neo-go/pkg/network/server.go
Roman Khimov f42b8e78fc
Merge pull request #2758 from nspcc-dev/check-inflight-tx-invs
network: check inv against currently processed transactions
2022-10-24 14:16:33 +07:00

1668 lines
48 KiB
Go

package network
import (
"context"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"math/big"
mrand "math/rand"
"net"
"runtime"
"sort"
"strconv"
"sync"
"time"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/core/block"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
"github.com/nspcc-dev/neo-go/pkg/core/mempoolevent"
"github.com/nspcc-dev/neo-go/pkg/core/mpt"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/network/capability"
"github.com/nspcc-dev/neo-go/pkg/network/extpool"
"github.com/nspcc-dev/neo-go/pkg/network/payload"
"github.com/nspcc-dev/neo-go/pkg/util"
"go.uber.org/atomic"
"go.uber.org/zap"
)
const (
// peer numbers are arbitrary at the moment.
defaultMinPeers = 5
defaultAttemptConnPeers = 20
defaultMaxPeers = 100
defaultExtensiblePoolSize = 20
defaultBroadcastFactor = 0
maxBlockBatch = 200
minPoolCount = 30
)
var (
errAlreadyConnected = errors.New("already connected")
errIdenticalID = errors.New("identical node id")
errInvalidNetwork = errors.New("invalid network")
errMaxPeers = errors.New("max peers reached")
errServerShutdown = errors.New("server shutdown")
errInvalidInvType = errors.New("invalid inventory type")
)
type (
// Ledger is everything Server needs from the blockchain.
Ledger interface {
extpool.Ledger
mempool.Feer
Blockqueuer
GetBlock(hash util.Uint256) (*block.Block, error)
GetConfig() config.ProtocolConfiguration
GetHeader(hash util.Uint256) (*block.Header, error)
GetHeaderHash(int) util.Uint256
GetMaxVerificationGAS() int64
GetMemPool() *mempool.Pool
GetNotaryBalance(acc util.Uint160) *big.Int
GetNotaryContractScriptHash() util.Uint160
GetNotaryDepositExpiration(acc util.Uint160) uint32
GetTransaction(util.Uint256) (*transaction.Transaction, uint32, error)
HasBlock(util.Uint256) bool
HeaderHeight() uint32
P2PSigExtensionsEnabled() bool
PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error
PoolTxWithData(t *transaction.Transaction, data interface{}, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(t *transaction.Transaction, data interface{}) error) error
RegisterPostBlock(f func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block))
SubscribeForBlocks(ch chan *block.Block)
UnsubscribeFromBlocks(ch chan *block.Block)
}
// Service is a service abstraction (oracle, state root, consensus, etc).
Service interface {
Name() string
Start()
Shutdown()
}
// Server represents the local Node in the network. Its transport could
// be of any kind.
Server struct {
// ServerConfig holds the Server configuration.
ServerConfig
// id also known as the nonce of the server.
id uint32
// A copy of the Ledger's config.
config config.ProtocolConfiguration
transport Transporter
discovery Discoverer
chain Ledger
bQueue *blockQueue
bSyncQueue *blockQueue
mempool *mempool.Pool
notaryRequestPool *mempool.Pool
extensiblePool *extpool.Pool
notaryFeer NotaryFeer
serviceLock sync.RWMutex
services map[string]Service
extensHandlers map[string]func(*payload.Extensible) error
txCallback func(*transaction.Transaction)
txCbEnabled atomic.Bool
txInLock sync.RWMutex
txin chan *transaction.Transaction
txInMap map[util.Uint256]struct{}
lock sync.RWMutex
peers map[Peer]bool
// lastRequestedBlock contains a height of the last requested block.
lastRequestedBlock atomic.Uint32
// lastRequestedHeader contains a height of the last requested header.
lastRequestedHeader atomic.Uint32
register chan Peer
unregister chan peerDrop
quit chan struct{}
relayFin chan struct{}
transactions chan *transaction.Transaction
syncReached *atomic.Bool
stateSync StateSync
log *zap.Logger
}
peerDrop struct {
peer Peer
reason error
}
)
func randomID() uint32 {
buf := make([]byte, 4)
_, _ = rand.Read(buf)
return binary.BigEndian.Uint32(buf)
}
// NewServer returns a new Server, initialized with the given configuration.
func NewServer(config ServerConfig, chain Ledger, stSync StateSync, log *zap.Logger) (*Server, error) {
return newServerFromConstructors(config, chain, stSync, log, func(s *Server) Transporter {
return NewTCPTransport(s, net.JoinHostPort(s.ServerConfig.Address, strconv.Itoa(int(s.ServerConfig.Port))), s.log)
}, newDefaultDiscovery)
}
func newServerFromConstructors(config ServerConfig, chain Ledger, stSync StateSync, log *zap.Logger,
newTransport func(*Server) Transporter,
newDiscovery func([]string, time.Duration, Transporter) Discoverer,
) (*Server, error) {
if log == nil {
return nil, errors.New("logger is a required parameter")
}
if config.ExtensiblePoolSize <= 0 {
config.ExtensiblePoolSize = defaultExtensiblePoolSize
log.Info("ExtensiblePoolSize is not set or wrong, using default value",
zap.Int("ExtensiblePoolSize", config.ExtensiblePoolSize))
}
s := &Server{
ServerConfig: config,
chain: chain,
id: randomID(),
config: chain.GetConfig(),
quit: make(chan struct{}),
relayFin: make(chan struct{}),
register: make(chan Peer),
unregister: make(chan peerDrop),
txInMap: make(map[util.Uint256]struct{}),
peers: make(map[Peer]bool),
syncReached: atomic.NewBool(false),
mempool: chain.GetMemPool(),
extensiblePool: extpool.New(chain, config.ExtensiblePoolSize),
log: log,
txin: make(chan *transaction.Transaction, 64),
transactions: make(chan *transaction.Transaction, 64),
services: make(map[string]Service),
extensHandlers: make(map[string]func(*payload.Extensible) error),
stateSync: stSync,
}
if chain.P2PSigExtensionsEnabled() {
s.notaryFeer = NewNotaryFeer(chain)
s.notaryRequestPool = mempool.New(s.config.P2PNotaryRequestPayloadPoolSize, 1, true)
chain.RegisterPostBlock(func(isRelevant func(*transaction.Transaction, *mempool.Pool, bool) bool, txpool *mempool.Pool, _ *block.Block) {
s.notaryRequestPool.RemoveStale(func(t *transaction.Transaction) bool {
return isRelevant(t, txpool, true)
}, s.notaryFeer)
})
}
s.bQueue = newBlockQueue(maxBlockBatch, chain, log, func(b *block.Block) {
s.tryStartServices()
})
s.bSyncQueue = newBlockQueue(maxBlockBatch, s.stateSync, log, nil)
if s.MinPeers < 0 {
s.log.Info("bad MinPeers configured, using the default value",
zap.Int("configured", s.MinPeers),
zap.Int("actual", defaultMinPeers))
s.MinPeers = defaultMinPeers
}
if s.MaxPeers <= 0 {
s.log.Info("bad MaxPeers configured, using the default value",
zap.Int("configured", s.MaxPeers),
zap.Int("actual", defaultMaxPeers))
s.MaxPeers = defaultMaxPeers
}
if s.AttemptConnPeers <= 0 {
s.log.Info("bad AttemptConnPeers configured, using the default value",
zap.Int("configured", s.AttemptConnPeers),
zap.Int("actual", defaultAttemptConnPeers))
s.AttemptConnPeers = defaultAttemptConnPeers
}
if s.BroadcastFactor < 0 || s.BroadcastFactor > 100 {
s.log.Info("bad BroadcastFactor configured, using the default value",
zap.Int("configured", s.BroadcastFactor),
zap.Int("actual", defaultBroadcastFactor))
s.BroadcastFactor = defaultBroadcastFactor
}
s.transport = newTransport(s)
s.discovery = newDiscovery(
s.Seeds,
s.DialTimeout,
s.transport,
)
return s, nil
}
// ID returns the servers ID.
