mirror of
https://github.com/nspcc-dev/neo-go.git
synced 2025-01-04 03:51:35 +00:00
630919bf7d
- typos - gofmt -s - govet warnings - golangci-lint run
274 lines
6.3 KiB
Go
274 lines
6.3 KiB
Go
package crypto
|
|
|
|
// Original work completed by @vsergeev: https://github.com/vsergeev/btckeygenie
|
|
// Expanded and tweaked upon here under MIT license.
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
|
|
"github.com/CityOfZion/neo-go/pkg/util"
|
|
)
|
|
|
|
type (
|
|
// EllipticCurve represents the parameters of a short Weierstrass equation elliptic
|
|
// curve.
|
|
EllipticCurve struct {
|
|
A *big.Int
|
|
B *big.Int
|
|
P *big.Int
|
|
G ECPoint
|
|
N *big.Int
|
|
H *big.Int
|
|
}
|
|
|
|
// ECPoint represents a point on the EllipticCurve.
|
|
ECPoint struct {
|
|
X *big.Int
|
|
Y *big.Int
|
|
}
|
|
)
|
|
|
|
// NewEllipticCurve returns a ready to use EllipticCurve with preconfigured
|
|
// fields for the NEO protocol.
|
|
func NewEllipticCurve() EllipticCurve {
|
|
c := EllipticCurve{}
|
|
|
|
c.P, _ = new(big.Int).SetString(
|
|
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", 16,
|
|
)
|
|
c.A, _ = new(big.Int).SetString(
|
|
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", 16,
|
|
)
|
|
c.B, _ = new(big.Int).SetString(
|
|
"5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", 16,
|
|
)
|
|
c.G.X, _ = new(big.Int).SetString(
|
|
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296", 16,
|
|
)
|
|
c.G.Y, _ = new(big.Int).SetString(
|
|
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5", 16,
|
|
)
|
|
c.N, _ = new(big.Int).SetString(
|
|
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 16,
|
|
)
|
|
c.H, _ = new(big.Int).SetString("01", 16)
|
|
|
|
return c
|
|
}
|
|
|
|
// RandomECPoint returns a random generated ECPoint, mostly used
|
|
// for testing.
|
|
func RandomECPoint() ECPoint {
|
|
c := NewEllipticCurve()
|
|
b := make([]byte, c.N.BitLen()/8+8)
|
|
if _, err := io.ReadFull(rand.Reader, b); err != nil {
|
|
return ECPoint{}
|
|
}
|
|
|
|
d := new(big.Int).SetBytes(b)
|
|
d.Mod(d, new(big.Int).Sub(c.N, big.NewInt(1)))
|
|
d.Add(d, big.NewInt(1))
|
|
|
|
q := new(big.Int).SetBytes(d.Bytes())
|
|
return c.ScalarBaseMult(q)
|
|
}
|
|
|
|
// ECPointFromReader return a new point from the given reader.
|
|
// f == 4, 6 or 7 are not implemented.
|
|
func ECPointFromReader(r io.Reader) (point ECPoint, err error) {
|
|
var f uint8
|
|
if err = binary.Read(r, binary.LittleEndian, &f); err != nil {
|
|
return
|
|
}
|
|
|
|
// Infinity
|
|
if f == 0 {
|
|
return ECPoint{
|
|
X: new(big.Int),
|
|
Y: new(big.Int),
|
|
}, nil
|
|
}
|
|
|
|
if f == 2 || f == 3 {
|
|
y := new(big.Int).SetBytes([]byte{f & 1})
|
|
data := make([]byte, 32)
|
|
if err = binary.Read(r, binary.LittleEndian, data); err != nil {
|
|
return
|
|
}
|
|
data = util.ArrayReverse(data)
|
|
data = append(data, byte(0x00))
|
|
|
|
return ECPoint{
|
|
X: new(big.Int).SetBytes(data),
|
|
Y: y,
|
|
}, nil
|
|
}
|
|
return
|
|
}
|
|
|
|
// EncodeBinary encodes the point to the given io.Writer.
|
|
func (p ECPoint) EncodeBinary(w io.Writer) error {
|
|
bx := p.X.Bytes()
|
|
padded := append(
|
|
bytes.Repeat(
|
|
[]byte{0x00},
|
|
32-len(bx),
|
|
),
|
|
bx...,
|
|
)
|
|
|
|
prefix := byte(0x03)
|
|
if p.Y.Bit(0) == 0 {
|
|
prefix = byte(0x02)
|
|
}
|
|
buf := make([]byte, len(padded)+1)
|
|
buf[0] = prefix
|
|
copy(buf[1:], padded)
|
|
|
|
return binary.Write(w, binary.LittleEndian, buf)
|
|
}
|
|
|
|
// String implements the Stringer interface.
|
|
func (p *ECPoint) String() string {
|
|
if p.IsInfinity() {
|
|
return "00"
|
|
}
|
|
bx := hex.EncodeToString(p.X.Bytes())
|
|
by := hex.EncodeToString(p.Y.Bytes())
|
|
return fmt.Sprintf("%s%s", bx, by)
|
|
}
|
|
|
|
// IsInfinity checks if point P is infinity on EllipticCurve ec.
|
|
func (p *ECPoint) IsInfinity() bool {
|
|
return p.X == nil && p.Y == nil
|
|
}
|
|
|
|
// IsInfinity checks if point P is infinity on EllipticCurve ec.
