neo-go/pkg/crypto/public_key.go
Anthony De Meulemeester 94672cb9cc
Persistance (#53)
* added publish TX for backwards compat.

* lowered the prototick for faster block syncing

* print useragent on startup

* added createMultiRedeemScript for genesis block generation.

* building genesis block from scratch.

* implemented merkle tree.

* starting blockhain with generated genesis hash

* Fixed bug in unspent coin state.

* fixed broken tests after genesis block.

* removed log line.

* bumped version -> 0.34.0
2018-03-25 12:45:54 +02:00

115 lines
2.4 KiB
Go

package crypto
import (
"bytes"
"encoding/binary"
"encoding/hex"
"fmt"
"io"
"math/big"
)
// PublicKeys is a list of public keys.
type PublicKeys []*PublicKey
func (keys PublicKeys) Len() int { return len(keys) }
func (keys PublicKeys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
func (keys PublicKeys) Less(i, j int) bool {
if keys[i].X.Cmp(keys[j].X) == -1 {
return true
}
if keys[i].X.Cmp(keys[j].X) == 1 {
return false
}
if keys[i].X.Cmp(keys[j].X) == 0 {
return false
}
return keys[i].Y.Cmp(keys[j].Y) == -1
}
// PublicKey represents a public key and provides a high level
// API around the ECPoint.
type PublicKey struct {
ECPoint
}
// NewPublicKeyFromString return a public key created from the
// given hex string.
func NewPublicKeyFromString(s string) (*PublicKey, error) {
b, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
pubKey := &PublicKey{}
if err := pubKey.DecodeBinary(bytes.NewReader(b)); err != nil {
return nil, err
}
return pubKey, nil
}
// Bytes returns the byte array representation of the public key.
func (p *PublicKey) Bytes() []byte {
if p.IsInfinity() {
return []byte{0x00}
}
var (
x = p.X.Bytes()
paddedX = append(bytes.Repeat([]byte{0x00}, 32-len(x)), x...)
prefix = byte(0x03)
)
if p.Y.Bit(0) == 0 {
prefix = byte(0x02)
}
return append([]byte{prefix}, paddedX...)
}
// DecodeBinary decodes a PublicKey from the given io.Reader.
func (p *PublicKey) DecodeBinary(r io.Reader) error {
var prefix uint8
if err := binary.Read(r, binary.LittleEndian, &prefix); err != nil {
return err
}
// Infinity
if prefix == 0x00 {
p.ECPoint = ECPoint{}
return nil
}
// Compressed public keys.
if prefix == 0x02 || prefix == 0x03 {
c := NewEllipticCurve()
b := make([]byte, 32)
if err := binary.Read(r, binary.LittleEndian, b); err != nil {
return err
}
var err error
p.ECPoint, err = c.Decompress(new(big.Int).SetBytes(b), uint(prefix&0x1))
if err != nil {
return err
}
} else if prefix == 0x04 {
buf := make([]byte, 65)
if err := binary.Read(r, binary.LittleEndian, buf); err != nil {
return err
}
p.X = new(big.Int).SetBytes(buf[1:33])
p.Y = new(big.Int).SetBytes(buf[33:65])
} else {
return fmt.Errorf("invalid prefix %d", prefix)
}
return nil
}
// EncodeBinary encodes a PublicKey to the given io.Writer.
func (p *PublicKey) EncodeBinary(w io.Writer) error {
return binary.Write(w, binary.LittleEndian, p.Bytes())
}