func (s *Server) ID() uint32 {
return s.id
}
// Start will start the server and its underlying transport. Calling it twice
// is an error.
func (s *Server) Start(errChan chan error) {
s.log.Info("node started",
zap.Uint32("blockHeight", s.chain.BlockHeight()),
zap.Uint32("headerHeight", s.chain.HeaderHeight()))
s.tryStartServices()
s.initStaleMemPools()
var txThreads = optimalNumOfThreads()
for i := 0; i < txThreads; i++ {
go s.txHandlerLoop()
}
go s.broadcastTxLoop()
go s.relayBlocksLoop()
go s.bQueue.run()
go s.bSyncQueue.run()
go s.transport.Accept()
setServerAndNodeVersions(s.UserAgent, strconv.FormatUint(uint64(s.id), 10))
s.run()
}
// Shutdown disconnects all peers and stops listening. Calling it twice is an error,
// once stopped the same intance of the Server can't be started again by calling Start.
func (s *Server) Shutdown() {
s.log.Info("shutting down server", zap.Int("peers", s.PeerCount()))
s.transport.Close()
for _, p := range s.getPeers(nil) {
p.Disconnect(errServerShutdown)
}
s.bQueue.discard()
s.bSyncQueue.discard()
s.serviceLock.RLock()
for _, svc := range s.services {
svc.Shutdown()
}
s.serviceLock.RUnlock()
if s.chain.P2PSigExtensionsEnabled() {
s.notaryRequestPool.StopSubscriptions()
}
close(s.quit)
<-s.relayFin
}
// AddService allows to add a service to be started/stopped by Server.
func (s *Server) AddService(svc Service) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.addService(svc)
}
// addService is an unlocked version of AddService.
func (s *Server) addService(svc Service) {
s.services[svc.Name()] = svc
}
// AddExtensibleService register a service that handles an extensible payload of some kind.
func (s *Server) AddExtensibleService(svc Service, category string, handler func(*payload.Extensible) error) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.addExtensibleService(svc, category, handler)
}
// addExtensibleService is an unlocked version of AddExtensibleService.
func (s *Server) addExtensibleService(svc Service, category string, handler func(*payload.Extensible) error) {
s.extensHandlers[category] = handler
s.addService(svc)
}
// AddConsensusService registers consensus service that handles transactions and dBFT extensible payloads.
func (s *Server) AddConsensusService(svc Service, handler func(*payload.Extensible) error, txCallback func(*transaction.Transaction)) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.txCallback = txCallback
s.addExtensibleService(svc, payload.ConsensusCategory, handler)
}
// DelService drops a service from the list, use it when the service is stopped
// outside of the Server.
func (s *Server) DelService(svc Service) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.delService(svc)
}
// delService is an unlocked version of DelService.
func (s *Server) delService(svc Service) {
delete(s.services, svc.Name())
}
// DelExtensibleService drops a service that handler extensible payloads from the
// list, use it when the service is stopped outside of the Server.
func (s *Server) DelExtensibleService(svc Service, category string) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.delExtensibleService(svc, category)
}
// delExtensibleService is an unlocked version of DelExtensibleService.
func (s *Server) delExtensibleService(svc Service, category string) {
delete(s.extensHandlers, category)
s.delService(svc)
}
// DelConsensusService unregisters consensus service that handles transactions and dBFT extensible payloads.
func (s *Server) DelConsensusService(svc Service) {
s.serviceLock.Lock()
defer s.serviceLock.Unlock()
s.txCallback = nil
s.delExtensibleService(svc, payload.ConsensusCategory)
}
// GetNotaryPool allows to retrieve notary pool, if it's configured.
func (s *Server) GetNotaryPool() *mempool.Pool {
return s.notaryRequestPool
}
// UnconnectedPeers returns a list of peers that are in the discovery peer list
// but are not connected to the server.
func (s *Server) UnconnectedPeers() []string {
return s.discovery.UnconnectedPeers()
}
// BadPeers returns a list of peers that are flagged as "bad" peers.
func (s *Server) BadPeers() []string {
return s.discovery.BadPeers()
}
// ConnectedPeers returns a list of currently connected peers.
func (s *Server) ConnectedPeers() []string {
s.lock.RLock()
defer s.lock.RUnlock()
peers := make([]string, 0, len(s.peers))
for k := range s.peers {
peers = append(peers, k.PeerAddr().String())
}
return peers
}
// run is a goroutine that starts another goroutine to manage protocol specifics
// while itself dealing with peers management (handling connects/disconnects).
func (s *Server) run() {
go s.runProto()
for loopCnt := 0; ; loopCnt++ {
var (
netSize = s.discovery.NetworkSize()
// "Optimal" number of peers.
optimalN = s.discovery.GetFanOut() * 2
// Real number of peers.
peerN = s.PeerCount()
)
if peerN < s.MinPeers {
// Starting up or going below the minimum -> quickly get many new peers.
s.discovery.RequestRemote(s.AttemptConnPeers)
} else if s.MinPeers > 0 && loopCnt%s.MinPeers == 0 && optimalN > peerN && optimalN < s.MaxPeers && optimalN < netSize {
// Having some number of peers, but probably can get some more, the network is big.
