neo-go/pkg/core/blockchain_neotest_test.go
Anna Shaleva 7b09812069 core: refactor TestEngineLimits
Replace repetative hand-written code with generated one.

Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
2024-10-18 19:10:47 +03:00

2764 lines
101 KiB
Go

package core_test
import (
"encoding/binary"
"errors"
"fmt"
"math/big"
"path/filepath"
"slices"
"strings"
"testing"
"time"
"github.com/nspcc-dev/neo-go/internal/basicchain"
"github.com/nspcc-dev/neo-go/internal/contracts"
"github.com/nspcc-dev/neo-go/internal/random"
"github.com/nspcc-dev/neo-go/internal/testchain"
"github.com/nspcc-dev/neo-go/pkg/compiler"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/config/netmode"
"github.com/nspcc-dev/neo-go/pkg/core"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/dao"
"github.com/nspcc-dev/neo-go/pkg/core/fee"
"github.com/nspcc-dev/neo-go/pkg/core/interop/interopnames"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/native/nativehashes"
"github.com/nspcc-dev/neo-go/pkg/core/native/nativenames"
"github.com/nspcc-dev/neo-go/pkg/core/native/nativeprices"
"github.com/nspcc-dev/neo-go/pkg/core/native/noderoles"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/storage/dbconfig"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/encoding/address"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/neotest"
"github.com/nspcc-dev/neo-go/pkg/neotest/chain"
"github.com/nspcc-dev/neo-go/pkg/smartcontract"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/emit"
"github.com/nspcc-dev/neo-go/pkg/vm/opcode"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
"github.com/nspcc-dev/neo-go/pkg/vm/vmstate"
"github.com/nspcc-dev/neo-go/pkg/wallet"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func newLevelDBForTestingWithPath(t testing.TB, dbPath string) (storage.Store, string) {
if dbPath == "" {
dbPath = t.TempDir()
}
dbOptions := dbconfig.LevelDBOptions{
DataDirectoryPath: dbPath,
}
newLevelStore, err := storage.NewLevelDBStore(dbOptions)
require.Nil(t, err, "NewLevelDBStore error")
return newLevelStore, dbPath
}
func TestBlockchain_StartFromExistingDB(t *testing.T) {
ps, path := newLevelDBForTestingWithPath(t, "")
customConfig := func(c *config.Blockchain) {
c.StateRootInHeader = true // Need for P2PStateExchangeExtensions check.
c.P2PSigExtensions = true // Need for basic chain initializer.
}
bc, validators, committee, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, ps)
require.NoError(t, err)
go bc.Run()
e := neotest.NewExecutor(t, bc, validators, committee)
basicchain.Init(t, "../../", e)
require.True(t, bc.BlockHeight() > 5, "ensure that basic chain is correctly initialised")
// Information for further tests.
h := bc.BlockHeight()
cryptoLibHash, err := bc.GetNativeContractScriptHash(nativenames.CryptoLib)
require.NoError(t, err)
cryptoLibState := bc.GetContractState(cryptoLibHash)
require.NotNil(t, cryptoLibState)
var (
managementID = -1
managementContractPrefix = 8
)
bc.Close() // Ensure persist is done and persistent store is properly closed.
newPS := func(t *testing.T) storage.Store {
ps, _ = newLevelDBForTestingWithPath(t, path)
t.Cleanup(func() { require.NoError(t, ps.Close()) })
return ps
}
t.Run("mismatch storage version", func(t *testing.T) {
ps = newPS(t)
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
d := dao.NewSimple(cache, bc.GetConfig().StateRootInHeader)
d.PutVersion(dao.Version{
Value: "0.0.0",
})
_, err := d.Persist() // Persist to `cache` wrapper.
require.NoError(t, err)
_, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "storage version mismatch"), err)
})
t.Run("mismatch StateRootInHeader", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, func(c *config.Blockchain) {
customConfig(c)
c.StateRootInHeader = false
}, ps)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "StateRootInHeader setting mismatch"), err)
})
t.Run("mismatch P2PSigExtensions", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, func(c *config.Blockchain) {
customConfig(c)
c.P2PSigExtensions = false
}, ps)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "P2PSigExtensions setting mismatch"), err)
})
t.Run("mismatch P2PStateExchangeExtensions", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, func(c *config.Blockchain) {
customConfig(c)
c.StateRootInHeader = true
c.P2PStateExchangeExtensions = true
}, ps)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "P2PStateExchangeExtensions setting mismatch"), err)
})
t.Run("mismatch KeepOnlyLatestState", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, func(c *config.Blockchain) {
customConfig(c)
c.Ledger.KeepOnlyLatestState = true
}, ps)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "KeepOnlyLatestState setting mismatch"), err)
})
t.Run("Magic mismatch", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, func(c *config.Blockchain) {
customConfig(c)
c.Magic = 100500
}, ps)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "protocol configuration Magic mismatch"), err)
})
t.Run("corrupted headers", func(t *testing.T) {
ps = newPS(t)
// Corrupt headers hashes batch.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
// Make the chain think we're at 2000+ which will trigger page 0 read.
buf := io.NewBufBinWriter()
buf.WriteBytes(util.Uint256{}.BytesLE())
buf.WriteU32LE(2000)
cache.Put([]byte{byte(storage.SYSCurrentHeader)}, buf.Bytes())
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "failed to retrieve header hash page"), err)
})
t.Run("corrupted current header height", func(t *testing.T) {
ps = newPS(t)
// Remove current header.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
cache.Delete([]byte{byte(storage.SYSCurrentHeader)})
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "failed to retrieve current header"), err)
})
t.Run("missing last batch of 2000 headers and missing last header", func(t *testing.T) {
ps = newPS(t)
// Remove latest headers hashes batch and current header.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
cache.Delete([]byte{byte(storage.IXHeaderHashList)})
currHeaderInfo, err := cache.Get([]byte{byte(storage.SYSCurrentHeader)})
require.NoError(t, err)
currHeaderHash, err := util.Uint256DecodeBytesLE(currHeaderInfo[:32])
require.NoError(t, err)
cache.Delete(append([]byte{byte(storage.DataExecutable)}, currHeaderHash.BytesBE()...))
_, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "could not get header"), err)
})
t.Run("missing last block", func(t *testing.T) {
ps = newPS(t)
// Remove current block from storage.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
cache.Delete([]byte{byte(storage.SYSCurrentBlock)})
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "failed to retrieve current block height"), err)
})
t.Run("missing last stateroot", func(t *testing.T) {
ps = newPS(t)
// Remove latest stateroot from storage.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
key := make([]byte, 5)
key[0] = byte(storage.DataMPTAux)
binary.BigEndian.PutUint32(key[1:], h)
cache.Delete(key)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "can't init MPT at height"), err)
})
t.Run("failed native Management initialisation", func(t *testing.T) {
ps = newPS(t)
// Corrupt serialised CryptoLib state.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
key := make([]byte, 1+4+1+20)
key[0] = byte(storage.STStorage)
binary.LittleEndian.PutUint32(key[1:], uint32(managementID))
key[5] = byte(managementContractPrefix)
copy(key[6:], cryptoLibHash.BytesBE())
cache.Put(key, []byte{1, 2, 3})
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "can't init natives cache: failed to initialize cache for ContractManagement"), err)
})
t.Run("invalid native contract activation", func(t *testing.T) {
ps = newPS(t)
// Remove CryptoLib from storage.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
key := make([]byte, 1+4+1+20)
key[0] = byte(storage.STStorage)
binary.LittleEndian.PutUint32(key[1:], uint32(managementID))
key[5] = byte(managementContractPrefix)
copy(key[6:], cryptoLibHash.BytesBE())
cache.Delete(key)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), fmt.Sprintf("native contract %s is not stored, but should be active at height %d according to config", nativenames.CryptoLib, h)), err)
})
t.Run("stored and autogenerated native contract's states mismatch", func(t *testing.T) {
ps = newPS(t)
// Change stored CryptoLib state.
cache := storage.NewMemCachedStore(ps) // Extra wrapper to avoid good DB corruption.
key := make([]byte, 1+4+1+20)
key[0] = byte(storage.STStorage)
binary.LittleEndian.PutUint32(key[1:], uint32(managementID))
key[5] = byte(managementContractPrefix)
copy(key[6:], cryptoLibHash.BytesBE())
cs := *cryptoLibState
cs.ID = -123
csBytes, err := stackitem.SerializeConvertible(&cs)
require.NoError(t, err)
cache.Put(key, csBytes)
_, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, cache)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), fmt.Sprintf("native %s: version mismatch for the latest hardfork Echidna (stored contract state differs from autogenerated one)", nativenames.CryptoLib)), err)
})
t.Run("good", func(t *testing.T) {
ps = newPS(t)
_, _, _, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, ps)
require.NoError(t, err)
})
}
// TestBlockchain_InitializeNeoCache_Bug3181 is aimed to reproduce and check situation
// when panic occures on native Neo cache initialization due to access to native Policy
// cache when it's not yet initialized to recalculate candidates.
func TestBlockchain_InitializeNeoCache_Bug3181(t *testing.T) {
ps, path := newLevelDBForTestingWithPath(t, "")
bc, validators, committee, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, nil, ps)
require.NoError(t, err)
go bc.Run()
e := neotest.NewExecutor(t, bc, validators, committee)
// Add at least one registered candidate to enable candidates Policy check.
acc := e.NewAccount(t, 10000_0000_0000) // block #1
neo := e.NewInvoker(e.NativeHash(t, nativenames.Neo), acc)
neo.Invoke(t, true, "registerCandidate", acc.(neotest.SingleSigner).Account().PublicKey().Bytes()) // block #2
// Put some empty blocks to reach N-1 block height, so that newEpoch cached
// values of native Neo contract require an update on the subsequent cache
// initialization.
for range len(bc.GetConfig().StandbyCommittee) - 1 - 2 {
e.AddNewBlock(t)
}
bc.Close() // Ensure persist is done and persistent store is properly closed.
ps, _ = newLevelDBForTestingWithPath(t, path)
t.Cleanup(func() { require.NoError(t, ps.Close()) })
// Start chain from the existing database that should trigger an update of native
// Neo newEpoch* cached values during initializaition. This update requires candidates
// list recalculation and policies checks, thus, access to native Policy cache
// that is not yet initialized by that moment.
require.NotPanics(t, func() {
_, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, nil, ps)
require.NoError(t, err)
})
}
// TestBlockchain_InitializeNeoCache_Bug3424 ensures that Neo cache (new epoch
// committee and stand by validators) is properly initialized after node restart
// at the dBFT epoch boundary.
func TestBlockchain_InitializeNeoCache_Bug3424(t *testing.T) {
ps, path := newLevelDBForTestingWithPath(t, "")
bc, validators, committee, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, nil, ps)
require.NoError(t, err)
go bc.Run()
e := neotest.NewExecutor(t, bc, validators, committee)
cfg := e.Chain.GetConfig()
committeeSize := cfg.GetCommitteeSize(0)
validatorsCount := cfg.GetNumOfCNs(0)
// Stand by committee drives the chain.
standBySorted, err := keys.NewPublicKeysFromStrings(e.Chain.GetConfig().StandbyCommittee)
require.NoError(t, err)
standBySorted = standBySorted[:validatorsCount]
slices.SortFunc(standBySorted, (*keys.PublicKey).Cmp)
pubs := e.Chain.ComputeNextBlockValidators()
require.Equal(t, standBySorted, keys.PublicKeys(pubs))
// Move from stand by committee to the elected nodes.
e.ValidatorInvoker(e.NativeHash(t, nativenames.Gas)).Invoke(t, true, "transfer", e.Validator.ScriptHash(), e.CommitteeHash, 100_0000_0000, nil)
neoCommitteeInvoker := e.CommitteeInvoker(e.NativeHash(t, nativenames.Neo))
neoValidatorsInvoker := neoCommitteeInvoker.WithSigners(neoCommitteeInvoker.Validator)
policyInvoker := neoCommitteeInvoker.CommitteeInvoker(neoCommitteeInvoker.NativeHash(t, nativenames.Policy))
advanceChain := func(t *testing.T) {
for int(e.Chain.BlockHeight())%committeeSize != 0 {
neoCommitteeInvoker.AddNewBlock(t)
}
}
advanceChainToEpochBoundary := func(t *testing.T) {
for int(e.Chain.BlockHeight()+1)%committeeSize != 0 {
neoCommitteeInvoker.AddNewBlock(t)
}
}
// voters vote for candidates.
