neo-go/pkg/compiler/codegen.go
2020-02-12 12:16:15 +03:00

1087 lines
28 KiB
Go

package compiler
import (
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"sort"
"strconv"
"strings"
"github.com/CityOfZion/neo-go/pkg/encoding/address"
"github.com/CityOfZion/neo-go/pkg/io"
"github.com/CityOfZion/neo-go/pkg/vm"
"github.com/CityOfZion/neo-go/pkg/vm/emit"
"github.com/CityOfZion/neo-go/pkg/vm/opcode"
)
// The identifier of the entry function. Default set to Main.
const mainIdent = "Main"
type codegen struct {
// Information about the program with all its dependencies.
buildInfo *buildInfo
// prog holds the output buffer.
prog *io.BufBinWriter
// Type information.
typeInfo *types.Info
// A mapping of func identifiers with their scope.
funcs map[string]*funcScope
// Current funcScope being converted.
scope *funcScope
// Label table for recording jump destinations.
l []int
}
// newLabel creates a new label to jump to
func (c *codegen) newLabel() (l int) {
l = len(c.l)
c.l = append(c.l, -1)
return
}
func (c *codegen) setLabel(l int) {
c.l[l] = c.pc() + 1
}
// pc returns the program offset off the last instruction.
func (c *codegen) pc() int {
return c.prog.Len() - 1
}
func (c *codegen) emitLoadConst(t types.TypeAndValue) {
if c.prog.Err != nil {
return
}
switch typ := t.Type.Underlying().(type) {
case *types.Basic:
c.convertBasicType(t, typ)
default:
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this constant: %v", t)
return
}
}
func (c *codegen) convertBasicType(t types.TypeAndValue, typ *types.Basic) {
switch typ.Kind() {
case types.Int, types.UntypedInt, types.Uint:
val, _ := constant.Int64Val(t.Value)
emit.Int(c.prog.BinWriter, val)
case types.String, types.UntypedString:
val := constant.StringVal(t.Value)
emit.String(c.prog.BinWriter, val)
case types.Bool, types.UntypedBool:
val := constant.BoolVal(t.Value)
emit.Bool(c.prog.BinWriter, val)
case types.Byte:
val, _ := constant.Int64Val(t.Value)
b := byte(val)
emit.Bytes(c.prog.BinWriter, []byte{b})
default:
c.prog.Err = fmt.Errorf("compiler doesn't know how to convert this basic type: %v", t)
return
}
}
func (c *codegen) emitLoadLocal(name string) {
pos := c.scope.loadLocal(name)
if pos < 0 {
c.prog.Err = fmt.Errorf("cannot load local variable with position: %d", pos)
return
}
c.emitLoadLocalPos(pos)
}
func (c *codegen) emitLoadLocalPos(pos int) {
emit.Opcode(c.prog.BinWriter, opcode.DUPFROMALTSTACK)
emit.Int(c.prog.BinWriter, int64(pos))
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM)
}
func (c *codegen) emitStoreLocal(pos int) {
emit.Opcode(c.prog.BinWriter, opcode.DUPFROMALTSTACK)
if pos < 0 {
c.prog.Err = fmt.Errorf("invalid position to store local: %d", pos)
return
}
emit.Int(c.prog.BinWriter, int64(pos))
emit.Opcode(c.prog.BinWriter, opcode.ROT)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
func (c *codegen) emitLoadField(i int) {
emit.Int(c.prog.BinWriter, int64(i))
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM)
}
func (c *codegen) emitStoreStructField(i int) {
emit.Int(c.prog.BinWriter, int64(i))
emit.Opcode(c.prog.BinWriter, opcode.ROT)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
// convertGlobals traverses the AST and only converts global declarations.