// It also allows to start picking up new peers proactively, before we suddenly have <s.MinPeers of them.
var connN = s.AttemptConnPeers
if connN > optimalN-peerN {
connN = optimalN - peerN
}
s.discovery.RequestRemote(connN)
}
if s.discovery.PoolCount() < minPoolCount {
s.broadcastHPMessage(NewMessage(CMDGetAddr, payload.NewNullPayload()))
}
select {
case <-s.quit:
return
case p := <-s.register:
s.lock.Lock()
s.peers[p] = true
s.lock.Unlock()
peerCount := s.PeerCount()
s.log.Info("new peer connected", zap.Stringer("addr", p.RemoteAddr()), zap.Int("peerCount", peerCount))
if peerCount > s.MaxPeers {
s.lock.RLock()
// Pick a random peer and drop connection to it.
for peer := range s.peers {
// It will send us unregister signal.
go peer.Disconnect(errMaxPeers)
break
}
s.lock.RUnlock()
}
updatePeersConnectedMetric(s.PeerCount())
case drop := <-s.unregister:
s.lock.Lock()
if s.peers[drop.peer] {
delete(s.peers, drop.peer)
s.lock.Unlock()
s.log.Warn("peer disconnected",
zap.Stringer("addr", drop.peer.RemoteAddr()),
zap.Error(drop.reason),
zap.Int("peerCount", s.PeerCount()))
addr := drop.peer.PeerAddr().String()
if errors.Is(drop.reason, errIdenticalID) {
s.discovery.RegisterBadAddr(addr)
} else if errors.Is(drop.reason, errAlreadyConnected) {
// There is a race condition when peer can be disconnected twice for the this reason
// which can lead to no connections to peer at all. Here we check for such a possibility.
stillConnected := false
s.lock.RLock()
verDrop := drop.peer.Version()
addr := drop.peer.PeerAddr().String()
if verDrop != nil {
for peer := range s.peers {
ver := peer.Version()
// Already connected, drop this connection.
if ver != nil && ver.Nonce == verDrop.Nonce && peer.PeerAddr().String() == addr {
stillConnected = true
}
}
}
s.lock.RUnlock()
if !stillConnected {
s.discovery.UnregisterConnectedAddr(addr)
}
} else {
s.discovery.UnregisterConnectedAddr(addr)
}
updatePeersConnectedMetric(s.PeerCount())
} else {
// else the peer is already gone, which can happen
// because we have two goroutines sending signals here
s.lock.Unlock()
}
}
}
}
// runProto is a goroutine that manages server-wide protocol events.
func (s *Server) runProto() {
pingTimer := time.NewTimer(s.PingInterval)
for {
prevHeight := s.chain.BlockHeight()
select {
case <-s.quit:
return
case <-pingTimer.C:
if s.chain.BlockHeight() == prevHeight {
s.broadcastMessage(NewMessage(CMDPing, payload.NewPing(s.chain.BlockHeight(), s.id)))
}
pingTimer.Reset(s.PingInterval)
}
}
}
func (s *Server) tryStartServices() {
if s.syncReached.Load() {
return
}
if s.IsInSync() && s.syncReached.CAS(false, true) {
s.log.Info("node reached synchronized state, starting services")
if s.chain.P2PSigExtensionsEnabled() {
s.notaryRequestPool.RunSubscriptions() // WSClient is also a subscriber.
}
s.serviceLock.RLock()
for _, svc := range s.services {
svc.Start()
}
s.serviceLock.RUnlock()
}
}
// SubscribeForNotaryRequests adds the given channel to a notary request event
// broadcasting, so when a new P2PNotaryRequest is received or an existing
// P2PNotaryRequest is removed from the pool you'll receive it via this channel.
// Make sure it's read from regularly as not reading these events might affect
// other Server functions.
// Ensure that P2PSigExtensions are enabled before calling this method.
func (s *Server) SubscribeForNotaryRequests(ch chan<- mempoolevent.Event) {
if !s.chain.P2PSigExtensionsEnabled() {
panic("P2PSigExtensions are disabled")
}
s.notaryRequestPool.SubscribeForTransactions(ch)
}
// UnsubscribeFromNotaryRequests unsubscribes the given channel from notary request
// notifications, you can close it afterwards. Passing non-subscribed channel
// is a no-op.
// Ensure that P2PSigExtensions are enabled before calling this method.
func (s *Server) UnsubscribeFromNotaryRequests(ch chan<- mempoolevent.Event) {
if !s.chain.P2PSigExtensionsEnabled() {
panic("P2PSigExtensions are disabled")
}
s.notaryRequestPool.UnsubscribeFromTransactions(ch)
}
// getPeers returns the current list of the peers connected to the server filtered by
// isOK function if it's given.
func (s *Server) getPeers(isOK func(Peer) bool) []Peer {
s.lock.RLock()
defer s.lock.RUnlock()
peers := make([]Peer, 0, len(s.peers))
for k := range s.peers {
if isOK != nil && !isOK(k) {
continue
}
peers = append(peers, k)
}
return peers
}
// PeerCount returns the number of the currently connected peers.
func (s *Server) PeerCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
return len(s.peers)
}
// HandshakedPeersCount returns the number of the connected peers
// which have already performed handshake.
func (s *Server) HandshakedPeersCount() int {
s.lock.RLock()
defer s.lock.RUnlock()
var count int
for p := range s.peers {
if p.Handshaked() {
count++
}
}
return count
}
// getVersionMsg returns the current version message.
func (s *Server) getVersionMsg() (*Message, error) {
port, err := s.Port()
if err != nil {
return nil, err
}
capabilities := []capability.Capability{
{
Type: capability.TCPServer,
Data: &capability.Server{
Port: port,
},
},
}
if s.Relay {
capabilities = append(capabilities, capability.Capability{
Type: capability.FullNode,
Data: &capability.Node{
StartHeight: s.chain.BlockHeight(),
},
})
}
payload := payload.NewVersion(
s.Net,
s.id,
s.UserAgent,
capabilities,
)
return NewMessage(CMDVersion, payload), nil
}
// IsInSync answers the question of whether the server is in sync with the
// network or not (at least how the server itself sees it). The server operates
// with the data that it has, the number of peers (that has to be more than
// minimum number) and the height of these peers (our chain has to be not lower
// than 2/3 of our peers have). Ideally, we would check for the highest of the
// peers, but the problem is that they can lie to us and send whatever height
// they want to. Once sync reached, IsInSync will always return `true`, even if
// server is temporary out of sync after that.