voters := make([]neotest.Signer, committeeSize+1)
candidates := make([]neotest.Signer, committeeSize+1)
for i := range committeeSize + 1 {
voters[i] = e.NewAccount(t, 10_0000_0000)
candidates[i] = e.NewAccount(t, 2000_0000_0000) // enough for one registration
}
txes := make([]*transaction.Transaction, 0, committeeSize*3)
for i := range committeeSize + 1 {
transferTx := neoValidatorsInvoker.PrepareInvoke(t, "transfer", e.Validator.ScriptHash(), voters[i].(neotest.SingleSigner).Account().PrivateKey().GetScriptHash(), int64(committeeSize+1-i)*1000000, nil)
txes = append(txes, transferTx)
registerTx := neoValidatorsInvoker.WithSigners(candidates[i]).PrepareInvoke(t, "registerCandidate", candidates[i].(neotest.SingleSigner).Account().PublicKey().Bytes())
txes = append(txes, registerTx)
voteTx := neoValidatorsInvoker.WithSigners(voters[i]).PrepareInvoke(t, "vote", voters[i].(neotest.SingleSigner).Account().PrivateKey().GetScriptHash(), candidates[i].(neotest.SingleSigner).Account().PublicKey().Bytes())
txes = append(txes, voteTx)
}
txes = append(txes, policyInvoker.PrepareInvoke(t, "blockAccount", candidates[len(candidates)-1].(neotest.SingleSigner).Account().ScriptHash()))
neoValidatorsInvoker.AddNewBlock(t, txes...)
for _, tx := range txes {
e.CheckHalt(t, tx.Hash(), stackitem.Make(true)) // luckily, both `transfer`, `registerCandidate` and `vote` return boolean values
}
// Ensure validators are properly updated.
advanceChain(t)
pubs = e.Chain.ComputeNextBlockValidators()
sortedCandidates := make(keys.PublicKeys, validatorsCount)
for i := range candidates[:validatorsCount] {
sortedCandidates[i] = candidates[i].(neotest.SingleSigner).Account().PublicKey()
}
slices.SortFunc(sortedCandidates, (*keys.PublicKey).Cmp)
require.EqualValues(t, sortedCandidates, keys.PublicKeys(pubs))
// Move to the last block in the epoch and restart the node.
advanceChainToEpochBoundary(t)
bc.Close() // Ensure persist is done and persistent store is properly closed.
ps, _ = newLevelDBForTestingWithPath(t, path)
t.Cleanup(func() { require.NoError(t, ps.Close()) })
// Start chain from the existing database that should trigger an update of native
// Neo newEpoch* cached values during initializaition. This update requires candidates
// list recalculation and caldidates policies checks.
bc, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, nil, ps)
require.NoError(t, err)
pubs = bc.ComputeNextBlockValidators()
require.EqualValues(t, sortedCandidates, keys.PublicKeys(pubs))
}
// This test enables Notary native contract at non-zero height and checks that no
// Notary cache initialization is performed before that height on node restart.
/*
func TestBlockchain_InitializeNativeCacheWrtNativeActivations(t *testing.T) {
const notaryEnabledHeight = 3
ps, path := newLevelDBForTestingWithPath(t, "")
customConfig := func(c *config.Blockchain) {
c.P2PSigExtensions = true
c.NativeUpdateHistories = make(map[string][]uint32)
for _, n := range []string{
nativenames.Neo,
nativenames.Gas,
nativenames.Designation,
nativenames.Management,
nativenames.CryptoLib,
nativenames.Ledger,
nativenames.Management,
nativenames.Oracle,
nativenames.Policy,
nativenames.StdLib,
nativenames.Notary,
} {
if n == nativenames.Notary {
c.NativeUpdateHistories[n] = []uint32{notaryEnabledHeight}
} else {
c.NativeUpdateHistories[n] = []uint32{0}
}
}
}
bc, validators, committee, err := chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, ps)
require.NoError(t, err)
go bc.Run()
e := neotest.NewExecutor(t, bc, validators, committee)
e.AddNewBlock(t)
bc.Close() // Ensure persist is done and persistent store is properly closed.
ps, _ = newLevelDBForTestingWithPath(t, path)
// If NativeActivations are not taken into account during native cache initialization,
// bs.init() will panic on Notary cache initialization as it's not deployed yet.
require.NotPanics(t, func() {
bc, _, _, err = chain.NewMultiWithCustomConfigAndStoreNoCheck(t, customConfig, ps)
require.NoError(t, err)
})
go bc.Run()
defer bc.Close()
e = neotest.NewExecutor(t, bc, validators, committee)
h := e.Chain.BlockHeight()
// Notary isn't initialized yet, so accessing Notary cache should return error.
_, err = e.Chain.GetMaxNotValidBeforeDelta()
require.Error(t, err)
// Ensure Notary will be properly initialized and accessing Notary cache works
// as expected.
for i := range notaryEnabledHeight {
require.NotPanics(t, func() {
e.AddNewBlock(t)
}, h+uint32(i)+1)
}
_, err = e.Chain.GetMaxNotValidBeforeDelta()
require.NoError(t, err)
}
*/
func TestBlockchain_AddHeaders(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.StateRootInHeader = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
newHeader := func(t *testing.T, index uint32, prevHash util.Uint256, timestamp uint64) *block.Header {
b := e.NewUnsignedBlock(t)
b.Index = index
b.PrevHash = prevHash
b.PrevStateRoot = util.Uint256{}
b.Timestamp = timestamp
e.SignBlock(b)
return &b.Header
}
b1 := e.NewUnsignedBlock(t)
h1 := &e.SignBlock(b1).Header
h2 := newHeader(t, h1.Index+1, h1.Hash(), h1.Timestamp+1)
h3 := newHeader(t, h2.Index+1, h2.Hash(), h2.Timestamp+1)
require.NoError(t, bc.AddHeaders())
require.NoError(t, bc.AddHeaders(h1, h2))
require.NoError(t, bc.AddHeaders(h2, h3))
assert.Equal(t, h3.Index, bc.HeaderHeight())
assert.Equal(t, uint32(0), bc.BlockHeight())
assert.Equal(t, h3.Hash(), bc.CurrentHeaderHash())
// Add them again, they should not be added.
require.NoError(t, bc.AddHeaders(h3, h2, h1))
assert.Equal(t, h3.Index, bc.HeaderHeight())
assert.Equal(t, uint32(0), bc.BlockHeight())
assert.Equal(t, h3.Hash(), bc.CurrentHeaderHash())
h4Bad := newHeader(t, h3.Index+1, h3.Hash().Reverse(), h3.Timestamp+1)
h5Bad := newHeader(t, h4Bad.Index+1, h4Bad.Hash(), h4Bad.Timestamp+1)
assert.Error(t, bc.AddHeaders(h4Bad, h5Bad))
assert.Equal(t, h3.Index, bc.HeaderHeight())
assert.Equal(t, uint32(0), bc.BlockHeight())
assert.Equal(t, h3.Hash(), bc.CurrentHeaderHash())
h4Bad2 := newHeader(t, h3.Index+1, h3.Hash().Reverse(), h3.Timestamp+1)
h4Bad2.Script.InvocationScript = []byte{}
assert.Error(t, bc.AddHeaders(h4Bad2))
assert.Equal(t, h3.Index, bc.HeaderHeight())
assert.Equal(t, uint32(0), bc.BlockHeight())
assert.Equal(t, h3.Hash(), bc.CurrentHeaderHash())
}
func TestBlockchain_AddBlockStateRoot(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.StateRootInHeader = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
sr, err := bc.GetStateModule().GetStateRoot(bc.BlockHeight())
require.NoError(t, err)
b := e.NewUnsignedBlock(t)
b.StateRootEnabled = false
b.PrevStateRoot = util.Uint256{}
e.SignBlock(b)
err = bc.AddBlock(b)
require.ErrorIs(t, err, core.ErrHdrStateRootSetting)
u := sr.Root
u[0] ^= 0xFF
b = e.NewUnsignedBlock(t)
b.PrevStateRoot = u
e.SignBlock(b)
err = bc.AddBlock(b)
require.ErrorIs(t, err, core.ErrHdrInvalidStateRoot)
b = e.NewUnsignedBlock(t)
e.SignBlock(b)
require.NoError(t, bc.AddBlock(b))
}
func TestBlockchain_AddHeadersStateRoot(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.StateRootInHeader = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
b := e.NewUnsignedBlock(t)
e.SignBlock(b)
h1 := b.Header
r := bc.GetStateModule().CurrentLocalStateRoot()
// invalid stateroot
h1.PrevStateRoot[0] ^= 0xFF
require.ErrorIs(t, bc.AddHeaders(&h1), core.ErrHdrInvalidStateRoot)
// valid stateroot
h1.PrevStateRoot = r
require.NoError(t, bc.AddHeaders(&h1))
// unable to verify stateroot (stateroot is computed for block #0 only => can
// verify stateroot of header #1 only) => just store the header
b = e.NewUnsignedBlock(t)
b.PrevHash = h1.Hash()
b.Timestamp = h1.Timestamp + 1
b.PrevStateRoot = util.Uint256{}
b.Index = h1.Index + 1
e.SignBlock(b)
require.NoError(t, bc.AddHeaders(&b.Header))
}
func TestBlockchain_AddBadBlock(t *testing.T) {
check := func(t *testing.T, b *block.Block, cfg func(c *config.Blockchain)) {
bc, _ := chain.NewSingleWithCustomConfig(t, cfg)
err := bc.AddBlock(b)
if cfg == nil {
require.Error(t, err)
} else {
require.NoError(t, err)
}
}
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
neoHash := e.NativeHash(t, nativenames.Neo)
tx := e.NewUnsignedTx(t, neoHash, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
tx.ValidUntilBlock = 0 // Intentionally make the transaction invalid.
e.SignTx(t, tx, -1, acc)
b := e.NewUnsignedBlock(t, tx)
e.SignBlock(b)
check(t, b, nil)
check(t, b, func(c *config.Blockchain) {
c.SkipBlockVerification = true
})
b = e.NewUnsignedBlock(t)
b.PrevHash = util.Uint256{} // Intentionally make block invalid.
e.SignBlock(b)
check(t, b, nil)
check(t, b, func(c *config.Blockchain) {
c.SkipBlockVerification = true
})
tx = e.NewUnsignedTx(t, neoHash, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil) // Check the good tx.