// If we call this in convertFuncDecl then it will load all global variables
// into the scope of the function.
func (c *codegen) convertGlobals(f ast.Node) {
ast.Inspect(f, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.FuncDecl:
return false
case *ast.GenDecl:
// constants are loaded directly so there is no need
// to store them as a local variables
if n.Tok != token.CONST {
ast.Walk(c, n)
}
}
return true
})
}
func (c *codegen) convertFuncDecl(file ast.Node, decl *ast.FuncDecl) {
var (
f *funcScope
ok bool
)
f, ok = c.funcs[decl.Name.Name]
if ok {
// If this function is a syscall we will not convert it to bytecode.
if isSyscall(f) {
return
}
c.setLabel(f.label)
} else {
f = c.newFunc(decl)
}
c.scope = f
ast.Inspect(decl, c.scope.analyzeVoidCalls) // @OPTIMIZE
// All globals copied into the scope of the function need to be added
// to the stack size of the function.
emit.Int(c.prog.BinWriter, f.stackSize()+countGlobals(file))
emit.Opcode(c.prog.BinWriter, opcode.NEWARRAY)
emit.Opcode(c.prog.BinWriter, opcode.TOALTSTACK)
// We need to handle methods, which in Go, is just syntactic sugar.
// The method receiver will be passed in as first argument.
// We check if this declaration has a receiver and load it into scope.
//
// FIXME: For now we will hard cast this to a struct. We can later fine tune this
// to support other types.
if decl.Recv != nil {
for _, arg := range decl.Recv.List {
ident := arg.Names[0]
// Currently only method receives for struct types is supported.
_, ok := c.typeInfo.Defs[ident].Type().Underlying().(*types.Struct)
if !ok {
c.prog.Err = fmt.Errorf("method receives for non-struct types is not yet supported")
return
}
l := c.scope.newLocal(ident.Name)
c.emitStoreLocal(l)
}
}
// Load the arguments in scope.
for _, arg := range decl.Type.Params.List {
name := arg.Names[0].Name // for now.
l := c.scope.newLocal(name)
c.emitStoreLocal(l)
}
// Load in all the global variables in to the scope of the function.
// This is not necessary for syscalls.
if !isSyscall(f) {
c.convertGlobals(file)
}
ast.Walk(c, decl.Body)
// If this function returns the void (no return stmt) we will cleanup its junk on the stack.
if !hasReturnStmt(decl) {
emit.Opcode(c.prog.BinWriter, opcode.FROMALTSTACK)
emit.Opcode(c.prog.BinWriter, opcode.DROP)
emit.Opcode(c.prog.BinWriter, opcode.RET)
}
}
func (c *codegen) Visit(node ast.Node) ast.Visitor {
if c.prog.Err != nil {
return nil
}
switch n := node.(type) {
// General declarations.
// var (
// x = 2
// )
case *ast.GenDecl:
for _, spec := range n.Specs {
switch t := spec.(type) {
case *ast.ValueSpec:
for i, val := range t.Values {
ast.Walk(c, val)
l := c.scope.newLocal(t.Names[i].Name)
c.emitStoreLocal(l)
}
}
}
return nil
case *ast.AssignStmt:
multiRet := len(n.Rhs) != len(n.Lhs)
for i := 0; i < len(n.Lhs); i++ {
switch t := n.Lhs[i].(type) {
case *ast.Ident:
switch n.Tok {
case token.ADD_ASSIGN, token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN, token.REM_ASSIGN:
c.emitLoadLocal(t.Name)
ast.Walk(c, n.Rhs[0]) // can only add assign to 1 expr on the RHS
c.convertToken(n.Tok)
l := c.scope.loadLocal(t.Name)
c.emitStoreLocal(l)
default:
if i == 0 || !multiRet {
ast.Walk(c, n.Rhs[i])
}
if t.Name == "_" {
emit.Opcode(c.prog.BinWriter, opcode.DROP)
} else {
l := c.scope.loadLocal(t.Name)
c.emitStoreLocal(l)
}
}
case *ast.SelectorExpr:
switch expr := t.X.(type) {
case *ast.Ident:
ast.Walk(c, n.Rhs[i])
typ := c.typeInfo.ObjectOf(expr).Type().Underlying()
if strct, ok := typ.(*types.Struct); ok {
c.emitLoadLocal(expr.Name) // load the struct
i := indexOfStruct(strct, t.Sel.Name) // get the index of the field
c.emitStoreStructField(i) // store the field
}
default:
c.prog.Err = fmt.Errorf("nested selector assigns not supported yet")
return nil
}
// Assignments to index expressions.