|
|
func (c *EllipticCurve) IsInfinity(P ECPoint) bool {
|
|
return P.X == nil && P.Y == nil
|
|
}
|
|
|
|
// IsOnCurve checks if point P is on EllipticCurve ec.
|
|
func (c *EllipticCurve) IsOnCurve(P ECPoint) bool {
|
|
if c.IsInfinity(P) {
|
|
return false
|
|
}
|
|
lhs := mulMod(P.Y, P.Y, c.P)
|
|
rhs := addMod(
|
|
addMod(
|
|
expMod(P.X, big.NewInt(3), c.P),
|
|
mulMod(c.A, P.X, c.P), c.P),
|
|
c.B, c.P)
|
|
|
|
return lhs.Cmp(rhs) == 0
|
|
}
|
|
|
|
// Add computes R = P + Q on EllipticCurve ec.
|
|
func (c *EllipticCurve) Add(P, Q ECPoint) (R ECPoint) {
|
|
// See rules 1-5 on SEC1 pg.7 http://www.secg.org/collateral/sec1_final.pdf
|
|
if c.IsInfinity(P) && c.IsInfinity(Q) {
|
|
R.X = nil
|
|
R.Y = nil
|
|
} else if c.IsInfinity(P) {
|
|
R.X = new(big.Int).Set(Q.X)
|
|
R.Y = new(big.Int).Set(Q.Y)
|
|
} else if c.IsInfinity(Q) {
|
|
R.X = new(big.Int).Set(P.X)
|
|
R.Y = new(big.Int).Set(P.Y)
|
|
} else if P.X.Cmp(Q.X) == 0 && addMod(P.Y, Q.Y, c.P).Sign() == 0 {
|
|
R.X = nil
|
|
R.Y = nil
|
|
} else if P.X.Cmp(Q.X) == 0 && P.Y.Cmp(Q.Y) == 0 && P.Y.Sign() != 0 {
|
|
num := addMod(
|
|
mulMod(big.NewInt(3),
|
|
mulMod(P.X, P.X, c.P), c.P),
|
|
c.A, c.P)
|
|
den := invMod(mulMod(big.NewInt(2), P.Y, c.P), c.P)
|
|
lambda := mulMod(num, den, c.P)
|
|
R.X = subMod(
|
|
mulMod(lambda, lambda, c.P),
|
|
mulMod(big.NewInt(2), P.X, c.P),
|
|
c.P)
|
|
R.Y = subMod(
|
|
mulMod(lambda, subMod(P.X, R.X, c.P), c.P),
|
|
P.Y, c.P)
|
|
} else if P.X.Cmp(Q.X) != 0 {
|
|
num := subMod(Q.Y, P.Y, c.P)
|
|
den := invMod(subMod(Q.X, P.X, c.P), c.P)
|
|
lambda := mulMod(num, den, c.P)
|
|
R.X = subMod(
|
|
subMod(
|
|
mulMod(lambda, lambda, c.P),
|
|
P.X, c.P),
|
|
Q.X, c.P)
|
|
R.Y = subMod(
|
|
mulMod(lambda,
|
|
subMod(P.X, R.X, c.P), c.P),
|
|
P.Y, c.P)
|
|
} else {
|
|
panic(fmt.Sprintf("Unsupported point addition: %v + %v", P, Q))
|
|
}
|
|
|
|
return R
|
|
}
|
|
|
|
// ScalarMult computes Q = k * P on EllipticCurve ec.
|
|
func (c *EllipticCurve) ScalarMult(k *big.Int, P ECPoint) (Q ECPoint) {
|
|
// Implementation based on pseudocode here:
|
|
// https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder
|
|
var R0 ECPoint
|
|
var R1 ECPoint
|
|
|
|
R0.X = nil
|
|
R0.Y = nil
|
|
R1.X = new(big.Int).Set(P.X)
|
|
R1.Y = new(big.Int).Set(P.Y)
|
|
|
|
for i := c.N.BitLen() - 1; i >= 0; i-- {
|
|
if k.Bit(i) == 0 {
|
|
R1 = c.Add(R0, R1)
|
|
R0 = c.Add(R0, R0)
|
|
} else {
|
|
R0 = c.Add(R0, R1)
|
|
R1 = c.Add(R1, R1)
|
|
}
|
|
}
|
|
return R0
|
|
}
|
|
|
|
// ScalarBaseMult computes Q = k * G on EllipticCurve ec.
|
|
func (c *EllipticCurve) ScalarBaseMult(k *big.Int) (Q ECPoint) {
|
|
return c.ScalarMult(k, c.G)
|
|
}
|
|
|
|
// Decompress decompresses coordinate x and ylsb (y's least significant bit) into a ECPoint P on EllipticCurve ec.
|
|
func (c *EllipticCurve) Decompress(x *big.Int, ylsb uint) (P ECPoint, err error) {
|
|
/* y**2 = x**3 + a*x + b % p */
|
|
rhs := addMod(
|
|
addMod(
|
|
expMod(x, big.NewInt(3), c.P),
|
|
mulMod(c.A, x, c.P),
|
|
c.P),
|
|
c.B, c.P)
|
|
|
|
y := sqrtMod(rhs, c.P)
|
|
if y.Bit(0) != (ylsb & 0x1) {
|
|
y = subMod(big.NewInt(0), y, c.P)
|
|
}
|
|
|
|
P.X = x
|
|
P.Y = y
|
|
|
|
if !c.IsOnCurve(P) {
|
|
return P, errors.New("compressed (x, ylsb) not on curve")
|
|
}
|
|
|
|
return P, nil
|
|
}
|