neo-go/examples/zkp/cubic_circuit/main_test.go
Anna Shaleva 9e74fc5b47 zkp: add end-to-end Groth-16 proof generation/verification example
The example shows that the proover knows the solution of the cubic
equation: y = x^3 + x + 5. The example is constructed for BLS12-381
curve points using Groth-16 prooving algorithm. The example includes
everything that developer needs to start using ZKP on the NEO platform
with Go SDK:
1. The described cubic circuit implementation.
2. The off-chain proof generation with the help of gnark-crypto library.
3. Go verification contract generation and deployment with the help of
   NeoGo libraries.
4. The on-chain proof verification for various sets of input data.

Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
2023-10-05 12:32:47 +03:00

142 lines
4.8 KiB
Go

package cubic
import (
"os"
"path/filepath"
"testing"
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark/backend/groth16"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/frontend/cs/r1cs"
"github.com/consensys/gnark/test"
"github.com/nspcc-dev/neo-go/pkg/neotest"
"github.com/nspcc-dev/neo-go/pkg/neotest/chain"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/zkpbinding"
"github.com/stretchr/testify/require"
)
// First of all, you'll need to ensure that your circuit is properly constructed.
// Use unit tests to test execute the circuit and verify it against a various set
// of curves and backends with gnark/test package.
// More about circuit testing using gnark/test package: https://pkg.go.dev/github.com/consensys/gnark/test@v0.7.0
// TestCubicCircuit_TestExecution runs the provided circuit in the test execution engine.
func TestCubicCircuit_TestExecution(t *testing.T) {
var (
circuit CubicCircuit
assignment = CubicCircuit{X: 3, Y: 35}
)
// Test executing the circuit without running a ZK-SNARK prover (with the
// help of test engine). It can be useful for the circuit debugging, see
// https://docs.gnark.consensys.net/HowTo/debug_test#common-errors.
err := test.IsSolved(&circuit, &assignment, ecc.BLS12_381.ScalarField())
require.NoError(t, err)
}
// TestCubicCircuit_Verification performs the circuit correctness testing over a
// set of all supported curves and backends and over a specified curve with a
// set of exact input and output values.
func TestCubicCircuit_Verification(t *testing.T) {
// Assert object wrapping testing.T.
assert := test.NewAssert(t)
// Declare the circuit.
var cubicCircuit CubicCircuit
// The default behavior of the assert helper is to test the circuit across
// all supported curves and backends, ensure correct serialization, and
// cross-test the constraint system solver against a big.Int test execution
// engine.
assert.ProverFailed(&cubicCircuit, &CubicCircuit{
X: 3, // Wrong value.
Y: 5,
})
// If needed, we can directly specify the desired curves or backends.
assert.ProverSucceeded(&cubicCircuit, &CubicCircuit{
X: 3, // Good value.
Y: 35,
}, test.WithCurves(ecc.BLS12_381))
}
// TestCubicCircuit_EndToEnd shows how to generate proof for pre-defined cubic circuit,
// how to generate Go verification contract that can be compiled by NeoGo and deployed
// to the chain and how to verify proofs via verification contract invocation.
func TestCubicCircuit_EndToEnd(t *testing.T) {
var (
circuit CubicCircuit
assignment = CubicCircuit{X: 3, Y: 35}
)
// Compile our circuit into a R1CS (a constraint system).
ccs, err := frontend.Compile(ecc.BLS12_381.ScalarField(), r1cs.NewBuilder, &circuit)
require.NoError(t, err)
// One time setup (groth16 zkSNARK).
pk, vk, err := groth16.Setup(ccs)
require.NoError(t, err)
// Intermediate step: witness definition.
witness, err := frontend.NewWitness(&assignment, ecc.BLS12_381.ScalarField())
require.NoError(t, err)
publicWitness, err := witness.Public()
require.NoError(t, err)
// Proof creation (groth16).
proof, err := groth16.Prove(ccs, pk, witness)
require.NoError(t, err)
// Ensure that gnark can successfully verify the proof (just in case).
err = groth16.Verify(proof, vk, publicWitness)
require.NoError(t, err)
// Now, when we're sure that the proof is valid, we can create and deploy verification
// contract to the Neo testing chain.
args, err := zkpbinding.GetVerifyProofArgs(proof, publicWitness)
require.NoError(t, err)
// Create contract file.
tmpDir := t.TempDir()
srcPath := filepath.Join(tmpDir, "verify.go")
f, err := os.Create(srcPath)
require.NoError(t, err)
// Create contract configuration file.
cfgPath := filepath.Join(tmpDir, "verify.yml")
fCfg, err := os.Create(cfgPath)
require.NoError(t, err)
// Create contract go.mod and go.sum files.
fMod, err := os.Create(filepath.Join(tmpDir, "go.mod"))
require.NoError(t, err)
fSum, err := os.Create(filepath.Join(tmpDir, "go.sum"))
require.NoError(t, err)
err = zkpbinding.GenerateVerifier(zkpbinding.Config{
VerifyingKey: vk,
Output: f,
CfgOutput: fCfg,
GomodOutput: fMod,
GosumOutput: fSum,
})
require.NoError(t, err)
require.NoError(t, f.Close())
require.NoError(t, fCfg.Close())
require.NoError(t, fMod.Close())
require.NoError(t, fSum.Close())
// Create testing chain and deploy contract onto it.
bc, committee := chain.NewSingle(t)
e := neotest.NewExecutor(t, bc, committee, committee)
// Compile verification contract and deploy the contract onto chain.
c := neotest.CompileFile(t, e.Validator.ScriptHash(), srcPath, cfgPath)
e.DeployContract(t, c, nil)
// Verify proof via verification contract call.
validatorInvoker := e.ValidatorInvoker(c.Hash)
validatorInvoker.Invoke(t, true, "verifyProof", args.A, args.B, args.C, args.PublicWitnesses)
}