// slice[0] = 10
case *ast.IndexExpr:
ast.Walk(c, n.Rhs[i])
name := t.X.(*ast.Ident).Name
c.emitLoadLocal(name)
switch ind := t.Index.(type) {
case *ast.BasicLit:
indexStr := ind.Value
index, err := strconv.Atoi(indexStr)
if err != nil {
c.prog.Err = fmt.Errorf("failed to convert slice index to integer")
return nil
}
c.emitStoreStructField(index)
case *ast.Ident:
c.emitLoadLocal(ind.Name)
emit.Opcode(c.prog.BinWriter, opcode.ROT)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
default:
c.prog.Err = fmt.Errorf("unsupported index expression")
return nil
}
}
}
return nil
case *ast.SliceExpr:
name := n.X.(*ast.Ident).Name
c.emitLoadLocal(name)
if n.Low != nil {
ast.Walk(c, n.Low)
} else {
emit.Opcode(c.prog.BinWriter, opcode.PUSH0)
}
if n.High != nil {
ast.Walk(c, n.High)
} else {
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.ARRAYSIZE)
}
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.SUB)
emit.Opcode(c.prog.BinWriter, opcode.SUBSTR)
return nil
case *ast.ReturnStmt:
l := c.newLabel()
c.setLabel(l)
// first result should be on top of the stack
for i := len(n.Results) - 1; i >= 0; i-- {
ast.Walk(c, n.Results[i])
}
emit.Opcode(c.prog.BinWriter, opcode.FROMALTSTACK)
emit.Opcode(c.prog.BinWriter, opcode.DROP) // Cleanup the stack.
emit.Opcode(c.prog.BinWriter, opcode.RET)
return nil
case *ast.IfStmt:
lIf := c.newLabel()
lElse := c.newLabel()
lElseEnd := c.newLabel()
if n.Cond != nil {
ast.Walk(c, n.Cond)
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOT, int16(lElse))
}
c.setLabel(lIf)
ast.Walk(c, n.Body)
if n.Else != nil {
emit.Jmp(c.prog.BinWriter, opcode.JMP, int16(lElseEnd))
}
c.setLabel(lElse)
if n.Else != nil {
ast.Walk(c, n.Else)
}
c.setLabel(lElseEnd)
return nil
case *ast.SwitchStmt:
// fallthrough is not supported
ast.Walk(c, n.Tag)
eqOpcode := c.getEqualityOpcode(n.Tag)
switchEnd := c.newLabel()
for i := range n.Body.List {
lEnd := c.newLabel()
lStart := c.newLabel()
cc := n.Body.List[i].(*ast.CaseClause)
if l := len(cc.List); l != 0 { // if not `default`
for j := range cc.List {
emit.Opcode(c.prog.BinWriter, opcode.DUP)
ast.Walk(c, cc.List[j])
emit.Opcode(c.prog.BinWriter, eqOpcode)
if j == l-1 {
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOT, int16(lEnd))
} else {
emit.Jmp(c.prog.BinWriter, opcode.JMPIF, int16(lStart))
}
}
}
c.setLabel(lStart)
for _, stmt := range cc.Body {
ast.Walk(c, stmt)
}
emit.Jmp(c.prog.BinWriter, opcode.JMP, int16(switchEnd))
c.setLabel(lEnd)
}
c.setLabel(switchEnd)
emit.Opcode(c.prog.BinWriter, opcode.DROP)
return nil
case *ast.BasicLit:
c.emitLoadConst(c.typeInfo.Types[n])
return nil
case *ast.Ident:
if isIdentBool(n) {
value, err := makeBoolFromIdent(n, c.typeInfo)
if err != nil {
c.prog.Err = err
return nil
}
c.emitLoadConst(value)
} else if tv := c.typeInfo.Types[n]; tv.Value != nil {
c.emitLoadConst(tv)
} else {
c.emitLoadLocal(n.Name)
}
return nil
case *ast.CompositeLit:
var typ types.Type
switch t := n.Type.(type) {
case *ast.Ident:
typ = c.typeInfo.ObjectOf(t).Type().Underlying()
case *ast.SelectorExpr:
typ = c.typeInfo.ObjectOf(t.Sel).Type().Underlying()
case *ast.MapType:
typ = c.typeInfo.TypeOf(t)
default:
ln := len(n.Elts)
// ByteArrays needs a different approach than normal arrays.
