neoneo-go/pkg/core/blockchain.go

521 lines
13 KiB
Go
Raw Normal View History

package core
import (
"bytes"
"encoding/binary"
"fmt"
"sync/atomic"
"time"
"github.com/CityOfZion/neo-go/config"
"github.com/CityOfZion/neo-go/pkg/core/storage"
"github.com/CityOfZion/neo-go/pkg/core/transaction"
"github.com/CityOfZion/neo-go/pkg/util"
log "github.com/sirupsen/logrus"
)
// tuning parameters
const (
secondsPerBlock = 15
headerBatchCount = 2000
version = "0.0.1"
)
var (
genAmount = []int{8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
decrementInterval = 2000000
persistInterval = 5 * time.Second
)
// Blockchain represents the blockchain.
type Blockchain struct {
config config.ProtocolConfiguration
// Any object that satisfies the BlockchainStorer interface.
storage.Store
// Current index/height of the highest block.
// Read access should always be called by BlockHeight().
// Write access should only happen in persist().
blockHeight uint32
// Number of headers stored in the chain file.
storedHeaderCount uint32
blockCache *Cache
// All operation on headerList must be called from an
// headersOp to be routine safe.
headerList *HeaderHashList
// Only for operating on the headerList.
headersOp chan headersOpFunc
headersOpDone chan struct{}
// Whether we will verify received blocks.
verifyBlocks bool
}
type headersOpFunc func(headerList *HeaderHashList)
// NewBlockchain return a new blockchain object the will use the
// given Store as its underlying storage.
func NewBlockchain(s storage.Store, cfg config.ProtocolConfiguration) (*Blockchain, error) {
bc := &Blockchain{
config: cfg,
Store: s,
headersOp: make(chan headersOpFunc),
headersOpDone: make(chan struct{}),
blockCache: NewCache(),
verifyBlocks: false,
}
go bc.run()
if err := bc.init(); err != nil {
return nil, err
}
return bc, nil
}
func (bc *Blockchain) init() error {
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
bc.headerList = NewHeaderHashList(genesisBlock.Hash())
// Look in the storage for a version. If we could not the version key
// there is nothing stored.
if version, err := bc.Get(storage.SYSVersion.Bytes()); err != nil {
bc.Put(storage.SYSVersion.Bytes(), []byte(version))
if err := bc.persistBlock(genesisBlock); err != nil {
return err
}
return nil
}
// At this point there was no version found in the storage which
// implies a creating fresh storage with the version specified
// and the genesis block as first block.
log.Infof("restoring blockchain with storage version: %s", version)
currBlockBytes, err := bc.Get(storage.SYSCurrentBlock.Bytes())
if err != nil {
return err
}
bc.blockHeight = binary.LittleEndian.Uint32(currBlockBytes[32:36])
hashes, err := readStoredHeaderHashes(bc.Store)
if err != nil {
return err
}
for _, hash := range hashes {
if !genesisBlock.Hash().Equals(hash) {
bc.headerList.Add(hash)
bc.storedHeaderCount++
}
}
currHeaderBytes, err := bc.Get(storage.SYSCurrentHeader.Bytes())
if err != nil {
return err
}
currHeaderHeight := binary.LittleEndian.Uint32(currHeaderBytes[32:36])
currHeaderHash, err := util.Uint256DecodeBytes(currHeaderBytes[:32])
if err != nil {
return err
}
// Their is a high chance that the Node is stopped before the next
// batch of 2000 headers was stored. Via the currentHeaders stored we can sync
// that with stored blocks.
if currHeaderHeight > bc.storedHeaderCount {
hash := currHeaderHash
targetHash := bc.headerList.Get(bc.headerList.Len() - 1)
headers := []*Header{}
for hash != targetHash {
header, err := bc.getHeader(hash)
if err != nil {
return fmt.Errorf("could not get header %s: %s", hash, err)
}
headers = append(headers, header)
hash = header.PrevHash
}
headerSliceReverse(headers)
if err := bc.AddHeaders(headers...); err != nil {
return err
}
}
return nil
}
func (bc *Blockchain) run() {
persistTimer := time.NewTimer(persistInterval)
for {
select {
case op := <-bc.headersOp:
op(bc.headerList)
bc.headersOpDone <- struct{}{}
case <-persistTimer.C:
go bc.persist()
persistTimer.Reset(persistInterval)
}
}
}
// For now this will return a hardcoded hash of the NEO governing token.
func (bc *Blockchain) governingToken() util.Uint256 {
neoNativeAsset := "c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b"
val, _ := util.Uint256DecodeString(neoNativeAsset)
return val
}
// AddBlock processes the given block and will add it to the cache so it
// can be persisted.