e.SignTx(t, tx, -1, acc)
b = e.NewUnsignedBlock(t, tx)
e.SignBlock(b)
check(t, b, func(c *config.Blockchain) {
c.VerifyTransactions = true
c.SkipBlockVerification = false
})
}
func TestBlockchain_GetHeader(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
block := e.AddNewBlock(t)
hash := block.Hash()
header, err := bc.GetHeader(hash)
require.NoError(t, err)
assert.Equal(t, &block.Header, header)
b2 := e.NewUnsignedBlock(t)
_, err = bc.GetHeader(b2.Hash())
assert.Error(t, err)
}
func TestBlockchain_GetBlock(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
blocks := e.GenerateNewBlocks(t, 10)
neoValidatorInvoker := e.ValidatorInvoker(e.NativeHash(t, nativenames.Neo))
for i := range blocks {
block, err := bc.GetBlock(blocks[i].Hash())
require.NoErrorf(t, err, "can't get block %d: %s", i, err)
assert.Equal(t, blocks[i].Index, block.Index)
assert.Equal(t, blocks[i].Hash(), block.Hash())
}
t.Run("store only header", func(t *testing.T) {
t.Run("non-empty block", func(t *testing.T) {
tx := neoValidatorInvoker.PrepareInvoke(t, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
b := e.NewUnsignedBlock(t, tx)
e.SignBlock(b)
require.NoError(t, bc.AddHeaders(&b.Header))
_, err := bc.GetBlock(b.Hash())
require.Error(t, err)
_, err = bc.GetHeader(b.Hash())
require.NoError(t, err)
require.NoError(t, bc.AddBlock(b))
_, err = bc.GetBlock(b.Hash())
require.NoError(t, err)
})
t.Run("empty block", func(t *testing.T) {
b := e.NewUnsignedBlock(t)
e.SignBlock(b)
require.NoError(t, bc.AddHeaders(&b.Header))
_, err := bc.GetBlock(b.Hash())
require.NoError(t, err)
})
})
}
func TestBlockchain_VerifyHashAgainstScript(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
cs, csInvalid := contracts.GetTestContractState(t, pathToInternalContracts, 0, 1, acc.ScriptHash())
c1 := &neotest.Contract{
Hash: cs.Hash,
NEF: &cs.NEF,
Manifest: &cs.Manifest,
}
c2 := &neotest.Contract{
Hash: csInvalid.Hash,
NEF: &csInvalid.NEF,
Manifest: &csInvalid.Manifest,
}
e.DeployContract(t, c1, nil)
e.DeployContract(t, c2, nil)
gas := bc.GetMaxVerificationGAS()
t.Run("Contract", func(t *testing.T) {
t.Run("Missing", func(t *testing.T) {
newH := cs.Hash
newH[0] = ^newH[0]
w := &transaction.Witness{InvocationScript: []byte{byte(opcode.PUSH4)}}
_, err := bc.VerifyWitness(newH, nil, w, gas)
require.ErrorIs(t, err, core.ErrUnknownVerificationContract)
})
t.Run("Invalid", func(t *testing.T) {
w := &transaction.Witness{InvocationScript: []byte{byte(opcode.PUSH4)}}
_, err := bc.VerifyWitness(csInvalid.Hash, nil, w, gas)
require.ErrorIs(t, err, core.ErrInvalidVerificationContract)
})
t.Run("ValidSignature", func(t *testing.T) {
w := &transaction.Witness{InvocationScript: []byte{byte(opcode.PUSH4)}}
_, err := bc.VerifyWitness(cs.Hash, nil, w, gas)
require.NoError(t, err)
})
t.Run("InvalidSignature", func(t *testing.T) {
w := &transaction.Witness{InvocationScript: []byte{byte(opcode.PUSH3)}}
_, err := bc.VerifyWitness(cs.Hash, nil, w, gas)
require.ErrorIs(t, err, core.ErrVerificationFailed)
})
})
t.Run("NotEnoughGas", func(t *testing.T) {
verif := []byte{byte(opcode.PUSH1)}
w := &transaction.Witness{
InvocationScript: []byte{byte(opcode.NOP)},
VerificationScript: verif,
}
_, err := bc.VerifyWitness(hash.Hash160(verif), nil, w, 1)
require.ErrorIs(t, err, core.ErrVerificationFailed)
})
t.Run("NoResult", func(t *testing.T) {
verif := []byte{byte(opcode.DROP)}
w := &transaction.Witness{
InvocationScript: []byte{byte(opcode.PUSH1)},
VerificationScript: verif,
}
_, err := bc.VerifyWitness(hash.Hash160(verif), nil, w, gas)
require.ErrorIs(t, err, core.ErrVerificationFailed)
})
t.Run("BadResult", func(t *testing.T) {
verif := make([]byte, keys.SignatureLen+2)
verif[0] = byte(opcode.PUSHDATA1)
verif[1] = keys.SignatureLen
w := &transaction.Witness{
InvocationScript: []byte{byte(opcode.NOP)},
VerificationScript: verif,
}
_, err := bc.VerifyWitness(hash.Hash160(verif), nil, w, gas)
require.ErrorIs(t, err, core.ErrVerificationFailed)
})
t.Run("TooManyResults", func(t *testing.T) {
verif := []byte{byte(opcode.NOP)}
w := &transaction.Witness{
InvocationScript: []byte{byte(opcode.PUSH1), byte(opcode.PUSH1)},
VerificationScript: verif,
}
_, err := bc.VerifyWitness(hash.Hash160(verif), nil, w, gas)
require.ErrorIs(t, err, core.ErrVerificationFailed)
})
}
func TestBlockchain_IsTxStillRelevant(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
mp := bc.GetMemPool()
t.Run("small ValidUntilBlock", func(t *testing.T) {
tx := e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc}, bc.BlockHeight()+1)
require.True(t, bc.IsTxStillRelevant(tx, nil, false))
e.AddNewBlock(t)
require.False(t, bc.IsTxStillRelevant(tx, nil, false))
})
t.Run("tx is already persisted", func(t *testing.T) {
tx := e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc}, bc.BlockHeight()+2)
require.True(t, bc.IsTxStillRelevant(tx, nil, false))
e.AddNewBlock(t, tx)
require.False(t, bc.IsTxStillRelevant(tx, nil, false))
})
t.Run("tx with Conflicts attribute", func(t *testing.T) {
tx1 := e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc}, bc.BlockHeight()+5)
tx2 := transaction.New([]byte{byte(opcode.PUSH1)}, 0)
tx2.Nonce = neotest.Nonce()
tx2.ValidUntilBlock = e.Chain.BlockHeight() + 5
tx2.Attributes = []transaction.Attribute{{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{Hash: tx1.Hash()},
}}
e.SignTx(t, tx2, -1, acc)
require.True(t, bc.IsTxStillRelevant(tx1, mp, false))
require.NoError(t, bc.PoolTx(tx2))
require.False(t, bc.IsTxStillRelevant(tx1, mp, false))
})
t.Run("NotValidBefore", func(t *testing.T) {
tx3 := transaction.New([]byte{byte(opcode.PUSH1)}, 0)
tx3.Nonce = neotest.Nonce()
tx3.Attributes = []transaction.Attribute{{
Type: transaction.NotValidBeforeT,
Value: &transaction.NotValidBefore{Height: bc.BlockHeight() + 1},
}}
tx3.ValidUntilBlock = bc.BlockHeight() + 2
e.SignTx(t, tx3, -1, acc)
require.False(t, bc.IsTxStillRelevant(tx3, nil, false))
e.AddNewBlock(t)
require.True(t, bc.IsTxStillRelevant(tx3, nil, false))
})
t.Run("contract witness check fails", func(t *testing.T) {
src := fmt.Sprintf(`package verify
import (
"github.com/nspcc-dev/neo-go/pkg/interop/contract"
"github.com/nspcc-dev/neo-go/pkg/interop/lib/address"
)
func Verify() bool {
addr := address.ToHash160("`+address.Uint160ToString(e.NativeHash(t, nativenames.Ledger))+`")
currentHeight := contract.Call(addr, "currentIndex", contract.ReadStates)
return currentHeight.(int) < %d
}`, bc.BlockHeight()+2) // deploy + next block
c := neotest.CompileSource(t, acc.ScriptHash(), strings.NewReader(src), &compiler.Options{
Name: "verification_contract",
})
e.DeployContract(t, c, nil)
tx := transaction.New([]byte{byte(opcode.PUSH1)}, 0)
tx.Nonce = neotest.Nonce()
tx.ValidUntilBlock = bc.BlockHeight() + 2
tx.Signers = []transaction.Signer{
{
Account: c.Hash,
Scopes: transaction.None,
},
}
tx.NetworkFee += 10_000_000
tx.Scripts = []transaction.Witness{{}}
require.True(t, bc.IsTxStillRelevant(tx, mp, false))
e.AddNewBlock(t)
require.False(t, bc.IsTxStillRelevant(tx, mp, false))
})
}
func TestBlockchain_MemPoolRemoval(t *testing.T) {
const added = 16
const notAdded = 32
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
addedTxes := make([]*transaction.Transaction, added)
notAddedTxes := make([]*transaction.Transaction, notAdded)
for i := range addedTxes {
addedTxes[i] = e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc}, 100)
require.NoError(t, bc.PoolTx(addedTxes[i]))
}
for i := range notAddedTxes {
notAddedTxes[i] = e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc}, 100)
require.NoError(t, bc.PoolTx(notAddedTxes[i]))
}
mempool := bc.GetMemPool()
e.AddNewBlock(t, addedTxes...)
for _, tx := range addedTxes {
require.False(t, mempool.ContainsKey(tx.Hash()))
}
for _, tx := range notAddedTxes {
require.True(t, mempool.ContainsKey(tx.Hash()))
}
}
func TestBlockchain_HasBlock(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
blocks := e.GenerateNewBlocks(t, 10)
for i := range blocks {
assert.True(t, bc.HasBlock(blocks[i].Hash()))
}
newBlock := e.NewUnsignedBlock(t)
assert.False(t, bc.HasBlock(newBlock.Hash()))
}
func TestBlockchain_GetTransaction(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
tx1 := e.PrepareInvocation(t, []byte{byte(opcode.PUSH1)}, []neotest.Signer{acc})
e.AddNewBlock(t, tx1)
tx2 := e.PrepareInvocation(t, []byte{byte(opcode.PUSH2)}, []neotest.Signer{acc})
tx2Size := io.GetVarSize(tx2)
b := e.AddNewBlock(t, tx2)
tx, height, err := bc.GetTransaction(tx2.Hash())
require.Nil(t, err)
assert.Equal(t, b.Index, height)
assert.Equal(t, tx2Size, tx.Size())
assert.Equal(t, b.Transactions[0], tx)
}
func TestBlockchain_GetClaimable(t *testing.T) {
bc, acc := chain.NewSingle(t)
t.Run("first generation period", func(t *testing.T) {
amount, err := bc.CalculateClaimable(acc.ScriptHash(), 1)
require.NoError(t, err)
require.EqualValues(t, big.NewInt(5*native.GASFactor/10), amount)
})
}
func TestBlockchain_Close(t *testing.T) {
st := storage.NewMemoryStore()
bc, acc := chain.NewSingleWithCustomConfigAndStore(t, nil, st, false)
e := neotest.NewExecutor(t, bc, acc, acc)
go bc.Run()
e.GenerateNewBlocks(t, 10)
bc.Close()
// It's a hack, but we use internal knowledge of MemoryStore
// implementation which makes it completely unusable (up to panicing)
// after Close().
require.Panics(t, func() {
_ = st.PutChangeSet(map[string][]byte{"0": {1}}, nil)
})
}
func TestBlockchain_Subscriptions(t *testing.T) {
// We use buffering here as a substitute for reader goroutines, events
// get queued up and we read them one by one here.
const chBufSize = 16
blockCh := make(chan *block.Block, chBufSize)
txCh := make(chan *transaction.Transaction, chBufSize)
notificationCh := make(chan *state.ContainedNotificationEvent, chBufSize)
executionCh := make(chan *state.AppExecResult, chBufSize)
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
nativeGASHash := e.NativeHash(t, nativenames.Gas)
bc.SubscribeForBlocks(blockCh)
bc.SubscribeForTransactions(txCh)
bc.SubscribeForNotifications(notificationCh)
bc.SubscribeForExecutions(executionCh)
assert.Empty(t, notificationCh)
assert.Empty(t, executionCh)
assert.Empty(t, blockCh)
assert.Empty(t, txCh)
generatedB := e.AddNewBlock(t)
require.Eventually(t, func() bool { return len(blockCh) != 0 }, time.Second, 10*time.Millisecond)
assert.Len(t, notificationCh, 1) // validator bounty
assert.Len(t, executionCh, 2)
assert.Empty(t, txCh)
b := <-blockCh
assert.Equal(t, generatedB, b)
assert.Empty(t, blockCh)
aer := <-executionCh
assert.Equal(t, b.Hash(), aer.Container)
aer = <-executionCh
assert.Equal(t, b.Hash(), aer.Container)
notif := <-notificationCh
require.Equal(t, bc.UtilityTokenHash(), notif.ScriptHash)
script := io.NewBufBinWriter()
emit.Bytes(script.BinWriter, []byte("yay!"))
emit.Syscall(script.BinWriter, interopnames.SystemRuntimeNotify)
require.NoError(t, script.Err)
txGood1 := e.PrepareInvocation(t, script.Bytes(), []neotest.Signer{acc})
// Reset() reuses the script buffer and we need to keep scripts.
script = io.NewBufBinWriter()
emit.Bytes(script.BinWriter, []byte("nay!"))
emit.Syscall(script.BinWriter, interopnames.SystemRuntimeNotify)
emit.Opcodes(script.BinWriter, opcode.THROW)
require.NoError(t, script.Err)
txBad := e.PrepareInvocation(t, script.Bytes(), []neotest.Signer{acc})
script = io.NewBufBinWriter()
emit.Bytes(script.BinWriter, []byte("yay! yay! yay!"))
emit.Syscall(script.BinWriter, interopnames.SystemRuntimeNotify)
require.NoError(t, script.Err)
txGood2 := e.PrepareInvocation(t, script.Bytes(), []neotest.Signer{acc})
invBlock := e.AddNewBlock(t, txGood1, txBad, txGood2)
require.Eventually(t, func() bool {
return len(blockCh) != 0 && len(txCh) != 0 &&
len(notificationCh) != 0 && len(executionCh) != 0
}, time.Second, 10*time.Millisecond)
b = <-blockCh
require.Equal(t, invBlock, b)
assert.Empty(t, blockCh)
exec := <-executionCh
require.Equal(t, b.Hash(), exec.Container)
require.Equal(t, exec.VMState, vmstate.Halt)
// 3 burn events for every tx and 1 mint for primary node
require.True(t, len(notificationCh) >= 4)
for range 4 {
notif := <-notificationCh
require.Equal(t, nativeGASHash, notif.ScriptHash)
}
// Follow in-block transaction order.
for _, txExpected := range invBlock.Transactions {
tx := <-txCh
require.Equal(t, txExpected, tx)
exec := <-executionCh
require.Equal(t, tx.Hash(), exec.Container)
if exec.VMState == vmstate.Halt {
notif := <-notificationCh
require.Equal(t, hash.Hash160(tx.Script), notif.ScriptHash)
}
}
assert.Empty(t, txCh)
assert.Len(t, notificationCh, 1)
assert.Len(t, executionCh, 1)
notif = <-notificationCh
require.Equal(t, bc.UtilityTokenHash(), notif.ScriptHash)
exec = <-executionCh
require.Equal(t, b.Hash(), exec.Container)
require.Equal(t, exec.VMState, vmstate.Halt)
bc.UnsubscribeFromBlocks(blockCh)
bc.UnsubscribeFromTransactions(txCh)
bc.UnsubscribeFromNotifications(notificationCh)
bc.UnsubscribeFromExecutions(executionCh)
// Ensure that new blocks are processed correctly after unsubscription.