if isByteArray(n, c.typeInfo) {
c.convertByteArray(n)
return nil
}
for i := ln - 1; i >= 0; i-- {
ast.Walk(c, n.Elts[i])
}
emit.Int(c.prog.BinWriter, int64(ln))
emit.Opcode(c.prog.BinWriter, opcode.PACK)
return nil
}
switch typ.(type) {
case *types.Struct:
c.convertStruct(n)
case *types.Map:
c.convertMap(n)
}
return nil
case *ast.BinaryExpr:
switch n.Op {
case token.LAND:
ast.Walk(c, n.X)
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOT, int16(len(c.l)-1))
ast.Walk(c, n.Y)
return nil
case token.LOR:
ast.Walk(c, n.X)
emit.Jmp(c.prog.BinWriter, opcode.JMPIF, int16(len(c.l)-3))
ast.Walk(c, n.Y)
return nil
default:
// The AST package will try to resolve all basic literals for us.
// If the typeinfo.Value is not nil we know that the expr is resolved
// and needs no further action. e.g. x := 2 + 2 + 2 will be resolved to 6.
// NOTE: Constants will also be automatically resolved be the AST parser.
// example:
// const x = 10
// x + 2 will results into 12
tinfo := c.typeInfo.Types[n]
if tinfo.Value != nil {
c.emitLoadConst(tinfo)
return nil
}
ast.Walk(c, n.X)
ast.Walk(c, n.Y)
switch {
case n.Op == token.ADD:
// VM has separate opcodes for number and string concatenation
if isStringType(tinfo.Type) {
emit.Opcode(c.prog.BinWriter, opcode.CAT)
} else {
emit.Opcode(c.prog.BinWriter, opcode.ADD)
}
case n.Op == token.EQL:
// VM has separate opcodes for number and string equality
op := c.getEqualityOpcode(n.X)
emit.Opcode(c.prog.BinWriter, op)
case n.Op == token.NEQ:
// VM has separate opcodes for number and string equality
if isStringType(c.typeInfo.Types[n.X].Type) {
emit.Opcode(c.prog.BinWriter, opcode.EQUAL)
emit.Opcode(c.prog.BinWriter, opcode.NOT)
} else {
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
}
default:
c.convertToken(n.Op)
}
return nil
}
case *ast.CallExpr:
var (
f *funcScope
ok bool
numArgs = len(n.Args)
isBuiltin = isBuiltin(n.Fun)
)
switch fun := n.Fun.(type) {
case *ast.Ident:
f, ok = c.funcs[fun.Name]
if !ok && !isBuiltin {
c.prog.Err = fmt.Errorf("could not resolve function %s", fun.Name)
return nil
}
case *ast.SelectorExpr:
// If this is a method call we need to walk the AST to load the struct locally.
// Otherwise this is a function call from a imported package and we can call it
// directly.
if c.typeInfo.Selections[fun] != nil {
ast.Walk(c, fun.X)
// Dont forget to add 1 extra argument when its a method.
numArgs++
}
f, ok = c.funcs[fun.Sel.Name]
// @FIXME this could cause runtime errors.
f.selector = fun.X.(*ast.Ident)
if !ok {
c.prog.Err = fmt.Errorf("could not resolve function %s", fun.Sel.Name)
return nil
}
case *ast.ArrayType:
// For now we will assume that there are only byte slice conversions.
// E.g. []byte("foobar") or []byte(scriptHash).
ast.Walk(c, n.Args[0])
return nil
}
args := transformArgs(n.Fun, n.Args)
// Handle the arguments
for _, arg := range args {
ast.Walk(c, arg)
}
// Do not swap for builtin functions.
if !isBuiltin {
c.emitReverse(numArgs)
}
// Check builtin first to avoid nil pointer on funcScope!
switch {
case isBuiltin:
// Use the ident to check, builtins are not in func scopes.