func (s *Server) IsInSync() bool {
if s.syncReached.Load() {
return true
}
var peersNumber int
var notHigher int
if s.stateSync.IsActive() {
return false
}
if s.MinPeers == 0 {
return true
}
ourLastBlock := s.chain.BlockHeight()
s.lock.RLock()
for p := range s.peers {
if p.Handshaked() {
peersNumber++
if ourLastBlock >= p.LastBlockIndex() {
notHigher++
}
}
}
s.lock.RUnlock()
// Checking bQueue would also be nice, but it can be filled with garbage
// easily at the moment.
return peersNumber >= s.MinPeers && (3*notHigher > 2*peersNumber) // && s.bQueue.length() == 0
}
// When a peer sends out its version, we reply with verack after validating
// the version.
func (s *Server) handleVersionCmd(p Peer, version *payload.Version) error {
err := p.HandleVersion(version)
if err != nil {
return err
}
if s.id == version.Nonce {
return errIdenticalID
}
// Make sure both the server and the peer are operating on
// the same network.
if s.Net != version.Magic {
return errInvalidNetwork
}
peerAddr := p.PeerAddr().String()
s.lock.RLock()
for peer := range s.peers {
if p == peer {
continue
}
ver := peer.Version()
// Already connected, drop this connection.
if ver != nil && ver.Nonce == version.Nonce && peer.PeerAddr().String() == peerAddr {
s.lock.RUnlock()
return errAlreadyConnected
}
}
s.lock.RUnlock()
s.discovery.RegisterConnectedAddr(peerAddr)
return p.SendVersionAck(NewMessage(CMDVerack, payload.NewNullPayload()))
}
// handleBlockCmd processes the block received from its peer.
func (s *Server) handleBlockCmd(p Peer, block *block.Block) error {
if s.stateSync.IsActive() {
return s.bSyncQueue.putBlock(block)
}
return s.bQueue.putBlock(block)
}
// handlePing processes a ping request.
func (s *Server) handlePing(p Peer, ping *payload.Ping) error {
err := p.HandlePing(ping)
if err != nil {
return err
}
err = s.requestBlocksOrHeaders(p)
if err != nil {
return err
}
return p.EnqueueP2PMessage(NewMessage(CMDPong, payload.NewPing(s.chain.BlockHeight(), s.id)))
}
func (s *Server) requestBlocksOrHeaders(p Peer) error {
if s.stateSync.NeedHeaders() {
if s.chain.HeaderHeight() < p.LastBlockIndex() {
return s.requestHeaders(p)
}
return nil
}
var (
bq Blockqueuer = s.chain
requestMPTNodes bool
)
if s.stateSync.IsActive() {
bq = s.stateSync
requestMPTNodes = s.stateSync.NeedMPTNodes()
}
if bq.BlockHeight() >= p.LastBlockIndex() {
return nil
}
err := s.requestBlocks(bq, p)
if err != nil {
return err
}
if requestMPTNodes {
return s.requestMPTNodes(p, s.stateSync.GetUnknownMPTNodesBatch(payload.MaxMPTHashesCount))
}
return nil
}
// requestHeaders sends a CMDGetHeaders message to the peer to sync up in headers.
func (s *Server) requestHeaders(p Peer) error {
pl := getRequestBlocksPayload(p, s.chain.HeaderHeight(), &s.lastRequestedHeader)
return p.EnqueueP2PMessage(NewMessage(CMDGetHeaders, pl))
}
// handlePing processes a pong request.
func (s *Server) handlePong(p Peer, pong *payload.Ping) error {
err := p.HandlePong(pong)
if err != nil {
return err
}
return s.requestBlocksOrHeaders(p)
}
// handleInvCmd processes the received inventory.
func (s *Server) handleInvCmd(p Peer, inv *payload.Inventory) error {
var reqHashes = inv.Hashes[:0]
var typExists = map[payload.InventoryType]func(util.Uint256) bool{
payload.TXType: func(h util.Uint256) bool {
s.txInLock.RLock()
_, ok := s.txInMap[h]
s.txInLock.RUnlock()
return ok || s.mempool.ContainsKey(h)
},
payload.BlockType: s.chain.HasBlock,
payload.ExtensibleType: func(h util.Uint256) bool {
cp := s.extensiblePool.Get(h)
return cp != nil
},
payload.P2PNotaryRequestType: func(h util.Uint256) bool {
return s.notaryRequestPool.ContainsKey(h)
},
}
if exists := typExists[inv.Type]; exists != nil {
for _, hash := range inv.Hashes {
if !exists(hash) {
reqHashes = append(reqHashes, hash)
}
}
}
if len(reqHashes) > 0 {
msg := NewMessage(CMDGetData, payload.NewInventory(inv.Type, reqHashes))
if inv.Type == payload.ExtensibleType {
return p.EnqueueHPMessage(msg)
}
return p.EnqueueP2PMessage(msg)
}
return nil
}
// handleMempoolCmd handles getmempool command.
func (s *Server) handleMempoolCmd(p Peer) error {
txs := s.mempool.GetVerifiedTransactions()
hs := make([]util.Uint256, 0, payload.MaxHashesCount)
for i := range txs {
hs = append(hs, txs[i].Hash())
if len(hs) < payload.MaxHashesCount && i != len(txs)-1 {
continue
}
msg := NewMessage(CMDInv, payload.NewInventory(payload.TXType, hs))
err := p.EnqueueP2PMessage(msg)
if err != nil {
return err
}
hs = hs[:0]
}
return nil
}
// handleInvCmd processes the received inventory.
func (s *Server) handleGetDataCmd(p Peer, inv *payload.Inventory) error {
var (
err error
notFound []util.Uint256
reply = io.NewBufBinWriter()
send = p.EnqueueP2PPacket
)
if inv.Type == payload.ExtensibleType {
send = p.EnqueueHPPacket
}
for _, hash := range inv.Hashes {
var msg *Message
switch inv.Type {
case payload.TXType:
tx, _, err := s.chain.GetTransaction(hash)
if err == nil {
msg = NewMessage(CMDTX, tx)
} else {
notFound = append(notFound, hash)
}
case payload.BlockType:
b, err := s.chain.GetBlock(hash)
if err == nil {
msg = NewMessage(CMDBlock, b)
} else {
notFound = append(notFound, hash)
}
case payload.ExtensibleType:
if cp := s.extensiblePool.Get(hash); cp != nil {
msg = NewMessage(CMDExtensible, cp)
}
case payload.P2PNotaryRequestType:
if nrp, ok := s.notaryRequestPool.TryGetData(hash); ok { // already have checked P2PSigExtEnabled
msg = NewMessage(CMDP2PNotaryRequest, nrp.(*payload.P2PNotaryRequest))
} else {
notFound = append(notFound, hash)
}
}
if msg != nil {
err = addMessageToPacket(reply, msg, send)
if err != nil {
return err
}
}
}
if len(notFound) != 0 {
err = addMessageToPacket(reply, NewMessage(CMDNotFound, payload.NewInventory(inv.Type, notFound)), send)
if err != nil {
return err
}
}
if reply.Len() == 0 {
return nil
}
return send(reply.Bytes())
}
// addMessageToPacket serializes given message into the given buffer and sends whole
// batch if it exceeds MaxSize/2 memory limit (to prevent DoS).