func (bc *Blockchain) AddBlock(block *Block) error {
if !bc.blockCache.Has(block.Hash()) {
bc.blockCache.Add(block.Hash(), block)
}
headerLen := bc.headerListLen()
if int(block.Index-1) >= headerLen {
return nil
}
if int(block.Index) == headerLen {
if bc.verifyBlocks && !block.Verify(false) {
return fmt.Errorf("block %s is invalid", block.Hash())
}
return bc.AddHeaders(block.Header())
}
return nil
}
// AddHeaders will process the given headers and add them to the
// HeaderHashList.
func (bc *Blockchain) AddHeaders(headers ...*Header) (err error) {
var (
start = time.Now()
batch = bc.Batch()
)
bc.headersOp <- func(headerList *HeaderHashList) {
for _, h := range headers {
if int(h.Index-1) >= headerList.Len() {
err = fmt.Errorf(
"height of received header %d is higher then the current header %d",
h.Index, headerList.Len(),
)
return
}
if int(h.Index) < headerList.Len() {
continue
}
if !h.Verify() {
err = fmt.Errorf("header %v is invalid", h)
return
}
if err = bc.processHeader(h, batch, headerList); err != nil {
return
}
}
if batch.Len() > 0 {
if err = bc.PutBatch(batch); err != nil {
return
}
log.WithFields(log.Fields{
"headerIndex": headerList.Len() - 1,
"blockHeight": bc.BlockHeight(),
"took": time.Since(start),
}).Debug("done processing headers")
}
}
<-bc.headersOpDone
return err
}
// processHeader processes the given header. Note that this is only thread safe
// if executed in headers operation.
func (bc *Blockchain) processHeader(h *Header, batch storage.Batch, headerList *HeaderHashList) error {
headerList.Add(h.Hash())
buf := new(bytes.Buffer)
for int(h.Index)-headerBatchCount >= int(bc.storedHeaderCount) {
if err := headerList.Write(buf, int(bc.storedHeaderCount), headerBatchCount); err != nil {
return err
}
key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount))
batch.Put(key, buf.Bytes())
bc.storedHeaderCount += headerBatchCount
buf.Reset()
}
buf.Reset()
if err := h.EncodeBinary(buf); err != nil {
return err
}
key := storage.AppendPrefix(storage.DataBlock, h.Hash().BytesReverse())
batch.Put(key, buf.Bytes())
batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(h.Hash(), h.Index))
return nil
}
// TODO: persistBlock needs some more love, its implemented as in the original
// project. This for the sake of development speed and understanding of what
// is happening here, quite allot as you can see :). If things are wired together
// and all tests are in place, we can make a more optimized and cleaner implementation.
func (bc *Blockchain) persistBlock(block *Block) error {
var (
batch = bc.Batch()
unspentCoins = make(UnspentCoins)
accounts = make(Accounts)
)
storeAsBlock(batch, block, 0)
storeAsCurrentBlock(batch, block)
for _, tx := range block.Transactions {
storeAsTransaction(batch, tx, block.Index)
// Add CoinStateConfirmed for each tx output.
unspent := make([]CoinState, len(tx.Outputs))
for i := 0; i < len(tx.Outputs); i++ {
unspent[i] = CoinStateConfirmed
}
unspentCoins[tx.Hash()] = &UnspentCoinState{unspent}
// Process TX outputs.
for _, output := range tx.Outputs {
account, err := accounts.getAndChange(bc.Store, output.ScriptHash)
if err != nil {
return err
}
if _, ok := account.Balances[output.AssetID]; ok {
account.Balances[output.AssetID] += output.Amount
} else {
account.Balances[output.AssetID] = output.Amount
}
if output.AssetID.Equals(bc.governingToken()) && len(account.Votes) > 0 {
// TODO
}
}
// Process TX inputs that are grouped by previous hash.
for prevHash, inputs := range tx.GroupInputsByPrevHash() {
prevTX, _, err := bc.GetTransaction(prevHash)
if err != nil {
return fmt.Errorf("could not find previous TX: %s", prevHash)
}
for _, input := range inputs {
unspent, err := unspentCoins.getAndChange(bc.Store, input.PrevHash)
if err != nil {
return err
}
unspent.states[input.PrevIndex] = CoinStateSpent
prevTXOutput := prevTX.Outputs[input.PrevIndex]
account, err := accounts.getAndChange(bc.Store, prevTXOutput.ScriptHash)
if err != nil {
return err
}
if prevTXOutput.AssetID.Equals(bc.governingToken()) {
// TODO
}
account.Balances[prevTXOutput.AssetID] -= prevTXOutput.Amount
}
}
// Process the underlying type of the TX.