// We can be sure builtins are of type *ast.Ident.
c.convertBuiltin(n)
case isSyscall(f):
c.convertSyscall(f.selector.Name, f.name)
default:
emit.Call(c.prog.BinWriter, opcode.CALL, int16(f.label))
}
return nil
case *ast.SelectorExpr:
switch t := n.X.(type) {
case *ast.Ident:
typ := c.typeInfo.ObjectOf(t).Type().Underlying()
if strct, ok := typ.(*types.Struct); ok {
c.emitLoadLocal(t.Name) // load the struct
i := indexOfStruct(strct, n.Sel.Name)
c.emitLoadField(i) // load the field
}
default:
c.prog.Err = fmt.Errorf("nested selectors not supported yet")
return nil
}
return nil
case *ast.UnaryExpr:
ast.Walk(c, n.X)
// From https://golang.org/ref/spec#Operators
// there can be only following unary operators
// "+" | "-" | "!" | "^" | "*" | "&" | "<-" .
// of which last three are not used in SC
switch n.Op {
case token.ADD:
// +10 == 10, no need to do anything in this case
case token.SUB:
emit.Opcode(c.prog.BinWriter, opcode.NEGATE)
case token.NOT:
emit.Opcode(c.prog.BinWriter, opcode.NOT)
case token.XOR:
emit.Opcode(c.prog.BinWriter, opcode.INVERT)
default:
c.prog.Err = fmt.Errorf("invalid unary operator: %s", n.Op)
return nil
}
return nil
case *ast.IncDecStmt:
ast.Walk(c, n.X)
c.convertToken(n.Tok)
// For now only identifiers are supported for (post) for stmts.
// for i := 0; i < 10; i++ {}
// Where the post stmt is ( i++ )
if ident, ok := n.X.(*ast.Ident); ok {
pos := c.scope.loadLocal(ident.Name)
c.emitStoreLocal(pos)
}
return nil
case *ast.IndexExpr:
// Walk the expression, this could be either an Ident or SelectorExpr.
// This will load local whatever X is.
ast.Walk(c, n.X)
switch n.Index.(type) {
case *ast.BasicLit:
t := c.typeInfo.Types[n.Index]
switch typ := t.Type.Underlying().(type) {
case *types.Basic:
c.convertBasicType(t, typ)
default:
c.prog.Err = fmt.Errorf("compiler can't use following type as an index: %T", typ)
return nil
}
default:
ast.Walk(c, n.Index)
}
emit.Opcode(c.prog.BinWriter, opcode.PICKITEM) // just pickitem here
return nil
case *ast.ForStmt:
var (
fstart = c.newLabel()
fend = c.newLabel()
)
// Walk the initializer and condition.
if n.Init != nil {
ast.Walk(c, n.Init)
}
// Set label and walk the condition.
c.setLabel(fstart)
ast.Walk(c, n.Cond)
// Jump if the condition is false
emit.Jmp(c.prog.BinWriter, opcode.JMPIFNOT, int16(fend))
// Walk body followed by the iterator (post stmt).
ast.Walk(c, n.Body)
if n.Post != nil {
ast.Walk(c, n.Post)
}
// Jump back to condition.
emit.Jmp(c.prog.BinWriter, opcode.JMP, int16(fstart))
c.setLabel(fend)
return nil
// We dont really care about assertions for the core logic.
// The only thing we need is to please the compiler type checking.
// For this to work properly, we only need to walk the expression
// not the assertion type.
case *ast.TypeAssertExpr:
ast.Walk(c, n.X)
return nil
}
return c
}
// emitReverse reverses top num items of the stack.
func (c *codegen) emitReverse(num int) {
switch num {
case 2:
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
case 3:
emit.Int(c.prog.BinWriter, 2)
emit.Opcode(c.prog.BinWriter, opcode.XSWAP)
default:
for i := 1; i < num; i++ {
emit.Int(c.prog.BinWriter, int64(i))
emit.Opcode(c.prog.BinWriter, opcode.ROLL)
}
}
}
func (c *codegen) getEqualityOpcode(expr ast.Expr) opcode.Opcode {
t, ok := c.typeInfo.Types[expr].Type.Underlying().(*types.Basic)
if ok && t.Info()&types.IsNumeric != 0 {
return opcode.NUMEQUAL
}
return opcode.EQUAL
}
// getByteArray returns byte array value from constant expr.