func addMessageToPacket(batch *io.BufBinWriter, msg *Message, send func([]byte) error) error {
err := msg.Encode(batch.BinWriter)
if err != nil {
return err
}
if batch.Len() > payload.MaxSize/2 {
err = send(batch.Bytes())
if err != nil {
return err
}
batch.Reset()
}
return nil
}
// handleGetMPTDataCmd processes the received MPT inventory.
func (s *Server) handleGetMPTDataCmd(p Peer, inv *payload.MPTInventory) error {
if !s.config.P2PStateExchangeExtensions {
return errors.New("GetMPTDataCMD was received, but P2PStateExchangeExtensions are disabled")
}
// Even if s.config.KeepOnlyLatestState enabled, we'll keep latest P1 and P2 MPT states.
resp := payload.MPTData{}
capLeft := payload.MaxSize - 8 // max(io.GetVarSize(len(resp.Nodes)))
added := make(map[util.Uint256]struct{})
for _, h := range inv.Hashes {
if capLeft <= 2 { // at least 1 byte for len(nodeBytes) and 1 byte for node type
break
}
err := s.stateSync.Traverse(h,
func(n mpt.Node, node []byte) bool {
if _, ok := added[n.Hash()]; ok {
return false
}
l := len(node)
size := l + io.GetVarSize(l)
if size > capLeft {
return true
}
resp.Nodes = append(resp.Nodes, node)
added[n.Hash()] = struct{}{}
capLeft -= size
return false
})
if err != nil {
return fmt.Errorf("failed to traverse MPT starting from %s: %w", h.StringBE(), err)
}
}
if len(resp.Nodes) > 0 {
msg := NewMessage(CMDMPTData, &resp)
return p.EnqueueP2PMessage(msg)
}
return nil
}
func (s *Server) handleMPTDataCmd(p Peer, data *payload.MPTData) error {
if !s.config.P2PStateExchangeExtensions {
return errors.New("MPTDataCMD was received, but P2PStateExchangeExtensions are disabled")
}
return s.stateSync.AddMPTNodes(data.Nodes)
}
// requestMPTNodes requests the specified MPT nodes from the peer or broadcasts
// request if no peer is specified.
func (s *Server) requestMPTNodes(p Peer, itms []util.Uint256) error {
if len(itms) == 0 {
return nil
}
if len(itms) > payload.MaxMPTHashesCount {
itms = itms[:payload.MaxMPTHashesCount]
}
pl := payload.NewMPTInventory(itms)
msg := NewMessage(CMDGetMPTData, pl)
return p.EnqueueP2PMessage(msg)
}
// handleGetBlocksCmd processes the getblocks request.
func (s *Server) handleGetBlocksCmd(p Peer, gb *payload.GetBlocks) error {
count := gb.Count
if gb.Count < 0 || gb.Count > payload.MaxHashesCount {
count = payload.MaxHashesCount
}
start, err := s.chain.GetHeader(gb.HashStart)
if err != nil {
return err
}
blockHashes := make([]util.Uint256, 0)
for i := start.Index + 1; i <= start.Index+uint32(count); i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) {
break
}
blockHashes = append(blockHashes, hash)
}
if len(blockHashes) == 0 {
return nil
}
payload := payload.NewInventory(payload.BlockType, blockHashes)
msg := NewMessage(CMDInv, payload)
return p.EnqueueP2PMessage(msg)
}
// handleGetBlockByIndexCmd processes the getblockbyindex request.
func (s *Server) handleGetBlockByIndexCmd(p Peer, gbd *payload.GetBlockByIndex) error {
var reply = io.NewBufBinWriter()
count := gbd.Count
if gbd.Count < 0 || gbd.Count > payload.MaxHashesCount {
count = payload.MaxHashesCount
}
for i := gbd.IndexStart; i < gbd.IndexStart+uint32(count); i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) {
break
}
b, err := s.chain.GetBlock(hash)
if err != nil {
break
}
err = addMessageToPacket(reply, NewMessage(CMDBlock, b), p.EnqueueP2PPacket)
if err != nil {
return err
}
}
if reply.Len() == 0 {
return nil
}
return p.EnqueueP2PPacket(reply.Bytes())
}
// handleGetHeadersCmd processes the getheaders request.
func (s *Server) handleGetHeadersCmd(p Peer, gh *payload.GetBlockByIndex) error {
if gh.IndexStart > s.chain.HeaderHeight() {
return nil
}
count := gh.Count
if gh.Count < 0 || gh.Count > payload.MaxHeadersAllowed {
count = payload.MaxHeadersAllowed
}
resp := payload.Headers{}
resp.Hdrs = make([]*block.Header, 0, count)
for i := gh.IndexStart; i < gh.IndexStart+uint32(count); i++ {
hash := s.chain.GetHeaderHash(int(i))
if hash.Equals(util.Uint256{}) {
break
}
header, err := s.chain.GetHeader(hash)
if err != nil {
break
}
resp.Hdrs = append(resp.Hdrs, header)
}
if len(resp.Hdrs) == 0 {
return nil
}
msg := NewMessage(CMDHeaders, &resp)
return p.EnqueueP2PMessage(msg)
}
// handleHeadersCmd processes headers payload.
func (s *Server) handleHeadersCmd(p Peer, h *payload.Headers) error {
return s.stateSync.AddHeaders(h.Hdrs...)
}
// handleExtensibleCmd processes the received extensible payload.
func (s *Server) handleExtensibleCmd(e *payload.Extensible) error {
if !s.syncReached.Load() {
return nil
}
ok, err := s.extensiblePool.Add(e)
if err != nil {
return err
}
if !ok { // payload is already in cache
return nil
}
s.serviceLock.RLock()
handler := s.extensHandlers[e.Category]
s.serviceLock.RUnlock()
if handler != nil {
err = handler(e)
if err != nil {
return err
}
}
s.advertiseExtensible(e)
return nil
}
func (s *Server) advertiseExtensible(e *payload.Extensible) {
msg := NewMessage(CMDInv, payload.NewInventory(payload.ExtensibleType, []util.Uint256{e.Hash()}))
if e.Category == payload.ConsensusCategory {
// It's high priority because it directly affects consensus process,
// even though it's just an inv.
s.broadcastHPMessage(msg)
} else {
s.broadcastMessage(msg)
}
}
// handleTxCmd processes the received transaction.