e.GenerateNewBlocks(t, 2*chBufSize)
}
func TestBlockchain_RemoveUntraceable(t *testing.T) {
neoCommitteeKey := []byte{0xfb, 0xff, 0xff, 0xff, 0x0e}
check := func(t *testing.T, bc *core.Blockchain, tHash, bHash, sHash util.Uint256, errorExpected bool) {
_, _, err := bc.GetTransaction(tHash)
if errorExpected {
require.Error(t, err)
} else {
require.NoError(t, err)
}
_, err = bc.GetAppExecResults(tHash, trigger.Application)
if errorExpected {
require.Error(t, err)
} else {
require.NoError(t, err)
}
_, err = bc.GetBlock(bHash)
if errorExpected {
require.Error(t, err)
} else {
require.NoError(t, err)
}
_, err = bc.GetHeader(bHash)
require.NoError(t, err)
if !sHash.Equals(util.Uint256{}) {
sm := bc.GetStateModule()
_, err = sm.GetState(sHash, neoCommitteeKey)
if errorExpected {
require.Error(t, err)
} else {
require.NoError(t, err)
}
}
}
t.Run("P2PStateExchangeExtensions off", func(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.MaxTraceableBlocks = 2
c.Ledger.GarbageCollectionPeriod = 2
c.Ledger.RemoveUntraceableBlocks = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
neoValidatorInvoker := e.ValidatorInvoker(e.NativeHash(t, nativenames.Neo))
tx1Hash := neoValidatorInvoker.Invoke(t, true, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
tx1Height := bc.BlockHeight()
b1 := e.TopBlock(t)
sRoot, err := bc.GetStateModule().GetStateRoot(tx1Height)
require.NoError(t, err)
neoValidatorInvoker.Invoke(t, true, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
_, h1, err := bc.GetTransaction(tx1Hash)
require.NoError(t, err)
require.Equal(t, tx1Height, h1)
check(t, bc, tx1Hash, b1.Hash(), sRoot.Root, false)
e.GenerateNewBlocks(t, 4)
sm := bc.GetStateModule()
require.Eventually(t, func() bool {
_, err = sm.GetState(sRoot.Root, neoCommitteeKey)
return err != nil
}, 2*bcPersistInterval, 10*time.Millisecond)
check(t, bc, tx1Hash, b1.Hash(), sRoot.Root, true)
})
t.Run("P2PStateExchangeExtensions on", func(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, func(c *config.Blockchain) {
c.MaxTraceableBlocks = 2
c.Ledger.GarbageCollectionPeriod = 2
c.Ledger.RemoveUntraceableBlocks = true
c.P2PStateExchangeExtensions = true
c.StateSyncInterval = 2
c.StateRootInHeader = true
})
e := neotest.NewExecutor(t, bc, acc, acc)
neoValidatorInvoker := e.ValidatorInvoker(e.NativeHash(t, nativenames.Neo))
tx1Hash := neoValidatorInvoker.Invoke(t, true, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
tx1Height := bc.BlockHeight()
b1 := e.TopBlock(t)
sRoot, err := bc.GetStateModule().GetStateRoot(tx1Height)
require.NoError(t, err)
tx2Hash := neoValidatorInvoker.Invoke(t, true, "transfer", acc.ScriptHash(), util.Uint160{1, 2, 3}, 1, nil)
tx2Height := bc.BlockHeight()
b2 := e.TopBlock(t)
_, h1, err := bc.GetTransaction(tx1Hash)
require.NoError(t, err)
require.Equal(t, tx1Height, h1)
e.GenerateNewBlocks(t, 3)
check(t, bc, tx1Hash, b1.Hash(), sRoot.Root, false)
check(t, bc, tx2Hash, b2.Hash(), sRoot.Root, false)
e.AddNewBlock(t)
check(t, bc, tx1Hash, b1.Hash(), util.Uint256{}, true)
check(t, bc, tx2Hash, b2.Hash(), util.Uint256{}, false)
_, h2, err := bc.GetTransaction(tx2Hash)
require.NoError(t, err)
require.Equal(t, tx2Height, h2)
})
}
func TestBlockchain_InvalidNotification(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
cs, _ := contracts.GetTestContractState(t, pathToInternalContracts, 0, 1, acc.ScriptHash())
e.DeployContract(t, &neotest.Contract{
Hash: cs.Hash,
NEF: &cs.NEF,
Manifest: &cs.Manifest,
}, nil)
cValidatorInvoker := e.ValidatorInvoker(cs.Hash)
cValidatorInvoker.InvokeAndCheck(t, func(t testing.TB, stack []stackitem.Item) {
require.Equal(t, 1, len(stack))
require.Nil(t, stack[0])
}, "invalidStack1")
cValidatorInvoker.Invoke(t, stackitem.NewInterop(nil), "invalidStack2")
}
// Test that deletion of non-existent doesn't result in error in tx or block addition.
func TestBlockchain_MPTDeleteNoKey(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
cs, _ := contracts.GetTestContractState(t, pathToInternalContracts, 0, 1, acc.ScriptHash())
e.DeployContract(t, &neotest.Contract{
Hash: cs.Hash,
NEF: &cs.NEF,
Manifest: &cs.Manifest,
}, nil)
cValidatorInvoker := e.ValidatorInvoker(cs.Hash)
cValidatorInvoker.Invoke(t, stackitem.Null{}, "delValue", "non-existent-key")
}
// Test that all default configurations are loadable.
func TestConfig_LoadDefaultConfigs(t *testing.T) {
var prefixPath = filepath.Join("..", "..", "config")
check := func(t *testing.T, cfgFileSuffix any) {
cfgPath := filepath.Join(prefixPath, fmt.Sprintf("protocol.%s.yml", cfgFileSuffix))
_, err := config.LoadFile(cfgPath)
require.NoError(t, err, fmt.Errorf("failed to load %s", cfgPath))
}
testCases := []any{
netmode.MainNet,
netmode.PrivNet,
netmode.TestNet,
netmode.UnitTestNet,
netmode.MainNetNeoFS,
netmode.TestNetNeoFS,
"privnet.docker.one",
"privnet.docker.two",
"privnet.docker.three",
"privnet.docker.four",
"privnet.docker.single",
"unit_testnet.single",
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s", tc), func(t *testing.T) {
check(t, tc)
})
}
}
func TestBlockchain_VerifyTx(t *testing.T) {
bc, validator, committee := chain.NewMultiWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = true
c.ReservedAttributes = true
})
e := neotest.NewExecutor(t, bc, validator, committee)
accs := make([]*wallet.Account, 5)
for i := range accs {
var err error
accs[i], err = wallet.NewAccount()
require.NoError(t, err)
}
notaryServiceFeePerKey := bc.GetNotaryServiceFeePerKey()
oracleAcc := accs[2]
oraclePubs := keys.PublicKeys{oracleAcc.PublicKey()}
require.NoError(t, oracleAcc.ConvertMultisig(1, oraclePubs))
neoHash := e.NativeHash(t, nativenames.Neo)
gasHash := e.NativeHash(t, nativenames.Gas)
policyHash := e.NativeHash(t, nativenames.Policy)
designateHash := e.NativeHash(t, nativenames.Designation)
notaryHash := e.NativeHash(t, nativenames.Notary)
oracleHash := e.NativeHash(t, nativenames.Oracle)
neoValidatorsInvoker := e.ValidatorInvoker(neoHash)
gasValidatorsInvoker := e.ValidatorInvoker(gasHash)
policySuperInvoker := e.NewInvoker(policyHash, validator, committee)
designateSuperInvoker := e.NewInvoker(designateHash, validator, committee)
neoOwner := validator.ScriptHash()
neoAmount := int64(1_000_000)
gasAmount := int64(1_000_000_000)
txs := make([]*transaction.Transaction, 0, 2*len(accs)+2)
for _, a := range accs {
txs = append(txs, neoValidatorsInvoker.PrepareInvoke(t, "transfer", neoOwner, a.Contract.ScriptHash(), neoAmount, nil))
txs = append(txs, gasValidatorsInvoker.PrepareInvoke(t, "transfer", neoOwner, a.Contract.ScriptHash(), gasAmount, nil))
}
txs = append(txs, neoValidatorsInvoker.PrepareInvoke(t, "transfer", neoOwner, committee.ScriptHash(), neoAmount, nil))
txs = append(txs, gasValidatorsInvoker.PrepareInvoke(t, "transfer", neoOwner, committee.ScriptHash(), gasAmount, nil))
e.AddNewBlock(t, txs...)
for _, tx := range txs {
e.CheckHalt(t, tx.Hash(), stackitem.NewBool(true))
}
policySuperInvoker.Invoke(t, true, "blockAccount", accs[1].PrivateKey().GetScriptHash().BytesBE())
checkErr := func(t *testing.T, expectedErr error, tx *transaction.Transaction) {
err := bc.VerifyTx(tx)
require.ErrorIs(t, err, expectedErr)
}
testScript := []byte{byte(opcode.PUSH1)}
newTestTx := func(t *testing.T, signer util.Uint160, script []byte) *transaction.Transaction {
tx := transaction.New(script, 1_000_000)
tx.Nonce = neotest.Nonce()
tx.ValidUntilBlock = e.Chain.BlockHeight() + 5
tx.Signers = []transaction.Signer{{
Account: signer,
Scopes: transaction.CalledByEntry,
}}
tx.NetworkFee = int64(io.GetVarSize(tx)+200 /* witness */) * bc.FeePerByte()
tx.NetworkFee += 1_000_000 // verification cost
return tx
}
h := accs[0].PrivateKey().GetScriptHash()
t.Run("Expired", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.ValidUntilBlock = 1
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrTxExpired, tx)
})
t.Run("BlockedAccount", func(t *testing.T) {
tx := newTestTx(t, accs[1].PrivateKey().GetScriptHash(), testScript)
require.NoError(t, accs[1].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrPolicy, tx)
})
t.Run("InsufficientGas", func(t *testing.T) {
balance := bc.GetUtilityTokenBalance(h)
tx := newTestTx(t, h, testScript)
tx.SystemFee = balance.Int64() + 1
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInsufficientFunds, tx)
})
t.Run("TooBigSystemFee", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.SystemFee = bc.GetConfig().MaxBlockSystemFee + 100500
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrPolicy, tx)
})
t.Run("TooBigTx", func(t *testing.T) {
script := make([]byte, transaction.MaxTransactionSize)
tx := newTestTx(t, h, script)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrTxTooBig, tx)
})
t.Run("NetworkFee", func(t *testing.T) {
t.Run("SmallNetworkFee", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.NetworkFee = 1
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrTxSmallNetworkFee, tx)
})
t.Run("AlmostEnoughNetworkFee", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
verificationNetFee, calcultedScriptSize := fee.Calculate(bc.GetBaseExecFee(), accs[0].Contract.Script)
expectedSize := io.GetVarSize(tx) + calcultedScriptSize
calculatedNetFee := verificationNetFee + int64(expectedSize)*bc.FeePerByte()
tx.NetworkFee = calculatedNetFee - 1
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
require.Equal(t, expectedSize, io.GetVarSize(tx))
checkErr(t, core.ErrVerificationFailed, tx)
})
t.Run("EnoughNetworkFee", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
verificationNetFee, calcultedScriptSize := fee.Calculate(bc.GetBaseExecFee(), accs[0].Contract.Script)
expectedSize := io.GetVarSize(tx) + calcultedScriptSize
calculatedNetFee := verificationNetFee + int64(expectedSize)*bc.FeePerByte()
tx.NetworkFee = calculatedNetFee
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
require.Equal(t, expectedSize, io.GetVarSize(tx))
require.NoError(t, bc.VerifyTx(tx))
})
t.Run("CalculateNetworkFee, signature script", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
expectedSize := io.GetVarSize(tx)
verificationNetFee, calculatedScriptSize := fee.Calculate(bc.GetBaseExecFee(), accs[0].Contract.Script)
expectedSize += calculatedScriptSize
expectedNetFee := verificationNetFee + int64(expectedSize)*bc.FeePerByte()
tx.NetworkFee = expectedNetFee
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
actualSize := io.GetVarSize(tx)
require.Equal(t, expectedSize, actualSize)
gasConsumed, err := bc.VerifyWitness(h, tx, &tx.Scripts[0], -1)
require.NoError(t, err)
require.Equal(t, verificationNetFee, gasConsumed)
require.Equal(t, expectedNetFee, bc.FeePerByte()*int64(actualSize)+gasConsumed)
})
t.Run("CalculateNetworkFee, multisignature script", func(t *testing.T) {
multisigAcc := accs[4]
pKeys := keys.PublicKeys{multisigAcc.PublicKey()}
require.NoError(t, multisigAcc.ConvertMultisig(1, pKeys))
multisigHash := hash.Hash160(multisigAcc.Contract.Script)
tx := newTestTx(t, multisigHash, testScript)
verificationNetFee, calculatedScriptSize := fee.Calculate(bc.GetBaseExecFee(), multisigAcc.Contract.Script)
expectedSize := io.GetVarSize(tx) + calculatedScriptSize
expectedNetFee := verificationNetFee + int64(expectedSize)*bc.FeePerByte()
tx.NetworkFee = expectedNetFee
require.NoError(t, multisigAcc.SignTx(netmode.UnitTestNet, tx))
actualSize := io.GetVarSize(tx)
require.Equal(t, expectedSize, actualSize)
gasConsumed, err := bc.VerifyWitness(multisigHash, tx, &tx.Scripts[0], -1)
require.NoError(t, err)
require.Equal(t, verificationNetFee, gasConsumed)
require.Equal(t, expectedNetFee, bc.FeePerByte()*int64(actualSize)+gasConsumed)
})
})
t.Run("InvalidTxScript", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.Script = append(tx.Script, 0xff)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidScript, tx)
})
t.Run("InvalidVerificationScript", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
verif := []byte{byte(opcode.JMP), 3, 0xff, byte(opcode.PUSHT)}
tx.Signers = append(tx.Signers, transaction.Signer{
Account: hash.Hash160(verif),
Scopes: transaction.Global,
})
tx.NetworkFee += 1000000
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
tx.Scripts = append(tx.Scripts, transaction.Witness{
InvocationScript: []byte{},
VerificationScript: verif,
})
checkErr(t, core.ErrInvalidVerificationScript, tx)
})
t.Run("InvalidInvocationScript", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
verif := []byte{byte(opcode.PUSHT)}
tx.Signers = append(tx.Signers, transaction.Signer{
Account: hash.Hash160(verif),
Scopes: transaction.Global,
})
tx.NetworkFee += 1000000
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
tx.Scripts = append(tx.Scripts, transaction.Witness{
InvocationScript: []byte{byte(opcode.JMP), 3, 0xff},
VerificationScript: verif,
})
checkErr(t, core.ErrInvalidInvocationScript, tx)
})
t.Run("Conflict", func(t *testing.T) {
balance := bc.GetUtilityTokenBalance(h).Int64()
tx := newTestTx(t, h, testScript)
tx.NetworkFee = balance / 2
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
require.NoError(t, bc.PoolTx(tx))
tx2 := newTestTx(t, h, testScript)
tx2.NetworkFee = balance / 2
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx2))
err := bc.PoolTx(tx2)
require.ErrorIs(t, err, core.ErrMemPoolConflict)
})
t.Run("InvalidWitnessHash", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
tx.Scripts[0].VerificationScript = []byte{byte(opcode.PUSHT)}
checkErr(t, core.ErrWitnessHashMismatch, tx)
})
t.Run("InvalidWitnessSignature", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
tx.Scripts[0].InvocationScript[10] = ^tx.Scripts[0].InvocationScript[10]
checkErr(t, core.ErrVerificationFailed, tx)
})
t.Run("InsufficientNetworkFeeForSecondWitness", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.Signers = append(tx.Signers, transaction.Signer{
Account: accs[3].PrivateKey().GetScriptHash(),
Scopes: transaction.Global,
})
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
require.NoError(t, accs[3].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrVerificationFailed, tx)
})
t.Run("OldTX", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
e.AddNewBlock(t, tx)
checkErr(t, core.ErrAlreadyExists, tx)
})
t.Run("MemPooledTX", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
require.NoError(t, bc.PoolTx(tx))
err := bc.PoolTx(tx)
require.ErrorIs(t, err, core.ErrAlreadyInPool)
})
t.Run("MemPoolOOM", func(t *testing.T) {
mp := mempool.New(1, 0, false, nil)
tx1 := newTestTx(t, h, testScript)
tx1.NetworkFee += 10000 // Give it more priority.