// Only literals are supported.
func (c *codegen) getByteArray(expr ast.Expr) []byte {
switch t := expr.(type) {
case *ast.CompositeLit:
if !isByteArray(t, c.typeInfo) {
return nil
}
buf := make([]byte, len(t.Elts))
for i := 0; i < len(t.Elts); i++ {
t := c.typeInfo.Types[t.Elts[i]]
val, _ := constant.Int64Val(t.Value)
buf[i] = byte(val)
}
return buf
case *ast.CallExpr:
if tv := c.typeInfo.Types[t.Args[0]]; tv.Value != nil {
val := constant.StringVal(tv.Value)
return []byte(val)
}
return nil
default:
return nil
}
}
func (c *codegen) convertSyscall(api, name string) {
api, ok := syscalls[api][name]
if !ok {
c.prog.Err = fmt.Errorf("unknown VM syscall api: %s", name)
return
}
emit.Syscall(c.prog.BinWriter, api)
// This NOP instruction is basically not needed, but if we do, we have a
// one to one matching avm file with neo-python which is very nice for debugging.
emit.Opcode(c.prog.BinWriter, opcode.NOP)
}
func (c *codegen) convertBuiltin(expr *ast.CallExpr) {
var name string
switch t := expr.Fun.(type) {
case *ast.Ident:
name = t.Name
case *ast.SelectorExpr:
name = t.Sel.Name
}
switch name {
case "len":
arg := expr.Args[0]
typ := c.typeInfo.Types[arg].Type
if isStringType(typ) {
emit.Opcode(c.prog.BinWriter, opcode.SIZE)
} else {
emit.Opcode(c.prog.BinWriter, opcode.ARRAYSIZE)
}
case "append":
arg := expr.Args[0]
typ := c.typeInfo.Types[arg].Type
if isByteArrayType(typ) {
emit.Opcode(c.prog.BinWriter, opcode.CAT)
} else {
emit.Opcode(c.prog.BinWriter, opcode.OVER)
emit.Opcode(c.prog.BinWriter, opcode.SWAP)
emit.Opcode(c.prog.BinWriter, opcode.APPEND)
}
case "panic":
arg := expr.Args[0]
if isExprNil(arg) {
emit.Opcode(c.prog.BinWriter, opcode.DROP)
emit.Opcode(c.prog.BinWriter, opcode.THROW)
} else if isStringType(c.typeInfo.Types[arg].Type) {
ast.Walk(c, arg)
emit.Syscall(c.prog.BinWriter, "Neo.Runtime.Log")
emit.Opcode(c.prog.BinWriter, opcode.THROW)
} else {
c.prog.Err = errors.New("panic should have string or nil argument")
}
case "SHA256":
emit.Opcode(c.prog.BinWriter, opcode.SHA256)
case "SHA1":
emit.Opcode(c.prog.BinWriter, opcode.SHA1)
case "Hash256":
emit.Opcode(c.prog.BinWriter, opcode.HASH256)
case "Hash160":
emit.Opcode(c.prog.BinWriter, opcode.HASH160)
case "VerifySignature":
emit.Opcode(c.prog.BinWriter, opcode.VERIFY)
case "AppCall":
numArgs := len(expr.Args) - 1
c.emitReverse(numArgs)
emit.Opcode(c.prog.BinWriter, opcode.APPCALL)
buf := c.getByteArray(expr.Args[0])
if len(buf) != 20 {
c.prog.Err = errors.New("invalid script hash")
}
c.prog.WriteBytes(buf)
case "Equals":
emit.Opcode(c.prog.BinWriter, opcode.EQUAL)
case "FromAddress":
// We can be sure that this is a ast.BasicLit just containing a simple
// address string. Note that the string returned from calling Value will
// contain double quotes that need to be stripped.
addressStr := expr.Args[0].(*ast.BasicLit).Value
addressStr = strings.Replace(addressStr, "\"", "", 2)
uint160, err := address.StringToUint160(addressStr)
if err != nil {
c.prog.Err = err
return
}
bytes := uint160.BytesBE()
emit.Bytes(c.prog.BinWriter, bytes)
}
}
// transformArgs returns a list of function arguments
// which should be put on stack.