// It never returns an error.
func (s *Server) handleTxCmd(tx *transaction.Transaction) error {
// It's OK for it to fail for various reasons like tx already existing
// in the pool.
s.txInLock.Lock()
_, ok := s.txInMap[tx.Hash()]
if ok || s.mempool.ContainsKey(tx.Hash()) {
s.txInLock.Unlock()
return nil
}
s.txInMap[tx.Hash()] = struct{}{}
s.txInLock.Unlock()
s.txin <- tx
return nil
}
func (s *Server) txHandlerLoop() {
txloop:
for {
select {
case tx := <-s.txin:
s.serviceLock.RLock()
txCallback := s.txCallback
s.serviceLock.RUnlock()
if txCallback != nil && s.txCbEnabled.Load() {
txCallback(tx)
}
if s.verifyAndPoolTX(tx) == nil {
s.broadcastTX(tx, nil)
}
s.txInLock.Lock()
delete(s.txInMap, tx.Hash())
s.txInLock.Unlock()
case <-s.quit:
break txloop
}
}
drainloop:
for {
select {
case <-s.txin:
default:
break drainloop
}
}
}
// handleP2PNotaryRequestCmd process the received P2PNotaryRequest payload.
func (s *Server) handleP2PNotaryRequestCmd(r *payload.P2PNotaryRequest) error {
if !s.chain.P2PSigExtensionsEnabled() {
return errors.New("P2PNotaryRequestCMD was received, but P2PSignatureExtensions are disabled")
}
// It's OK for it to fail for various reasons like request already existing
// in the pool.
_ = s.RelayP2PNotaryRequest(r)
return nil
}
// RelayP2PNotaryRequest adds the given request to the pool and relays. It does not check
// P2PSigExtensions enabled.
func (s *Server) RelayP2PNotaryRequest(r *payload.P2PNotaryRequest) error {
err := s.verifyAndPoolNotaryRequest(r)
if err == nil {
s.broadcastP2PNotaryRequestPayload(nil, r)
}
return err
}
// verifyAndPoolNotaryRequest verifies NotaryRequest payload and adds it to the payload mempool.
func (s *Server) verifyAndPoolNotaryRequest(r *payload.P2PNotaryRequest) error {
return s.chain.PoolTxWithData(r.FallbackTransaction, r, s.notaryRequestPool, s.notaryFeer, s.verifyNotaryRequest)
}
// verifyNotaryRequest is a function for state-dependant P2PNotaryRequest payload verification which is executed before ordinary blockchain's verification.
func (s *Server) verifyNotaryRequest(_ *transaction.Transaction, data interface{}) error {
r := data.(*payload.P2PNotaryRequest)
payer := r.FallbackTransaction.Signers[1].Account
if _, err := s.chain.VerifyWitness(payer, r, &r.Witness, s.chain.GetMaxVerificationGAS()); err != nil {
return fmt.Errorf("bad P2PNotaryRequest payload witness: %w", err)
}
notaryHash := s.chain.GetNotaryContractScriptHash()
if r.FallbackTransaction.Sender() != notaryHash {
return errors.New("P2PNotary contract should be a sender of the fallback transaction")
}
depositExpiration := s.chain.GetNotaryDepositExpiration(payer)
if r.FallbackTransaction.ValidUntilBlock >= depositExpiration {
return fmt.Errorf("fallback transaction is valid after deposit is unlocked: ValidUntilBlock is %d, deposit lock expires at %d", r.FallbackTransaction.ValidUntilBlock, depositExpiration)
}
return nil
}
func (s *Server) broadcastP2PNotaryRequestPayload(_ *transaction.Transaction, data interface{}) {
r := data.(*payload.P2PNotaryRequest) // we can guarantee that cast is successful
msg := NewMessage(CMDInv, payload.NewInventory(payload.P2PNotaryRequestType, []util.Uint256{r.FallbackTransaction.Hash()}))
s.broadcastMessage(msg)
}
// handleAddrCmd will process the received addresses.
func (s *Server) handleAddrCmd(p Peer, addrs *payload.AddressList) error {
if !p.CanProcessAddr() {
return errors.New("unexpected addr received")
}
dups := make(map[string]bool)
for _, a := range addrs.Addrs {
addr, err := a.GetTCPAddress()
if err == nil && !dups[addr] {
dups[addr] = true
s.discovery.BackFill(addr)
}
}
return nil
}
// handleGetAddrCmd sends to the peer some good addresses that we know of.
func (s *Server) handleGetAddrCmd(p Peer) error {
addrs := s.discovery.GoodPeers()
if len(addrs) > payload.MaxAddrsCount {
addrs = addrs[:payload.MaxAddrsCount]
}
alist := payload.NewAddressList(len(addrs))
ts := time.Now()
for i, addr := range addrs {
// we know it's a good address, so it can't fail
netaddr, _ := net.ResolveTCPAddr("tcp", addr.Address)
alist.Addrs[i] = payload.NewAddressAndTime(netaddr, ts, addr.Capabilities)
}
return p.EnqueueP2PMessage(NewMessage(CMDAddr, alist))
}
// requestBlocks sends a CMDGetBlockByIndex message to the peer
// to sync up in blocks. A maximum of maxBlockBatch will be
// sent at once. There are two things we need to take care of:
// 1. If possible, blocks should be fetched in parallel.
// height..+500 to one peer, height+500..+1000 to another etc.
// 2. Every block must eventually be fetched even if the peer sends no answer.
//
// Thus, the following algorithm is used:
// 1. Block range is divided into chunks of payload.MaxHashesCount.
// 2. Send requests for chunk in increasing order.