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx1))
require.NoError(t, bc.PoolTx(tx1, mp))
tx2 := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx2))
err := bc.PoolTx(tx2, mp)
require.ErrorIs(t, err, core.ErrOOM)
})
t.Run("Attribute", func(t *testing.T) {
t.Run("InvalidHighPriority", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: transaction.HighPriority})
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
t.Run("ValidHighPriority", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: transaction.HighPriority})
tx.NetworkFee += 4_000_000 // multisig check
tx.Signers = []transaction.Signer{{
Account: committee.ScriptHash(),
Scopes: transaction.None,
}}
rawScript := committee.Script()
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(bc.GetBaseExecFee(), rawScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * bc.FeePerByte()
tx.Scripts = []transaction.Witness{{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: rawScript,
}}
require.NoError(t, bc.VerifyTx(tx))
})
t.Run("Oracle", func(t *testing.T) {
cs := contracts.GetOracleContractState(t, pathToInternalContracts, validator.ScriptHash(), 0)
e.DeployContract(t, &neotest.Contract{
Hash: cs.Hash,
NEF: &cs.NEF,
Manifest: &cs.Manifest,
}, nil)
cInvoker := e.ValidatorInvoker(cs.Hash)
const gasForResponse int64 = 10_000_000
cInvoker.Invoke(t, stackitem.Null{}, "requestURL", "https://get.1234", "", "handle", []byte{}, gasForResponse)
oracleScript, err := smartcontract.CreateMajorityMultiSigRedeemScript(oraclePubs)
require.NoError(t, err)
oracleMultisigHash := hash.Hash160(oracleScript)
respScript := native.CreateOracleResponseScript(oracleHash)
// We need to create new transaction,
// because hashes are cached after signing.
getOracleTx := func(t *testing.T) *transaction.Transaction {
tx := transaction.New(respScript, 1000_0000)
tx.Nonce = neotest.Nonce()
tx.ValidUntilBlock = bc.BlockHeight() + 1
resp := &transaction.OracleResponse{
ID: 0,
Code: transaction.Success,
Result: []byte{1, 2, 3},
}
tx.Attributes = []transaction.Attribute{{
Type: transaction.OracleResponseT,
Value: resp,
}}
tx.NetworkFee += 4_000_000 // multisig check
tx.SystemFee = gasForResponse - tx.NetworkFee
tx.Signers = []transaction.Signer{{
Account: oracleMultisigHash,
Scopes: transaction.None,
}}
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(bc.GetBaseExecFee(), oracleScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * bc.FeePerByte()
return tx
}
t.Run("NoOracleNodes", func(t *testing.T) {
tx := getOracleTx(t)
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
keys := make([]any, 0, len(oraclePubs))
for _, p := range oraclePubs {
keys = append(keys, p.Bytes())
}
designateSuperInvoker.Invoke(t, stackitem.Null{}, "designateAsRole",
int64(noderoles.Oracle), keys)
t.Run("Valid", func(t *testing.T) {
tx := getOracleTx(t)
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
require.NoError(t, bc.VerifyTx(tx))
t.Run("NativeVerify", func(t *testing.T) {
tx.Signers = append(tx.Signers, transaction.Signer{
Account: oracleHash,
Scopes: transaction.None,
})
tx.Scripts = append(tx.Scripts, transaction.Witness{})
t.Run("NonZeroVerification", func(t *testing.T) {
w := io.NewBufBinWriter()
emit.Opcodes(w.BinWriter, opcode.ABORT)
emit.Bytes(w.BinWriter, util.Uint160{}.BytesBE())
emit.Int(w.BinWriter, 0)
emit.String(w.BinWriter, nativenames.Oracle)
tx.Scripts[len(tx.Scripts)-1].VerificationScript = w.Bytes()
err := bc.VerifyTx(tx)
require.ErrorIs(t, err, core.ErrNativeContractWitness)
})
t.Run("Good", func(t *testing.T) {
tx.Scripts[len(tx.Scripts)-1].VerificationScript = nil
require.NoError(t, bc.VerifyTx(tx))
})
})
})
t.Run("InvalidRequestID", func(t *testing.T) {
tx := getOracleTx(t)
tx.Attributes[0].Value.(*transaction.OracleResponse).ID = 2
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
t.Run("InvalidScope", func(t *testing.T) {
tx := getOracleTx(t)
tx.Signers[0].Scopes = transaction.Global
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
t.Run("InvalidScript", func(t *testing.T) {
tx := getOracleTx(t)
tx.Script = append(tx.Script, byte(opcode.NOP))
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
t.Run("InvalidSigner", func(t *testing.T) {
tx := getOracleTx(t)
tx.Signers[0].Account = accs[0].Contract.ScriptHash()
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
t.Run("SmallFee", func(t *testing.T) {
tx := getOracleTx(t)
tx.SystemFee = 0
require.NoError(t, oracleAcc.SignTx(netmode.UnitTestNet, tx))
checkErr(t, core.ErrInvalidAttribute, tx)
})
})
t.Run("NotValidBefore", func(t *testing.T) {
getNVBTx := func(e *neotest.Executor, height uint32) *transaction.Transaction {
tx := newTestTx(t, h, testScript)
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: transaction.NotValidBeforeT, Value: &transaction.NotValidBefore{Height: height}})
tx.NetworkFee += 4_000_000 // multisig check
tx.Signers = []transaction.Signer{{
Account: e.Validator.ScriptHash(),
Scopes: transaction.None,
}}
size := io.GetVarSize(tx)
rawScript := e.Validator.Script()
netFee, sizeDelta := fee.Calculate(e.Chain.GetBaseExecFee(), rawScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * e.Chain.FeePerByte()
tx.Scripts = []transaction.Witness{{
InvocationScript: e.Validator.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: rawScript,
}}
return tx
}
t.Run("Disabled", func(t *testing.T) { // check that NVB attribute is not an extension anymore.
bcBad, validatorBad, committeeBad := chain.NewMultiWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = false
c.ReservedAttributes = false
})
eBad := neotest.NewExecutor(t, bcBad, validatorBad, committeeBad)
tx := getNVBTx(eBad, bcBad.BlockHeight())
err := bcBad.VerifyTx(tx)
require.NoError(t, err)
})
t.Run("Enabled", func(t *testing.T) {
t.Run("NotYetValid", func(t *testing.T) {
tx := getNVBTx(e, bc.BlockHeight()+1)
require.ErrorIs(t, bc.VerifyTx(tx), core.ErrInvalidAttribute)
})
t.Run("positive", func(t *testing.T) {
tx := getNVBTx(e, bc.BlockHeight())
require.NoError(t, bc.VerifyTx(tx))
})
})
})
t.Run("Reserved", func(t *testing.T) {
getReservedTx := func(e *neotest.Executor, attrType transaction.AttrType) *transaction.Transaction {
tx := newTestTx(t, h, testScript)
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: attrType, Value: &transaction.Reserved{Value: []byte{1, 2, 3}}})
tx.NetworkFee += 4_000_000 // multisig check
tx.Signers = []transaction.Signer{{
Account: e.Validator.ScriptHash(),
Scopes: transaction.None,
}}
rawScript := e.Validator.Script()
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(e.Chain.GetBaseExecFee(), rawScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * e.Chain.FeePerByte()
tx.Scripts = []transaction.Witness{{
InvocationScript: e.Validator.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: rawScript,
}}
return tx
}
t.Run("Disabled", func(t *testing.T) {
bcBad, validatorBad, committeeBad := chain.NewMultiWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = false
c.ReservedAttributes = false
})
eBad := neotest.NewExecutor(t, bcBad, validatorBad, committeeBad)
tx := getReservedTx(eBad, transaction.ReservedLowerBound+3)
err := bcBad.VerifyTx(tx)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "invalid attribute: attribute of reserved type was found, but ReservedAttributes are disabled"))
})
t.Run("Enabled", func(t *testing.T) {
tx := getReservedTx(e, transaction.ReservedLowerBound+3)
require.NoError(t, bc.VerifyTx(tx))
})
})
t.Run("Conflicts", func(t *testing.T) {
getConflictsTx := func(e *neotest.Executor, hashes ...util.Uint256) *transaction.Transaction {
tx := newTestTx(t, h, testScript)
tx.Attributes = make([]transaction.Attribute, len(hashes))
for i, h := range hashes {
tx.Attributes[i] = transaction.Attribute{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: h,
},
}
}
tx.NetworkFee += 4_000_000 // multisig check
tx.Signers = []transaction.Signer{{
Account: e.Validator.ScriptHash(),
Scopes: transaction.None,
}}
rawScript := e.Validator.Script()
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(e.Chain.GetBaseExecFee(), rawScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * e.Chain.FeePerByte()
tx.Scripts = []transaction.Witness{{
InvocationScript: e.Validator.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: rawScript,
}}
return tx
}
t.Run("disabled", func(t *testing.T) { // check that Conflicts attribute is not an extension anymore.