switch tx.Data.(type) {
case *transaction.RegisterTX:
case *transaction.IssueTX:
case *transaction.ClaimTX:
case *transaction.EnrollmentTX:
case *transaction.StateTX:
case *transaction.PublishTX:
case *transaction.InvocationTX:
log.Warn("invocation TX but we have no VM, o noo :(")
}
}
// Persist all to storage.
if err := accounts.commit(batch); err != nil {
return err
}
if err := unspentCoins.commit(batch); err != nil {
return err
}
if err := bc.PutBatch(batch); err != nil {
return err
}
atomic.StoreUint32(&bc.blockHeight, block.Index)
return nil
}
func (bc *Blockchain) persist() (err error) {
var (
start = time.Now()
persisted = 0
lenCache = bc.blockCache.Len()
)
bc.headersOp <- func(headerList *HeaderHashList) {
for i := 0; i < lenCache; i++ {
if uint32(headerList.Len()) <= bc.BlockHeight() {
return
}
hash := headerList.Get(int(bc.BlockHeight() + 1))
if block, ok := bc.blockCache.GetBlock(hash); ok {
if err = bc.persistBlock(block); err != nil {
log.Warnf("failed to persist blocks: %s", err)
return
}
bc.blockCache.Delete(hash)
persisted++
}
}
}
<-bc.headersOpDone
if persisted > 0 {
log.WithFields(log.Fields{
"persisted": persisted,
"blockHeight": bc.BlockHeight(),
"took": time.Since(start),
}).Info("blockchain persist completed")
}
return
}
func (bc *Blockchain) headerListLen() (n int) {
bc.headersOp <- func(headerList *HeaderHashList) {
n = headerList.Len()
}
<-bc.headersOpDone
return
}
// GetTransaction returns a TX and its height by the given hash.
func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
key := storage.AppendPrefix(storage.DataTransaction, hash.BytesReverse())
b, err := bc.Get(key)
if err != nil {
return nil, 0, err
}
r := bytes.NewReader(b)
var height uint32
if err := binary.Read(r, binary.LittleEndian, &height); err != nil {
return nil, 0, err
}
tx := &transaction.Transaction{}
if err := tx.DecodeBinary(r); err != nil {
return nil, 0, err
}
return tx, height, nil
}
// GetBlock returns a Block by the given hash.
func (bc *Blockchain) GetBlock(hash util.Uint256) (*Block, error) {
key := storage.AppendPrefix(storage.DataBlock, hash.BytesReverse())
b, err := bc.Get(key)
if err != nil {
return nil, err
}
block, err := NewBlockFromTrimmedBytes(b)
if err != nil {
return nil, err
}
// TODO: persist TX first before we can handle this logic.
//if len(block.Transactions) == 0 {
// return nil, fmt.Errorf("block has no TX")
//}
return block, nil
}
func (bc *Blockchain) getHeader(hash util.Uint256) (*Header, error) {
b, err := bc.Get(storage.AppendPrefix(storage.DataBlock, hash.BytesReverse()))
if err != nil {
return nil, err
}
block, err := NewBlockFromTrimmedBytes(b)
if err != nil {
return nil, err
}
return block.Header(), nil
}
// HasBlock return true if the blockchain contains he given
// transaction hash.
func (bc *Blockchain) HasTransaction(hash util.Uint256) bool {
return false
}
// HasBlock return true if the blockchain contains the given
// block hash.
func (bc *Blockchain) HasBlock(hash util.Uint256) bool {
if header, err := bc.getHeader(hash); err == nil {
return header.Index <= bc.BlockHeight()
}
return false
}
// CurrentBlockHash returns the heighest processed block hash.
func (bc *Blockchain) CurrentBlockHash() (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Get(int(bc.BlockHeight()))
}
<-bc.headersOpDone
return
}
// CurrentHeaderHash returns the hash of the latest known header.
func (bc *Blockchain) CurrentHeaderHash() (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Last()
}
<-bc.headersOpDone
return
}
// GetHeaderHash return the hash from the headerList by its
// height/index.
func (bc *Blockchain) GetHeaderHash(i int) (hash util.Uint256) {
bc.headersOp <- func(headerList *HeaderHashList) {
hash = headerList.Get(i)
}
<-bc.headersOpDone
return
}
// BlockHeight returns the height/index of the highest block.
func (bc *Blockchain) BlockHeight() uint32 {
return atomic.LoadUint32(&bc.blockHeight)
}
// HeaderHeight returns the index/height of the highest header.
func (bc *Blockchain) HeaderHeight() uint32 {
return uint32(bc.headerListLen() - 1)
}
func hashAndIndexToBytes(h util.Uint256, index uint32) []byte {
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, index)
return append(h.BytesReverse(), buf...)
}