// 3. After all requests have been sent, request random height.
func (s *Server) requestBlocks(bq Blockqueuer, p Peer) error {
h := bq.BlockHeight()
pl := getRequestBlocksPayload(p, h, &s.lastRequestedBlock)
lq := s.bQueue.lastQueued()
if lq > pl.IndexStart {
c := int16(h + blockCacheSize - lq)
if c < payload.MaxHashesCount {
pl.Count = c
}
pl.IndexStart = lq + 1
}
return p.EnqueueP2PMessage(NewMessage(CMDGetBlockByIndex, pl))
}
func getRequestBlocksPayload(p Peer, currHeight uint32, lastRequestedHeight *atomic.Uint32) *payload.GetBlockByIndex {
var peerHeight = p.LastBlockIndex()
var needHeight uint32
// lastRequestedBlock can only be increased.
for {
old := lastRequestedHeight.Load()
if old <= currHeight {
needHeight = currHeight + 1
if !lastRequestedHeight.CAS(old, needHeight) {
continue
}
} else if old < currHeight+(blockCacheSize-payload.MaxHashesCount) {
needHeight = currHeight + 1
if peerHeight > old+payload.MaxHashesCount {
needHeight = old + payload.MaxHashesCount
if !lastRequestedHeight.CAS(old, needHeight) {
continue
}
}
} else {
index := mrand.Intn(blockCacheSize / payload.MaxHashesCount)
needHeight = currHeight + 1 + uint32(index*payload.MaxHashesCount)
}
break
}
return payload.NewGetBlockByIndex(needHeight, -1)
}
// handleMessage processes the given message.
func (s *Server) handleMessage(peer Peer, msg *Message) error {
s.log.Debug("got msg",
zap.Stringer("addr", peer.RemoteAddr()),
zap.String("type", msg.Command.String()))
start := time.Now()
defer func() { addCmdTimeMetric(msg.Command, time.Since(start)) }()
if peer.Handshaked() {
if inv, ok := msg.Payload.(*payload.Inventory); ok {
if !inv.Type.Valid(s.chain.P2PSigExtensionsEnabled()) || len(inv.Hashes) == 0 {
return errInvalidInvType
}
}
switch msg.Command {
case CMDAddr:
addrs := msg.Payload.(*payload.AddressList)
return s.handleAddrCmd(peer, addrs)
case CMDGetAddr:
// it has no payload
return s.handleGetAddrCmd(peer)
case CMDGetBlocks:
gb := msg.Payload.(*payload.GetBlocks)
return s.handleGetBlocksCmd(peer, gb)
case CMDGetBlockByIndex:
gbd := msg.Payload.(*payload.GetBlockByIndex)
return s.handleGetBlockByIndexCmd(peer, gbd)
case CMDGetData:
inv := msg.Payload.(*payload.Inventory)
return s.handleGetDataCmd(peer, inv)
case CMDGetMPTData:
inv := msg.Payload.(*payload.MPTInventory)
return s.handleGetMPTDataCmd(peer, inv)
case CMDMPTData:
inv := msg.Payload.(*payload.MPTData)
return s.handleMPTDataCmd(peer, inv)
case CMDGetHeaders:
gh := msg.Payload.(*payload.GetBlockByIndex)
return s.handleGetHeadersCmd(peer, gh)
case CMDHeaders:
h := msg.Payload.(*payload.Headers)
return s.handleHeadersCmd(peer, h)
case CMDInv:
inventory := msg.Payload.(*payload.Inventory)
return s.handleInvCmd(peer, inventory)
case CMDMempool:
// no payload
return s.handleMempoolCmd(peer)
case CMDBlock:
block := msg.Payload.(*block.Block)
return s.handleBlockCmd(peer, block)
case CMDExtensible:
cp := msg.Payload.(*payload.Extensible)
return s.handleExtensibleCmd(cp)
case CMDTX:
tx := msg.Payload.(*transaction.Transaction)
return s.handleTxCmd(tx)
case CMDP2PNotaryRequest:
r := msg.Payload.(*payload.P2PNotaryRequest)
return s.handleP2PNotaryRequestCmd(r)
case CMDPing:
ping := msg.Payload.(*payload.Ping)
return s.handlePing(peer, ping)
case CMDPong:
pong := msg.Payload.(*payload.Ping)
return s.handlePong(peer, pong)
case CMDVersion, CMDVerack:
return fmt.Errorf("received '%s' after the handshake", msg.Command.String())
}
} else {
switch msg.Command {
case CMDVersion:
version := msg.Payload.(*payload.Version)
return s.handleVersionCmd(peer, version)
case CMDVerack:
err := peer.HandleVersionAck()
if err != nil {
return err
}
go peer.StartProtocol()
s.tryInitStateSync()
s.tryStartServices()
default:
return fmt.Errorf("received '%s' during handshake", msg.Command.String())
}
}
return nil
}
func (s *Server) tryInitStateSync() {
if !s.stateSync.IsActive() {
s.bSyncQueue.discard()
return
}
if s.stateSync.IsInitialized() {
return
}
var peersNumber int
s.lock.RLock()
heights := make([]uint32, 0)
for p := range s.peers {
if p.Handshaked() {
peersNumber++
peerLastBlock := p.LastBlockIndex()
i := sort.Search(len(heights), func(i int) bool {
return heights[i] >= peerLastBlock
})
heights = append(heights, peerLastBlock)
if i != len(heights)-1 {
copy(heights[i+1:], heights[i:])
heights[i] = peerLastBlock
}
}
}
s.lock.RUnlock()
if peersNumber >= s.MinPeers && len(heights) > 0 {
// choose the height of the median peer as the current chain's height
h := heights[len(heights)/2]
err := s.stateSync.Init(h)
if err != nil {
s.log.Fatal("failed to init state sync module",
zap.Uint32("evaluated chain's blockHeight", h),
zap.Uint32("blockHeight", s.chain.BlockHeight()),
zap.Uint32("headerHeight", s.chain.HeaderHeight()),
zap.Error(err))
}
// module can be inactive after init (i.e. full state is collected and ordinary block processing is needed)
if !s.stateSync.IsActive() {
s.bSyncQueue.discard()
}
}
}
// BroadcastExtensible add a locally-generated Extensible payload to the pool
// and advertises it to peers.
func (s *Server) BroadcastExtensible(p *payload.Extensible) {
_, err := s.extensiblePool.Add(p)
if err != nil {
s.log.Error("created payload is not valid", zap.Error(err))
return
}
s.advertiseExtensible(p)
}
// RequestTx asks for the given transactions from Server peers using GetData message.
func (s *Server) RequestTx(hashes ...util.Uint256) {
if len(hashes) == 0 {
return
}
s.txCbEnabled.Store(true)
for i := 0; i <= len(hashes)/payload.MaxHashesCount; i++ {
start := i * payload.MaxHashesCount
stop := (i + 1) * payload.MaxHashesCount
if stop > len(hashes) {
stop = len(hashes)
}
if start == stop {
break
}
msg := NewMessage(CMDGetData, payload.NewInventory(payload.TXType, hashes[start:stop]))
// It's high priority because it directly affects consensus process,
// even though it's getdata.
s.broadcastHPMessage(msg)
}
}
// StopTxFlow makes the server not call previously specified consensus transaction callback.