// There are special cases for builtins:
// 1. When using AppCall, script hash is a part of the instruction so
// it should be emitted after APPCALL.
// 2. With FromAddress, parameter conversion is happening at compile-time
// so there is no need to push parameters on stack and perform an actual call
// 3. With panic, generated code depends on if argument was nil or a string so
// it should be handled accordingly.
func transformArgs(fun ast.Expr, args []ast.Expr) []ast.Expr {
switch f := fun.(type) {
case *ast.SelectorExpr:
if f.Sel.Name == "AppCall" || f.Sel.Name == "FromAddress" {
return args[1:]
}
case *ast.Ident:
if f.Name == "panic" {
return args[1:]
}
}
return args
}
func (c *codegen) convertByteArray(lit *ast.CompositeLit) {
buf := make([]byte, len(lit.Elts))
for i := 0; i < len(lit.Elts); i++ {
t := c.typeInfo.Types[lit.Elts[i]]
val, _ := constant.Int64Val(t.Value)
buf[i] = byte(val)
}
emit.Bytes(c.prog.BinWriter, buf)
}
func (c *codegen) convertMap(lit *ast.CompositeLit) {
emit.Opcode(c.prog.BinWriter, opcode.NEWMAP)
for i := range lit.Elts {
elem := lit.Elts[i].(*ast.KeyValueExpr)
emit.Opcode(c.prog.BinWriter, opcode.DUP)
ast.Walk(c, elem.Key)
ast.Walk(c, elem.Value)
emit.Opcode(c.prog.BinWriter, opcode.SETITEM)
}
}
func (c *codegen) convertStruct(lit *ast.CompositeLit) {
// Create a new structScope to initialize and store
// the positions of its variables.
strct, ok := c.typeInfo.TypeOf(lit).Underlying().(*types.Struct)
if !ok {
c.prog.Err = fmt.Errorf("the given literal is not of type struct: %v", lit)
return
}
emit.Opcode(c.prog.BinWriter, opcode.NOP)
emit.Int(c.prog.BinWriter, int64(strct.NumFields()))
emit.Opcode(c.prog.BinWriter, opcode.NEWSTRUCT)
emit.Opcode(c.prog.BinWriter, opcode.TOALTSTACK)
// We need to locally store all the fields, even if they are not initialized.
// We will initialize all fields to their "zero" value.
for i := 0; i < strct.NumFields(); i++ {
sField := strct.Field(i)
fieldAdded := false
// Fields initialized by the program.
for _, field := range lit.Elts {
f := field.(*ast.KeyValueExpr)
fieldName := f.Key.(*ast.Ident).Name
if sField.Name() == fieldName {
ast.Walk(c, f.Value)
pos := indexOfStruct(strct, fieldName)
c.emitStoreLocal(pos)
fieldAdded = true
break
}
}
if fieldAdded {
continue
}
typeAndVal, err := typeAndValueForField(sField)
if err != nil {
c.prog.Err = err
return
}
c.emitLoadConst(typeAndVal)
c.emitStoreLocal(i)
}
emit.Opcode(c.prog.BinWriter, opcode.FROMALTSTACK)
}
func (c *codegen) convertToken(tok token.Token) {
switch tok {
case token.ADD_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.ADD)
case token.SUB_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.SUB)
case token.MUL_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.MUL)
case token.QUO_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.DIV)
case token.REM_ASSIGN:
emit.Opcode(c.prog.BinWriter, opcode.MOD)
case token.ADD:
emit.Opcode(c.prog.BinWriter, opcode.ADD)
case token.SUB:
emit.Opcode(c.prog.BinWriter, opcode.SUB)
case token.MUL:
emit.Opcode(c.prog.BinWriter, opcode.MUL)
case token.QUO:
emit.Opcode(c.prog.BinWriter, opcode.DIV)
case token.REM:
emit.Opcode(c.prog.BinWriter, opcode.MOD)
case token.LSS:
emit.Opcode(c.prog.BinWriter, opcode.LT)