bcBad, validatorBad, committeeBad := chain.NewMultiWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = false
c.ReservedAttributes = false
})
eBad := neotest.NewExecutor(t, bcBad, validatorBad, committeeBad)
tx := getConflictsTx(eBad, util.Uint256{1, 2, 3})
err := bcBad.VerifyTx(tx)
require.NoError(t, err)
})
t.Run("enabled", func(t *testing.T) {
t.Run("dummy on-chain conflict", func(t *testing.T) {
t.Run("on-chain conflict signed by malicious party", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
require.NoError(t, accs[0].SignTx(netmode.UnitTestNet, tx))
conflicting := transaction.New([]byte{byte(opcode.RET)}, 1000_0000)
conflicting.ValidUntilBlock = bc.BlockHeight() + 1
conflicting.Signers = []transaction.Signer{
{
Account: validator.ScriptHash(),
Scopes: transaction.CalledByEntry,
},
}
conflicting.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: tx.Hash(),
},
},
}
conflicting.NetworkFee = 1000_0000
require.NoError(t, validator.SignTx(netmode.UnitTestNet, conflicting))
e.AddNewBlock(t, conflicting)
// We expect `tx` to pass verification, because on-chained `conflicting` doesn't have
// `tx`'s payer in the signers list, thus, `conflicting` should be considered as
// malicious conflict.
require.NoError(t, bc.VerifyTx(tx))
})
t.Run("multiple on-chain conflicts signed by malicious parties", func(t *testing.T) {
m1 := e.NewAccount(t)
m2 := e.NewAccount(t)
m3 := e.NewAccount(t)
good := e.NewAccount(t)
// txGood doesn't conflict with anyone and signed by good signer.
txGood := newTestTx(t, good.ScriptHash(), testScript)
require.NoError(t, good.SignTx(netmode.UnitTestNet, txGood))
// txM1 conflicts with txGood and signed by two malicious signers.
txM1 := newTestTx(t, m1.ScriptHash(), testScript)
txM1.Signers = append(txM1.Signers, transaction.Signer{Account: m2.ScriptHash()})
txM1.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM1.NetworkFee = 1_000_0000
require.NoError(t, m1.SignTx(netmode.UnitTestNet, txM1))
require.NoError(t, m2.SignTx(netmode.UnitTestNet, txM1))
e.AddNewBlock(t, txM1)
// txM2 conflicts with txGood and signed by one malicious signer.
txM2 := newTestTx(t, m3.ScriptHash(), testScript)
txM2.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM2.NetworkFee = 1_000_0000
require.NoError(t, m3.SignTx(netmode.UnitTestNet, txM2))
e.AddNewBlock(t, txM2)
// We expect `tx` to pass verification, because on-chained `conflicting` doesn't have
// `tx`'s payer in the signers list, thus, `conflicting` should be considered as
// malicious conflict.
require.NoError(t, bc.VerifyTx(txGood))
// After that txGood can be added to the chain normally.
e.AddNewBlock(t, txGood)
// And after that ErrAlreadyExist is expected on verification.
require.ErrorIs(t, bc.VerifyTx(txGood), core.ErrAlreadyExists)
})
t.Run("multiple on-chain conflicts signed by [valid+malicious] parties", func(t *testing.T) {
m1 := e.NewAccount(t)
m2 := e.NewAccount(t)
m3 := e.NewAccount(t)
good := e.NewAccount(t)
// txGood doesn't conflict with anyone and signed by good signer.
txGood := newTestTx(t, good.ScriptHash(), testScript)
require.NoError(t, good.SignTx(netmode.UnitTestNet, txGood))
// txM1 conflicts with txGood and signed by one malicious and one good signers.
txM1 := newTestTx(t, m1.ScriptHash(), testScript)
txM1.Signers = append(txM1.Signers, transaction.Signer{Account: good.ScriptHash()})
txM1.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM1.NetworkFee = 1_000_0000
require.NoError(t, m1.SignTx(netmode.UnitTestNet, txM1))
require.NoError(t, good.SignTx(netmode.UnitTestNet, txM1))
e.AddNewBlock(t, txM1)
// txM2 conflicts with txGood and signed by two malicious signers.
txM2 := newTestTx(t, m2.ScriptHash(), testScript)
txM2.Signers = append(txM2.Signers, transaction.Signer{Account: m3.ScriptHash()})
txM2.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM2.NetworkFee = 1_000_0000
require.NoError(t, m2.SignTx(netmode.UnitTestNet, txM2))
require.NoError(t, m3.SignTx(netmode.UnitTestNet, txM2))
e.AddNewBlock(t, txM2)
// We expect `tx` to fail verification, because one of the on-chained `conflicting`
// transactions has common signers with `tx`, thus, `conflicting` should be
// considered as a valid conflict.
require.ErrorIs(t, bc.VerifyTx(txGood), core.ErrHasConflicts)
})
t.Run("multiple on-chain conflicts signed by [malicious+valid] parties", func(t *testing.T) {
m1 := e.NewAccount(t)
m2 := e.NewAccount(t)
m3 := e.NewAccount(t)
good := e.NewAccount(t)
// txGood doesn't conflict with anyone and signed by good signer.
txGood := newTestTx(t, good.ScriptHash(), testScript)
require.NoError(t, good.SignTx(netmode.UnitTestNet, txGood))
// txM2 conflicts with txGood and signed by two malicious signers.
txM2 := newTestTx(t, m2.ScriptHash(), testScript)
txM2.Signers = append(txM2.Signers, transaction.Signer{Account: m3.ScriptHash()})
txM2.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM2.NetworkFee = 1_000_0000
require.NoError(t, m2.SignTx(netmode.UnitTestNet, txM2))
require.NoError(t, m3.SignTx(netmode.UnitTestNet, txM2))
e.AddNewBlock(t, txM2)
// txM1 conflicts with txGood and signed by one malicious and one good signers.
txM1 := newTestTx(t, m1.ScriptHash(), testScript)
txM1.Signers = append(txM1.Signers, transaction.Signer{Account: good.ScriptHash()})
txM1.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM1.NetworkFee = 1_000_0000
require.NoError(t, m1.SignTx(netmode.UnitTestNet, txM1))
require.NoError(t, good.SignTx(netmode.UnitTestNet, txM1))
e.AddNewBlock(t, txM1)
// We expect `tx` to fail verification, because one of the on-chained `conflicting`
// transactions has common signers with `tx`, thus, `conflicting` should be
// considered as a valid conflict.
require.ErrorIs(t, bc.VerifyTx(txGood), core.ErrHasConflicts)
})
t.Run("multiple on-chain conflicts signed by [valid + malicious + valid] parties", func(t *testing.T) {
m1 := e.NewAccount(t)
m2 := e.NewAccount(t)
m3 := e.NewAccount(t)
good := e.NewAccount(t)
// txGood doesn't conflict with anyone and signed by good signer.
txGood := newTestTx(t, good.ScriptHash(), testScript)
require.NoError(t, good.SignTx(netmode.UnitTestNet, txGood))
// txM1 conflicts with txGood and signed by one malicious and one good signers.
txM1 := newTestTx(t, m1.ScriptHash(), testScript)
txM1.Signers = append(txM1.Signers, transaction.Signer{Account: good.ScriptHash()})
txM1.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM1.NetworkFee = 1_000_0000
require.NoError(t, m1.SignTx(netmode.UnitTestNet, txM1))
require.NoError(t, good.SignTx(netmode.UnitTestNet, txM1))
e.AddNewBlock(t, txM1)
// txM2 conflicts with txGood and signed by two malicious signers.
txM2 := newTestTx(t, m2.ScriptHash(), testScript)
txM2.Signers = append(txM2.Signers, transaction.Signer{Account: m3.ScriptHash()})
txM2.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM2.NetworkFee = 1_000_0000
require.NoError(t, m2.SignTx(netmode.UnitTestNet, txM2))
require.NoError(t, m3.SignTx(netmode.UnitTestNet, txM2))
e.AddNewBlock(t, txM2)
// txM3 conflicts with txGood and signed by one good and one malicious signers.
txM3 := newTestTx(t, good.ScriptHash(), testScript)
txM3.Signers = append(txM3.Signers, transaction.Signer{Account: m1.ScriptHash()})
txM3.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: txGood.Hash(),
},
},
}
txM3.NetworkFee = 1_000_0000
require.NoError(t, good.SignTx(netmode.UnitTestNet, txM3))
require.NoError(t, m1.SignTx(netmode.UnitTestNet, txM3))
e.AddNewBlock(t, txM3)
// We expect `tx` to fail verification, because one of the on-chained `conflicting`
// transactions has common signers with `tx`, thus, `conflicting` should be
// considered as a valid conflict.
require.ErrorIs(t, bc.VerifyTx(txGood), core.ErrHasConflicts)
})
t.Run("on-chain conflict signed by single valid sender", func(t *testing.T) {
tx := newTestTx(t, h, testScript)
tx.Signers = []transaction.Signer{{Account: validator.ScriptHash()}}
require.NoError(t, validator.SignTx(netmode.UnitTestNet, tx))
conflicting := transaction.New([]byte{byte(opcode.RET)}, 1000_0000)
conflicting.ValidUntilBlock = bc.BlockHeight() + 1
conflicting.Signers = []transaction.Signer{
{
Account: validator.ScriptHash(),
Scopes: transaction.CalledByEntry,
},
}
conflicting.Attributes = []transaction.Attribute{
{
Type: transaction.ConflictsT,
Value: &transaction.Conflicts{
Hash: tx.Hash(),
},
},
}
conflicting.NetworkFee = 1000_0000
require.NoError(t, validator.SignTx(netmode.UnitTestNet, conflicting))
e.AddNewBlock(t, conflicting)
// We expect `tx` to fail verification, because on-chained `conflicting` has
// `tx`'s payer as a signer.
