const interopPrefix = "github.com/nspcc-dev/neo-go/pkg/interop"
func isInteropPath(s string) bool {
return strings.HasPrefix(s, interopPrefix)
}
// canConvert returns true if type doesn't need to be converted on type assertion.
func canConvert(s string) bool {
if len(s) != 0 && s[0] == '*' {
s = s[1:]
}
if isInteropPath(s) {
s = s[len(interopPrefix):]
return s != "/iterator.Iterator" && s != "/storage.Context" &&
s != "/native/ledger.Block" && s != "/native/ledger.Transaction" &&
s != "/native/management.Contract" && s != "/native/neo.AccountState" &&
s != "/native/ledger.BlockSR"
}
return true
}
// canInline returns true if the function is to be inlined.
// Currently, there is a static list of functions which are inlined,
// this may change in future.
func canInline(s string, name string) bool {
if strings.HasPrefix(s, "github.com/nspcc-dev/neo-go/pkg/compiler/testdata/inline") {
return true
}
if !isInteropPath(s) {
return false
}
return !strings.HasPrefix(s[len(interopPrefix):], "/neogointernal") &&
!(strings.HasPrefix(s[len(interopPrefix):], "/util") && name == "FromAddress")
}