case token.LEQ:
emit.Opcode(c.prog.BinWriter, opcode.LTE)
case token.GTR:
emit.Opcode(c.prog.BinWriter, opcode.GT)
case token.GEQ:
emit.Opcode(c.prog.BinWriter, opcode.GTE)
case token.EQL:
emit.Opcode(c.prog.BinWriter, opcode.NUMEQUAL)
case token.NEQ:
emit.Opcode(c.prog.BinWriter, opcode.NUMNOTEQUAL)
case token.DEC:
emit.Opcode(c.prog.BinWriter, opcode.DEC)
case token.INC:
emit.Opcode(c.prog.BinWriter, opcode.INC)
case token.NOT:
emit.Opcode(c.prog.BinWriter, opcode.NOT)
case token.AND:
emit.Opcode(c.prog.BinWriter, opcode.AND)
case token.OR:
emit.Opcode(c.prog.BinWriter, opcode.OR)
case token.SHL:
emit.Opcode(c.prog.BinWriter, opcode.SHL)
case token.SHR:
emit.Opcode(c.prog.BinWriter, opcode.SHR)
case token.XOR:
emit.Opcode(c.prog.BinWriter, opcode.XOR)
default:
c.prog.Err = fmt.Errorf("compiler could not convert token: %s", tok)
return
}
}
func (c *codegen) newFunc(decl *ast.FuncDecl) *funcScope {
f := newFuncScope(decl, c.newLabel())
c.funcs[f.name] = f
return f
}
// CodeGen compiles the program to bytecode.
func CodeGen(info *buildInfo) ([]byte, error) {
pkg := info.program.Package(info.initialPackage)
c := &codegen{
buildInfo: info,
prog: io.NewBufBinWriter(),
l: []int{},
funcs: map[string]*funcScope{},
typeInfo: &pkg.Info,
}
// Resolve the entrypoint of the program.
main, mainFile := resolveEntryPoint(mainIdent, pkg)
if main == nil {
c.prog.Err = fmt.Errorf("could not find func main. Did you forget to declare it? ")
return []byte{}, c.prog.Err
}
funUsage := analyzeFuncUsage(info.program.AllPackages)
// Bring all imported functions into scope.
for _, pkg := range info.program.AllPackages {
for _, f := range pkg.Files {
c.resolveFuncDecls(f)
}
}
// convert the entry point first.
c.convertFuncDecl(mainFile, main)
// sort map keys to generate code deterministically.
keys := make([]*types.Package, 0, len(info.program.AllPackages))
for p := range info.program.AllPackages {
keys = append(keys, p)
}
sort.Slice(keys, func(i, j int) bool { return keys[i].Path() < keys[j].Path() })
// Generate the code for the program.
for _, k := range keys {
pkg := info.program.AllPackages[k]
c.typeInfo = &pkg.Info
for _, f := range pkg.Files {
for _, decl := range f.Decls {
switch n := decl.(type) {
case *ast.FuncDecl:
// Don't convert the function if it's not used. This will save a lot
// of bytecode space.
if n.Name.Name != mainIdent && funUsage.funcUsed(n.Name.Name) {
c.convertFuncDecl(f, n)
}
}
}
}
}
if c.prog.Err != nil {
return nil, c.prog.Err
}
buf := c.prog.Bytes()
c.writeJumps(buf)
return buf, nil
}
func (c *codegen) resolveFuncDecls(f *ast.File) {
for _, decl := range f.Decls {
switch n := decl.(type) {
case *ast.FuncDecl:
if n.Name.Name != mainIdent {
c.newFunc(n)
}
}
}
}
func (c *codegen) writeJumps(b []byte) {
ctx := vm.NewContext(b)
for op, _, err := ctx.Next(); err == nil && ctx.NextIP() < len(b); op, _, err = ctx.Next() {
switch op {
case opcode.JMP, opcode.JMPIFNOT, opcode.JMPIF, opcode.CALL:
// we can't use arg returned by ctx.Next() because it is copied
arg := b[ctx.NextIP()-2:]
index := int16(binary.LittleEndian.Uint16(arg))
if int(index) > len(c.l) || int(index) < 0 {
continue
}
offset := uint16(c.l[index] - ctx.NextIP() + 3)
binary.LittleEndian.PutUint16(arg, offset)
}
}
}