require.ErrorIs(t, bc.VerifyTx(tx), core.ErrHasConflicts)
})
})
t.Run("attribute on-chain conflict", func(t *testing.T) {
tx := neoValidatorsInvoker.Invoke(t, stackitem.NewBool(true), "transfer", neoOwner, neoOwner, 1, nil)
txConflict := getConflictsTx(e, tx)
require.Error(t, bc.VerifyTx(txConflict))
})
t.Run("positive", func(t *testing.T) {
tx := getConflictsTx(e, random.Uint256())
require.NoError(t, bc.VerifyTx(tx))
})
})
})
t.Run("NotaryAssisted", func(t *testing.T) {
notary, err := wallet.NewAccount()
require.NoError(t, err)
designateSuperInvoker.Invoke(t, stackitem.Null{}, "designateAsRole",
int64(noderoles.P2PNotary), []any{notary.PublicKey().Bytes()})
txSetNotary := transaction.New([]byte{byte(opcode.RET)}, 0)
txSetNotary.Signers = []transaction.Signer{
{
Account: committee.ScriptHash(),
Scopes: transaction.Global,
},
}
txSetNotary.Scripts = []transaction.Witness{{
InvocationScript: e.Committee.SignHashable(uint32(netmode.UnitTestNet), txSetNotary),
VerificationScript: e.Committee.Script(),
}}
getNotaryAssistedTx := func(e *neotest.Executor, signaturesCount uint8, serviceFee int64) *transaction.Transaction {
tx := newTestTx(t, h, testScript)
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: transaction.NotaryAssistedT, Value: &transaction.NotaryAssisted{
NKeys: signaturesCount,
}})
tx.NetworkFee += serviceFee // additional fee for NotaryAssisted attribute
tx.NetworkFee += 4_000_000 // multisig check
tx.Signers = []transaction.Signer{{
Account: e.CommitteeHash,
Scopes: transaction.None,
},
{
Account: notaryHash,
Scopes: transaction.None,
},
}
rawScript := committee.Script()
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(e.Chain.GetBaseExecFee(), rawScript)
tx.NetworkFee += netFee
tx.NetworkFee += int64(size+sizeDelta) * e.Chain.FeePerByte()
tx.Scripts = []transaction.Witness{
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: rawScript,
},
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, notary.PrivateKey().SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
}
return tx
}
t.Run("Disabled", func(t *testing.T) {
bcBad, validatorBad, committeeBad := chain.NewMultiWithCustomConfig(t, func(c *config.Blockchain) {
c.P2PSigExtensions = false
c.ReservedAttributes = false
})
eBad := neotest.NewExecutor(t, bcBad, validatorBad, committeeBad)
tx := transaction.New(testScript, 1_000_000)
tx.Nonce = neotest.Nonce()
tx.ValidUntilBlock = e.Chain.BlockHeight() + 5
tx.Attributes = append(tx.Attributes, transaction.Attribute{Type: transaction.NotaryAssistedT, Value: &transaction.NotaryAssisted{NKeys: 0}})
tx.NetworkFee = 1_0000_0000
eBad.SignTx(t, tx, 1_0000_0000, eBad.Committee)
err := bcBad.VerifyTx(tx)
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), "invalid attribute: NotaryAssisted attribute was found, but P2PSigExtensions are disabled"))
})
t.Run("Enabled, insufficient network fee", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, 0)
require.Error(t, bc.VerifyTx(tx))
})
t.Run("Test verify", func(t *testing.T) {
t.Run("no NotaryAssisted attribute", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Attributes = []transaction.Attribute{}
tx.Signers = []transaction.Signer{
{
Account: committee.ScriptHash(),
Scopes: transaction.None,
},
{
Account: notaryHash,
Scopes: transaction.None,
},
}
tx.Scripts = []transaction.Witness{
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: committee.Script(),
},
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, notary.PrivateKey().SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("no deposit", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Signers = []transaction.Signer{
{
Account: notaryHash,
Scopes: transaction.None,
},
{
Account: committee.ScriptHash(),
Scopes: transaction.None,
},
}
tx.Scripts = []transaction.Witness{
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, notary.PrivateKey().SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: committee.Script(),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("bad Notary signer scope", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Signers = []transaction.Signer{
{
Account: committee.ScriptHash(),
Scopes: transaction.None,
},
{
Account: notaryHash,
Scopes: transaction.CalledByEntry,
},
}
tx.Scripts = []transaction.Witness{
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: committee.Script(),
},
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, notary.PrivateKey().SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("not signed by Notary", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Signers = []transaction.Signer{
{
Account: committee.ScriptHash(),
Scopes: transaction.None,
},
}
tx.Scripts = []transaction.Witness{
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: committee.Script(),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("bad Notary node witness", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Signers = []transaction.Signer{
{
Account: committee.ScriptHash(),
Scopes: transaction.None,
},
{
Account: notaryHash,
Scopes: transaction.None,
},
}
acc, err := keys.NewPrivateKey()
require.NoError(t, err)
tx.Scripts = []transaction.Witness{
{
InvocationScript: committee.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: committee.Script(),
},
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, acc.SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("missing payer", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
tx.Signers = []transaction.Signer{
{
Account: notaryHash,
Scopes: transaction.None,
},
}
tx.Scripts = []transaction.Witness{
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, notary.PrivateKey().SignHashable(uint32(netmode.UnitTestNet), tx)...),
},
}
require.Error(t, bc.VerifyTx(tx))
})
t.Run("positive", func(t *testing.T) {
tx := getNotaryAssistedTx(e, 1, (1+1)*notaryServiceFeePerKey)
require.NoError(t, bc.VerifyTx(tx))
})
})
})
})
t.Run("Partially-filled transaction", func(t *testing.T) {
getPartiallyFilledTx := func(nvb uint32, validUntil uint32) *transaction.Transaction {
tx := newTestTx(t, h, testScript)
tx.ValidUntilBlock = validUntil
tx.Attributes = []transaction.Attribute{
{
Type: transaction.NotValidBeforeT,
Value: &transaction.NotValidBefore{Height: nvb},
},
{
Type: transaction.NotaryAssistedT,
Value: &transaction.NotaryAssisted{NKeys: 0},
},
}
tx.Signers = []transaction.Signer{
{
Account: notaryHash,
Scopes: transaction.None,
},
{
Account: validator.ScriptHash(),
Scopes: transaction.None,
},
}
size := io.GetVarSize(tx)
netFee, sizeDelta := fee.Calculate(bc.GetBaseExecFee(), validator.Script())
tx.NetworkFee = netFee + // multisig witness verification price
int64(size)*bc.FeePerByte() + // fee for unsigned size
int64(sizeDelta)*bc.FeePerByte() + // fee for multisig size
66*bc.FeePerByte() + // fee for Notary signature size (66 bytes for Invocation script and 0 bytes for Verification script)
2*bc.FeePerByte() + // fee for the length of each script in Notary witness (they are nil, so we did not take them into account during `size` calculation)
notaryServiceFeePerKey + // fee for Notary attribute
fee.Opcode(bc.GetBaseExecFee(), // Notary verification script
opcode.PUSHDATA1, opcode.RET, // invocation script
opcode.PUSH0, opcode.SYSCALL, opcode.RET) + // Neo.Native.Call
nativeprices.NotaryVerificationPrice*bc.GetBaseExecFee() // Notary witness verification price
tx.Scripts = []transaction.Witness{
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, make([]byte, keys.SignatureLen)...),
VerificationScript: []byte{},
},
{
InvocationScript: validator.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: validator.Script(),
},
}
return tx
}
mp := mempool.New(10, 1, false, nil)
verificationF := func(tx *transaction.Transaction, data any) error {
if data.(int) > 5 {
return errors.New("bad data")
}
return nil
}
t.Run("failed pre-verification", func(t *testing.T) {
tx := getPartiallyFilledTx(bc.BlockHeight(), bc.BlockHeight()+1)
require.Error(t, bc.PoolTxWithData(tx, 6, mp, bc, verificationF)) // here and below let's use `bc` instead of proper NotaryFeer for the test simplicity.
})
t.Run("GasLimitExceeded during witness verification", func(t *testing.T) {
tx := getPartiallyFilledTx(bc.BlockHeight(), bc.BlockHeight()+1)
tx.NetworkFee-- // to check that NetworkFee was set correctly in getPartiallyFilledTx
tx.Scripts = []transaction.Witness{
{
InvocationScript: append([]byte{byte(opcode.PUSHDATA1), keys.SignatureLen}, make([]byte, keys.SignatureLen)...),
VerificationScript: []byte{},
},
{
InvocationScript: validator.SignHashable(uint32(netmode.UnitTestNet), tx),
VerificationScript: validator.Script(),
},
}
require.Error(t, bc.PoolTxWithData(tx, 5, mp, bc, verificationF))
})
t.Run("bad NVB: too big", func(t *testing.T) {
maxNVB, err := bc.GetMaxNotValidBeforeDelta()
require.NoError(t, err)
tx := getPartiallyFilledTx(bc.BlockHeight()+maxNVB+1, bc.BlockHeight()+1)
require.ErrorIs(t, bc.PoolTxWithData(tx, 5, mp, bc, verificationF), core.ErrInvalidAttribute)
})
t.Run("bad ValidUntilBlock: too small", func(t *testing.T) {
maxNVB, err := bc.GetMaxNotValidBeforeDelta()
require.NoError(t, err)
tx := getPartiallyFilledTx(bc.BlockHeight(), bc.BlockHeight()+maxNVB+1)
require.ErrorIs(t, bc.PoolTxWithData(tx, 5, mp, bc, verificationF), core.ErrInvalidAttribute)
})
t.Run("good", func(t *testing.T) {
tx := getPartiallyFilledTx(bc.BlockHeight(), bc.BlockHeight()+1)
require.NoError(t, bc.PoolTxWithData(tx, 5, mp, bc, verificationF))
})
})
}
func TestBlockchain_Bug1728(t *testing.T) {
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
managementInvoker := e.ValidatorInvoker(e.NativeHash(t, nativenames.Management))
src := `package example
import "github.com/nspcc-dev/neo-go/pkg/interop/runtime"
func init() { if true { } else { } }
func _deploy(_ any, isUpdate bool) {
runtime.Log("Deploy")
}`
c := neotest.CompileSource(t, acc.ScriptHash(), strings.NewReader(src), &compiler.Options{Name: "TestContract"})
managementInvoker.DeployContract(t, c, nil)
}
func TestBlockchain_ResetStateErrors(t *testing.T) {
chainHeight := 3
checkResetErr := func(t *testing.T, cfg func(c *config.Blockchain), h uint32, errText string) {
db, path := newLevelDBForTestingWithPath(t, t.TempDir())
bc, validators, committee := chain.NewMultiWithCustomConfigAndStore(t, cfg, db, false)
e := neotest.NewExecutor(t, bc, validators, committee)
go bc.Run()
for range chainHeight {
e.AddNewBlock(t) // get some height
}
bc.Close()
db, _ = newLevelDBForTestingWithPath(t, path)
defer db.Close()
bc, _, _ = chain.NewMultiWithCustomConfigAndStore(t, cfg, db, false)
err := bc.Reset(h)
if errText != "" {
require.Error(t, err)
require.True(t, strings.Contains(err.Error(), errText), err)
} else {
require.NoError(t, err)
}
}
t.Run("large height", func(t *testing.T) {
checkResetErr(t, nil, uint32(chainHeight+1), "can't reset state to height 4")
})
t.Run("already at height", func(t *testing.T) {
checkResetErr(t, nil, uint32(chainHeight), "")
})
t.Run("KeepOnlyLatestState is enabled", func(t *testing.T) {
checkResetErr(t, func(c *config.Blockchain) {
c.Ledger.KeepOnlyLatestState = true
}, uint32(chainHeight-1), "KeepOnlyLatestState is enabled")
})
t.Run("some blocks where removed", func(t *testing.T) {
checkResetErr(t, func(c *config.Blockchain) {
c.Ledger.RemoveUntraceableBlocks = true
c.MaxTraceableBlocks = 2
}, uint32(chainHeight-3), "RemoveUntraceableBlocks is enabled, a necessary batch of traceable blocks has already been removed")
})
}
// TestBlockchain_ResetState is based on knowledge about basic chain transactions,
// it performs basic chain reset and checks that reset chain has proper state.
func TestBlockchain_ResetState(t *testing.T) {
// Create the DB.
db, path := newLevelDBForTestingWithPath(t, t.TempDir())
bc, validators, committee := chain.NewMultiWithCustomConfigAndStore(t, func(cfg *config.Blockchain) {
cfg.P2PSigExtensions = true
}, db, false)
go bc.Run()
e := neotest.NewExecutor(t, bc, validators, committee)
basicchain.Init(t, "../../", e)
// Gather some reference information.
resetBlockIndex := uint32(15)
staleID := basicchain.NFSOContractID // NEP11
rublesH := e.ContractHash(t, basicchain.RublesContractID)
nnsH := e.ContractHash(t, basicchain.NNSContractID)
staleH := e.ContractHash(t, staleID)
gasH := e.NativeHash(t, nativenames.Gas)
neoH := e.NativeHash(t, nativenames.Neo)
gasID := e.NativeID(t, nativenames.Gas)
neoID := e.NativeID(t, nativenames.Neo)
resetBlockHash := bc.GetHeaderHash(resetBlockIndex)
resetBlockHeader, err := bc.GetHeader(resetBlockHash)
require.NoError(t, err)
topBlockHeight := bc.BlockHeight()
topBH := bc.GetHeaderHash(bc.BlockHeight())
staleBH := bc.GetHeaderHash(resetBlockIndex + 1)
staleB, err := bc.GetBlock(staleBH)
require.NoError(t, err)
staleTx := staleB.Transactions[0]
_, err = bc.GetAppExecResults(staleTx.Hash(), trigger.Application)
require.NoError(t, err)
sr, err := bc.GetStateModule().GetStateRoot(resetBlockIndex)
require.NoError(t, err)
staleSR, err := bc.GetStateModule().GetStateRoot(resetBlockIndex + 1)
require.NoError(t, err)
rublesKey := []byte("testkey")
rublesStaleKey := []byte("aa")
rublesStaleValue := bc.GetStorageItem(basicchain.RublesContractID, rublesKey) // check value is there
require.Equal(t, []byte(basicchain.RublesNewTestvalue), []byte(rublesStaleValue))
acc0 := e.Validator.(neotest.MultiSigner).Single(2) // priv0 index->order and order->index conversion
priv0ScriptHash := acc0.ScriptHash()
var (
expectedNEP11t []*state.NEP11Transfer
expectedNEP17t []*state.NEP17Transfer
)
require.NoError(t, bc.ForEachNEP11Transfer(priv0ScriptHash, resetBlockHeader.Timestamp, func(t *state.NEP11Transfer) (bool, error) {
if t.Block <= resetBlockIndex {
expectedNEP11t = append(expectedNEP11t, t)
}
return true, nil
}))
require.NoError(t, bc.ForEachNEP17Transfer(priv0ScriptHash, resetBlockHeader.Timestamp, func(t *state.NEP17Transfer) (bool, error) {
if t.Block <= resetBlockIndex {
expectedNEP17t = append(expectedNEP17t, t)
}
return true, nil
}))
// checkProof checks that some stale proof is reachable
checkProof := func() {
rublesStaleFullKey := make([]byte, 4)
binary.LittleEndian.PutUint32(rublesStaleFullKey, uint32(basicchain.RublesContractID))
rublesStaleFullKey = append(rublesStaleFullKey, rublesStaleKey...)
proof, err := bc.GetStateModule().GetStateProof(staleSR.Root, rublesStaleFullKey)
require.NoError(t, err)
require.NotEmpty(t, proof)
}
checkProof()
// Ensure all changes were persisted.
bc.Close()
// Start new chain with existing DB, but do not run it.
db, _ = newLevelDBForTestingWithPath(t, path)
bc, _, _ = chain.NewMultiWithCustomConfigAndStore(t, func(cfg *config.Blockchain) {
cfg.P2PSigExtensions = true
}, db, false)
defer db.Close()
require.Equal(t, topBlockHeight, bc.BlockHeight()) // ensure DB was properly initialized.