func (s *Server) StopTxFlow() {
s.txCbEnabled.Store(false)
}
// iteratePeersWithSendMsg sends the given message to all peers using two functions
// passed, one is to send the message and the other is to filtrate peers (the
// peer is considered invalid if it returns false).
func (s *Server) iteratePeersWithSendMsg(msg *Message, send func(Peer, context.Context, []byte) error, peerOK func(Peer) bool) {
var deadN, peerN, sentN int
// Get a copy of s.peers to avoid holding a lock while sending.
peers := s.getPeers(peerOK)
peerN = len(peers)
if peerN == 0 {
return
}
pkt, err := msg.Bytes()
if err != nil {
return
}
var (
// Optimal number of recipients.
enoughN = s.discovery.GetFanOut()
replies = make(chan error, peerN) // Cache is there just to make goroutines exit faster.
ctx, cancel = context.WithTimeout(context.Background(), s.TimePerBlock/2)
)
enoughN = (enoughN*(100-s.BroadcastFactor) + peerN*s.BroadcastFactor) / 100
for _, peer := range peers {
go func(p Peer, ctx context.Context, pkt []byte) {
// Do this before packet is sent, reader thread can get the reply before this routine wakes up.
if msg.Command == CMDGetAddr {
p.AddGetAddrSent()
}
if msg.Command == CMDPing {
p.SetPingTimer()
}
replies <- send(p, ctx, pkt)
}(peer, ctx, pkt)
}
for r := range replies {
if r == nil {
sentN++
} else {
deadN++
}
if sentN+deadN == peerN {
break
}
if sentN >= enoughN && ctx.Err() == nil {
cancel()
}
}
cancel()
close(replies)
}
// broadcastMessage sends the message to all available peers.
func (s *Server) broadcastMessage(msg *Message) {
s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, Peer.Handshaked)
}
// broadcastHPMessage sends the high-priority message to all available peers.
func (s *Server) broadcastHPMessage(msg *Message) {
s.iteratePeersWithSendMsg(msg, Peer.BroadcastHPPacket, Peer.Handshaked)
}
// relayBlocksLoop subscribes to new blocks in the ledger and broadcasts them
// to the network. Intended to be run as a separate goroutine.
func (s *Server) relayBlocksLoop() {
ch := make(chan *block.Block, 2) // Some buffering to smooth out possible egressing delays.
s.chain.SubscribeForBlocks(ch)
mainloop:
for {
select {
case <-s.quit:
s.chain.UnsubscribeFromBlocks(ch)
break mainloop
case b := <-ch:
msg := NewMessage(CMDInv, payload.NewInventory(payload.BlockType, []util.Uint256{b.Hash()}))
// Filter out nodes that are more current (avoid spamming the network
// during initial sync).
s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, func(p Peer) bool {
return p.Handshaked() && p.LastBlockIndex() < b.Index
})
s.extensiblePool.RemoveStale(b.Index)
}
}
drainBlocksLoop:
for {
select {
case <-ch:
default:
break drainBlocksLoop
}
}
close(ch)
close(s.relayFin)
}
// verifyAndPoolTX verifies the TX and adds it to the local mempool.
func (s *Server) verifyAndPoolTX(t *transaction.Transaction) error {
return s.chain.PoolTx(t)
}
// RelayTxn a new transaction to the local node and the connected peers.
// Reference: the method OnRelay in C#: https://github.com/neo-project/neo/blob/master/neo/Network/P2P/LocalNode.cs#L159
func (s *Server) RelayTxn(t *transaction.Transaction) error {
err := s.verifyAndPoolTX(t)
if err == nil {
s.broadcastTX(t, nil)
}
return err
}
// broadcastTX broadcasts an inventory message about new transaction.
func (s *Server) broadcastTX(t *transaction.Transaction, _ interface{}) {
select {
case s.transactions <- t:
case <-s.quit:
}
}
func (s *Server) broadcastTxHashes(hs []util.Uint256) {
msg := NewMessage(CMDInv, payload.NewInventory(payload.TXType, hs))
// We need to filter out non-relaying nodes, so plain broadcast
// functions don't fit here.
s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, Peer.IsFullNode)
}
// initStaleMemPools initializes mempools for stale tx/payload processing.
func (s *Server) initStaleMemPools() {
threshold := 5
// Not perfect, can change over time, but should be sufficient.
numOfCNs := s.config.GetNumOfCNs(s.chain.BlockHeight())
if numOfCNs*2 > threshold {
threshold = numOfCNs * 2
}
s.mempool.SetResendThreshold(uint32(threshold), s.broadcastTX)
if s.chain.P2PSigExtensionsEnabled() {
s.notaryRequestPool.SetResendThreshold(uint32(threshold), s.broadcastP2PNotaryRequestPayload)
}
}
// broadcastTxLoop is a loop for batching and sending
// transactions hashes in an INV payload.
func (s *Server) broadcastTxLoop() {
const (
batchTime = time.Millisecond * 50
batchSize = 32
)
txs := make([]util.Uint256, 0, batchSize)
var timer *time.Timer
timerCh := func() <-chan time.Time {
if timer == nil {
return nil
}
return timer.C
}
broadcast := func() {
s.broadcastTxHashes(txs)
txs = txs[:0]
if timer != nil {
timer.Stop()
}
}
for {
select {
case <-s.quit:
loop:
for {
select {
case <-s.transactions:
default:
break loop
}
}
return
case <-timerCh():
if len(txs) > 0 {
broadcast()
}
case tx := <-s.transactions:
if len(txs) == 0 {
timer = time.NewTimer(batchTime)
}
txs = append(txs, tx.Hash())
if len(txs) == batchSize {
broadcast()
}
}
}
}
// Port returns a server port that should be used in P2P version exchange. In
// case `AnnouncedPort` is set in the server.Config, the announced node port
// will be returned (e.g. consider the node running behind NAT). If `AnnouncedPort`
// isn't set, the port returned may still differs from that of server.Config.
func (s *Server) Port() (uint16, error) {
if s.AnnouncedPort != 0 {
return s.ServerConfig.AnnouncedPort, nil
}
var port uint16
_, portStr, err := net.SplitHostPort(s.transport.Address())
if err != nil {
port = s.ServerConfig.Port
} else {
p, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return 0, err
}
port = uint16(p)
}
return port, nil
}
// optimalNumOfThreads returns the optimal number of processing threads to create
// for transaction processing.
func optimalNumOfThreads() int {
// Doing more won't help, mempool is still a contention point.
const maxThreads = 16
var threads = runtime.GOMAXPROCS(0)
if threads > runtime.NumCPU() {
threads = runtime.NumCPU()
}
if threads > maxThreads {
threads = maxThreads
}
return threads
}