neoneo-go/pkg/crypto/keys/publickey.go

243 lines
5.6 KiB
Go
Raw Normal View History

package keys
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/x509"
"encoding/binary"
"encoding/hex"
"fmt"
"io"
"math/big"
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
"github.com/CityOfZion/neo-go/pkg/crypto"
"github.com/pkg/errors"
)
// PublicKeys is a list of public keys.
type PublicKeys []*PublicKey
func (keys PublicKeys) Len() int { return len(keys) }
func (keys PublicKeys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
func (keys PublicKeys) Less(i, j int) bool {
if keys[i].X.Cmp(keys[j].X) == -1 {
return true
}
if keys[i].X.Cmp(keys[j].X) == 1 {
return false
}
if keys[i].X.Cmp(keys[j].X) == 0 {
return false
}
return keys[i].Y.Cmp(keys[j].Y) == -1
}
// PublicKey represents a public key and provides a high level
// API around the X/Y point.
type PublicKey struct {
X *big.Int
Y *big.Int
}
// NewPublicKeyFromString return a public key created from the
// given hex string.
func NewPublicKeyFromString(s string) (*PublicKey, error) {
b, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
pubKey := new(PublicKey)
if err := pubKey.DecodeBinary(bytes.NewReader(b)); err != nil {
return nil, err
}
return pubKey, nil
}
// Bytes returns the byte array representation of the public key.
func (p *PublicKey) Bytes() []byte {
if p.isInfinity() {
return []byte{0x00}
}
var (
x = p.X.Bytes()
paddedX = append(bytes.Repeat([]byte{0x00}, 32-len(x)), x...)
prefix = byte(0x03)
)
if p.Y.Bit(0) == 0 {
prefix = byte(0x02)
}
return append([]byte{prefix}, paddedX...)
}
// NewPublicKeyFromRawBytes returns a NEO PublicKey from the ASN.1 serialized keys.
func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
var (
err error
pubkey interface{}
)
if pubkey, err = x509.ParsePKIXPublicKey(data); err != nil {
return nil, err
}
pk, ok := pubkey.(*ecdsa.PublicKey)
if !ok {
return nil, errors.New("given bytes aren't ECDSA public key")
}
key := PublicKey{
X: pk.X,
Y: pk.Y,
}
return &key, nil
}
// decodeCompressedY performs decompression of Y coordinate for given X and Y's least significant bit
func decodeCompressedY(x *big.Int, ylsb uint) (*big.Int, error) {
c := elliptic.P256()
cp := c.Params()
three := big.NewInt(3)
/* y**2 = x**3 + a*x + b % p */
xCubed := new(big.Int).Exp(x, three, cp.P)
threeX := new(big.Int).Mul(x, three)
threeX.Mod(threeX, cp.P)
ySquared := new(big.Int).Sub(xCubed, threeX)
ySquared.Add(ySquared, cp.B)
ySquared.Mod(ySquared, cp.P)
y := new(big.Int).ModSqrt(ySquared, cp.P)
if y == nil {
return nil, errors.New("error computing Y for compressed point")
}
if y.Bit(0) != ylsb {
y.Neg(y)
y.Mod(y, cp.P)
}
return y, nil
}
// DecodeBytes decodes a PublicKey from the given slice of bytes.
func (p *PublicKey) DecodeBytes(data []byte) error {
var datab []byte
copy(datab, data)
b := bytes.NewBuffer(datab)
return p.DecodeBinary(b)
}
// DecodeBinary decodes a PublicKey from the given io.Reader.
func (p *PublicKey) DecodeBinary(r io.Reader) error {
var prefix uint8
var x, y *big.Int
var err error
if err = binary.Read(r, binary.LittleEndian, &prefix); err != nil {
return err
}
// Infinity
switch prefix {
case 0x00:
// noop, initialized to nil
return nil
case 0x02, 0x03:
// Compressed public keys
xbytes := make([]byte, 32)
if _, err := io.ReadFull(r, xbytes); err != nil {
return err
}
x = new(big.Int).SetBytes(xbytes)
ylsb := uint(prefix&0x1)
y, err = decodeCompressedY(x, ylsb)
if err != nil {
return err
}
case 0x04:
xbytes := make([]byte, 32)
ybytes := make([]byte, 32)
if _, err = io.ReadFull(r, xbytes); err != nil {
return err
}
if _, err = io.ReadFull(r, ybytes); err != nil {
return err
}
x = new(big.Int).SetBytes(xbytes)
y = new(big.Int).SetBytes(ybytes)
default:
return errors.Errorf("invalid prefix %d", prefix)
}
c := elliptic.P256()
cp := c.Params()
if !c.IsOnCurve(x, y) {
return errors.New("enccoded point is not on the P256 curve")
}
if x.Cmp(cp.P) >= 0 || y.Cmp(cp.P) >= 0 {
return errors.New("enccoded point is not correct (X or Y is bigger than P")
}
p.X, p.Y = x, y
return nil
}
// EncodeBinary encodes a PublicKey to the given io.Writer.
func (p *PublicKey) EncodeBinary(w io.Writer) error {
return binary.Write(w, binary.LittleEndian, p.Bytes())
}
// Signature returns a NEO-specific hash of the key.
func (p *PublicKey) Signature() []byte {
b := p.Bytes()
b = append([]byte{0x21}, b...)
b = append(b, 0xAC)
sig := hash.Hash160(b)
return sig.Bytes()
}
// Address returns a base58-encoded NEO-specific address based on the key hash.
func (p *PublicKey) Address() string {
var b = p.Signature()
b = append([]byte{0x17}, b...)
csum := hash.Checksum(b)
b = append(b, csum...)
address := crypto.Base58Encode(b)
return address
}
// Verify returns true if the signature is valid and corresponds
// to the hash and public key
func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
publicKey := &ecdsa.PublicKey{}
publicKey.Curve = elliptic.P256()
publicKey.X = p.X
publicKey.Y = p.Y
if p.X == nil || p.Y == nil {
return false
}
rBytes := new(big.Int).SetBytes(signature[0:32])
sBytes := new(big.Int).SetBytes(signature[32:64])
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
}
// isInfinity checks if point P is infinity on EllipticCurve ec.
func (p *PublicKey) isInfinity() bool {
return p.X == nil && p.Y == nil
}
// String implements the Stringer interface.
func (p *PublicKey) String() string {
if p.isInfinity() {
return "00"
}
bx := hex.EncodeToString(p.X.Bytes())
by := hex.EncodeToString(p.Y.Bytes())
return fmt.Sprintf("%s%s", bx, by)
}