// Reset state.
require.NoError(t, bc.Reset(resetBlockIndex))
// Check that state was properly reset.
require.Equal(t, resetBlockIndex, bc.BlockHeight())
require.Equal(t, resetBlockIndex, bc.HeaderHeight())
require.Equal(t, resetBlockHash, bc.CurrentHeaderHash())
require.Equal(t, resetBlockHash, bc.CurrentBlockHash())
require.Equal(t, resetBlockIndex, bc.GetStateModule().CurrentLocalHeight())
require.Equal(t, sr.Root, bc.GetStateModule().CurrentLocalStateRoot())
require.Equal(t, uint32(0), bc.GetStateModule().CurrentValidatedHeight())
// Try to get the latest block\header.
bh := bc.GetHeaderHash(resetBlockIndex)
require.Equal(t, resetBlockHash, bh)
h, err := bc.GetHeader(bh)
require.NoError(t, err)
require.Equal(t, resetBlockHeader, h)
actualRublesHash, err := bc.GetContractScriptHash(basicchain.RublesContractID)
require.NoError(t, err)
require.Equal(t, rublesH, actualRublesHash)
// Check that stale blocks/headers/txs/aers/sr are not reachable.
for i := resetBlockIndex + 1; i <= topBlockHeight; i++ {
hHash := bc.GetHeaderHash(i)
require.Equal(t, util.Uint256{}, hHash)
_, err = bc.GetStateRoot(i)
require.Error(t, err)
}
for _, h := range []util.Uint256{staleBH, topBH} {
_, err = bc.GetHeader(h)
require.Error(t, err)
_, err = bc.GetHeader(h)
require.Error(t, err)
}
_, _, err = bc.GetTransaction(staleTx.Hash())
require.Error(t, err)
_, err = bc.GetAppExecResults(staleTx.Hash(), trigger.Application)
require.Error(t, err)
// However, proofs and everything related to stale MPT nodes still should work properly,
// because we don't remove stale MPT nodes.
checkProof()
// Check NEP-compatible contracts.
nep11 := bc.GetNEP11Contracts()
require.Equal(t, 1, len(nep11)) // NNS
require.Equal(t, nnsH, nep11[0])
nep17 := bc.GetNEP17Contracts()
require.Equal(t, 3, len(nep17)) // Neo, Gas, Rubles
require.ElementsMatch(t, []util.Uint160{gasH, neoH, rublesH}, nep17)
// Retrieve stale contract.
cs := bc.GetContractState(staleH)
require.Nil(t, cs)
// Retrieve stale storage item.
rublesValue := bc.GetStorageItem(basicchain.RublesContractID, rublesKey)
require.Equal(t, []byte(basicchain.RublesOldTestvalue), []byte(rublesValue)) // the one with historic state
require.Nil(t, bc.GetStorageItem(basicchain.RublesContractID, rublesStaleKey)) // the one that was added after target reset block
db.Seek(storage.SeekRange{
Prefix: []byte{byte(storage.STStorage)}, // no items with old prefix
}, func(k, v []byte) bool {
t.Fatal("no stale items must be left in storage")
return false
})
// Check transfers.
var (
actualNEP11t []*state.NEP11Transfer
actualNEP17t []*state.NEP17Transfer
)
require.NoError(t, bc.ForEachNEP11Transfer(priv0ScriptHash, e.TopBlock(t).Timestamp, func(t *state.NEP11Transfer) (bool, error) {
actualNEP11t = append(actualNEP11t, t)
return true, nil
}))
require.NoError(t, bc.ForEachNEP17Transfer(priv0ScriptHash, e.TopBlock(t).Timestamp, func(t *state.NEP17Transfer) (bool, error) {
actualNEP17t = append(actualNEP17t, t)
return true, nil
}))
assert.Equal(t, expectedNEP11t, actualNEP11t)
assert.Equal(t, expectedNEP17t, actualNEP17t)
lub, err := bc.GetTokenLastUpdated(priv0ScriptHash)
require.NoError(t, err)
expectedLUB := map[int32]uint32{ // this information is extracted from basic chain initialization code
basicchain.NNSContractID: resetBlockIndex - 1, // `neo.com` registration
basicchain.RublesContractID: 6, // transfer of 123 RUR to priv1
gasID: resetBlockIndex, // fee for `1.2.3.4` A record registration
neoID: 4, // transfer of 1000 NEO to priv1
}
require.Equal(t, expectedLUB, lub)
}
func TestBlockchain_GenesisTransactionExtension(t *testing.T) {
priv0 := testchain.PrivateKeyByID(0)
acc0 := wallet.NewAccountFromPrivateKey(priv0)
require.NoError(t, acc0.ConvertMultisig(1, []*keys.PublicKey{priv0.PublicKey()}))
from := acc0.ScriptHash()
to := util.Uint160{1, 2, 3}
amount := 1
script := io.NewBufBinWriter()
emit.Bytes(script.BinWriter, from.BytesBE())
emit.Syscall(script.BinWriter, interopnames.SystemRuntimeCheckWitness)
emit.Bytes(script.BinWriter, to.BytesBE())
emit.Syscall(script.BinWriter, interopnames.SystemRuntimeCheckWitness)
emit.AppCall(script.BinWriter, nativehashes.NeoToken, "transfer", callflag.All, from, to, amount, nil)
emit.Opcodes(script.BinWriter, opcode.ASSERT)
var sysFee int64 = 1_0000_0000
bc, acc := chain.NewSingleWithCustomConfig(t, func(blockchain *config.Blockchain) {
blockchain.Genesis.Transaction = &config.GenesisTransaction{
Script: script.Bytes(),
SystemFee: sysFee,
}
})
e := neotest.NewExecutor(t, bc, acc, acc)
b := e.GetBlockByIndex(t, 0)
tx := b.Transactions[0]
e.CheckHalt(t, tx.Hash(), stackitem.NewBool(true), stackitem.NewBool(false))
e.CheckGASBalance(t, e.Validator.ScriptHash(), big.NewInt(core.DefaultInitialGAS-sysFee))
actualNeo, lub := e.Chain.GetGoverningTokenBalance(to)
require.Equal(t, int64(amount), actualNeo.Int64())
require.Equal(t, 0, int(lub))
}
// TestNativenames ensures that nativenames.All contains all expected native contract names
// in the right order.
func TestNativenames(t *testing.T) {
bc, _ := chain.NewSingleWithCustomConfig(t, func(cfg *config.Blockchain) {
cfg.Hardforks = map[string]uint32{}
cfg.P2PSigExtensions = true
})
natives := bc.GetNatives()
require.Equal(t, len(natives), len(nativenames.All))
for i, cs := range natives {
require.Equal(t, cs.Manifest.Name, nativenames.All[i], i)
}
}
// TestBlockchain_StoreAsTransaction_ExecutableConflict ensures that transaction conflicting with
// some on-chain block can be properly stored and doesn't break the database.
func TestBlockchain_StoreAsTransaction_ExecutableConflict(t *testing.T) {
bc, acc := chain.NewSingleWithCustomConfig(t, nil)
e := neotest.NewExecutor(t, bc, acc, acc)
genesisH := bc.GetHeaderHash(0)
currHeight := bc.BlockHeight()
// Ensure AER can be retrieved for genesis block.
aer, err := bc.GetAppExecResults(genesisH, trigger.All)
require.NoError(t, err)
require.Equal(t, 2, len(aer))
tx := transaction.New([]byte{byte(opcode.PUSHT)}, 0)
tx.Nonce = 5
tx.ValidUntilBlock = e.Chain.BlockHeight() + 1
tx.Attributes = []transaction.Attribute{{Type: transaction.ConflictsT, Value: &transaction.Conflicts{Hash: genesisH}}}
e.SignTx(t, tx, -1, acc)
e.AddNewBlock(t, tx)
e.CheckHalt(t, tx.Hash(), stackitem.Make(true))
// Ensure original tx can be retrieved.
actual, actualHeight, err := bc.GetTransaction(tx.Hash())
require.NoError(t, err)
require.Equal(t, currHeight+1, actualHeight)
require.Equal(t, tx, actual, tx)
// Ensure conflict stub is not stored. This check doesn't give us 100% sure that
// there's no specific conflict record since GetTransaction doesn't return conflict records,
// but at least it allows to ensure that no transaction record is present.
_, _, err = bc.GetTransaction(genesisH)
require.ErrorIs(t, err, storage.ErrKeyNotFound)
// Ensure AER still can be retrieved for genesis block.
aer, err = bc.GetAppExecResults(genesisH, trigger.All)
require.NoError(t, err)
require.Equal(t, 2, len(aer))
}
// TestEngineLimits ensures that MaxStackSize limit is preserved during System.Runtime.GetNotifications
// syscall handling. This test is an adjusted port of https://github.com/lazynode/Tanya/pull/33 and makes
// sure that NeoGo node is not affected by https://github.com/neo-project/neo/issues/3300 and does not need
// the https://github.com/neo-project/neo/pull/3301.
func TestEngineLimits(t *testing.T) {
const eArgsCount = 500
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
args, _ := strings.CutSuffix(strings.Repeat(`"", `, eArgsCount), `, `)
src := fmt.Sprintf(`package test
import (
"github.com/nspcc-dev/neo-go/pkg/interop/runtime"
)
// args is an array of LargeEvent parameters containing 500 empty strings.
var args = []any{%s};
func ProduceNumerousNotifications(count int) [][]any {
for i := 0; i < count; i++ {
runtime.Notify("LargeEvent", args...)
}
return runtime.GetNotifications(runtime.GetExecutingScriptHash())
}
func ProduceLargeObject(count int) int {
for i := 0; i < count; i++ {
runtime.Notify("LargeEvent", args...)
}
var (
smallObject = make([]int, 100)
res []int
)
for i := 0; i < count; i++ {
runtime.GetNotifications(runtime.GetExecutingScriptHash())
res = append(res, smallObject...)
}
return len(res)
}`, args)
eParams := make([]compiler.HybridParameter, eArgsCount)
for i := range eParams {
eParams[i].Name = fmt.Sprintf("str%d", i)
eParams[i].Type = smartcontract.ByteArrayType
}
c := neotest.CompileSource(t, acc.ScriptHash(), strings.NewReader(src), &compiler.Options{
Name: "test_contract",
ContractEvents: []compiler.HybridEvent{
{
Name: "LargeEvent",
Parameters: eParams,
},
},
})
e.DeployContract(t, c, nil)
// ProduceNumerousNotifications: 1 iteration, no limits are hit.
var params = make([]stackitem.Item, eArgsCount)
for i := range params {
params[i] = stackitem.Make("")
}
cInv := e.NewInvoker(c.Hash, acc)
cInv.Invoke(t, stackitem.Make([]stackitem.Item{
stackitem.Make([]stackitem.Item{
stackitem.Make(c.Hash),
stackitem.Make("LargeEvent"),
stackitem.Make(params),
}),
}), "produceNumerousNotifications", 1)
// ProduceNumerousNotifications: hit the limit.
cInv.InvokeFail(t, "stack is too big", "produceNumerousNotifications", 500)
// ProduceLargeObject: 1 iteration, no limits are hit.
cInv.Invoke(t, 100*1, "produceLargeObject", 1)
// ProduceLargeObject: hit the limit.
cInv.InvokeFail(t, "stack is too big", "produceLargeObject", 500)
}
// TestRuntimeNotifyRefcounting tries to emit more than MaxStackSize notifications.
func TestRuntimeNotifyRefcounting(t *testing.T) {
const eArgsCount = 500
bc, acc := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, acc, acc)
args, _ := strings.CutSuffix(strings.Repeat(`"", `, eArgsCount), `, `)
src := fmt.Sprintf(`package test
import (
"github.com/nspcc-dev/neo-go/pkg/interop/runtime"
)
// args is an array of LargeEvent parameters containing 500 empty strings.
var args = []any{%s};
func ProduceNumerousNotifications(count int) {
for i := 0; i < count; i++ {
runtime.Notify("LargeEvent", args...)
}
}`, args)
eParams := make([]compiler.HybridParameter, eArgsCount)
for i := range eParams {
eParams[i].Name = fmt.Sprintf("str%d", i)
eParams[i].Type = smartcontract.ByteArrayType
}
c := neotest.CompileSource(t, acc.ScriptHash(), strings.NewReader(src), &compiler.Options{
Name: "test_contract",
ContractEvents: []compiler.HybridEvent{
{
Name: "LargeEvent",
Parameters: eParams,
},
},
})
e.DeployContract(t, c, nil)
var params = make([]stackitem.Item, eArgsCount)
for i := range params {
params[i] = stackitem.Make("")
}
cInv := e.NewInvoker(c.Hash, acc)
expected := state.NotificationEvent{
ScriptHash: c.Hash,
Name: "LargeEvent",
Item: stackitem.NewArray(params),
}
// ProduceNumerousNotifications: 1 iteration, no limits are hit.
h := cInv.Invoke(t, stackitem.Null{}, "produceNumerousNotifications", 1)
cInv.CheckTxNotificationEvent(t, h, 0, expected)
// ProduceNumerousNotifications: vm.MaxStackSize + 1 iterations.
count := vm.MaxStackSize + 1
h = cInv.Invoke(t, stackitem.Null{}, "produceNumerousNotifications", count)
aer, err := e.Chain.GetAppExecResults(h, trigger.Application)
require.NoError(t, err)
require.Equal(t, count, len(aer[0].Events))
for i := range count {
require.Equal(t, expected, aer[0].Events[i])
}
}