2019-08-27 13:29:42 +00:00
|
|
|
package keys
|
2018-03-21 16:11:04 +00:00
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
2019-02-20 13:34:28 +00:00
|
|
|
"crypto/ecdsa"
|
2019-08-27 13:29:42 +00:00
|
|
|
"crypto/elliptic"
|
2019-02-20 13:34:28 +00:00
|
|
|
"crypto/x509"
|
2018-03-21 16:11:04 +00:00
|
|
|
"encoding/binary"
|
2018-03-25 10:45:54 +00:00
|
|
|
"encoding/hex"
|
2019-09-04 21:12:39 +00:00
|
|
|
"fmt"
|
2018-03-21 16:11:04 +00:00
|
|
|
"io"
|
|
|
|
"math/big"
|
2019-01-28 12:03:02 +00:00
|
|
|
|
2019-08-23 15:50:45 +00:00
|
|
|
"github.com/CityOfZion/neo-go/pkg/crypto/hash"
|
2019-08-27 13:29:42 +00:00
|
|
|
"github.com/CityOfZion/neo-go/pkg/crypto"
|
2019-01-28 12:03:02 +00:00
|
|
|
"github.com/pkg/errors"
|
2018-03-21 16:11:04 +00:00
|
|
|
)
|
|
|
|
|
2018-03-25 10:45:54 +00:00
|
|
|
// PublicKeys is a list of public keys.
|
|
|
|
type PublicKeys []*PublicKey
|
|
|
|
|
|
|
|
func (keys PublicKeys) Len() int { return len(keys) }
|
|
|
|
func (keys PublicKeys) Swap(i, j int) { keys[i], keys[j] = keys[j], keys[i] }
|
|
|
|
func (keys PublicKeys) Less(i, j int) bool {
|
|
|
|
if keys[i].X.Cmp(keys[j].X) == -1 {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
if keys[i].X.Cmp(keys[j].X) == 1 {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if keys[i].X.Cmp(keys[j].X) == 0 {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
return keys[i].Y.Cmp(keys[j].Y) == -1
|
|
|
|
}
|
|
|
|
|
|
|
|
// PublicKey represents a public key and provides a high level
|
2019-09-04 21:12:39 +00:00
|
|
|
// API around the X/Y point.
|
2018-03-21 16:11:04 +00:00
|
|
|
type PublicKey struct {
|
2019-09-04 21:12:39 +00:00
|
|
|
X *big.Int
|
|
|
|
Y *big.Int
|
2018-03-21 16:11:04 +00:00
|
|
|
}
|
|
|
|
|
2018-03-25 10:45:54 +00:00
|
|
|
// NewPublicKeyFromString return a public key created from the
|
|
|
|
// given hex string.
|
|
|
|
func NewPublicKeyFromString(s string) (*PublicKey, error) {
|
|
|
|
b, err := hex.DecodeString(s)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2019-02-19 18:37:35 +00:00
|
|
|
pubKey := new(PublicKey)
|
2018-03-25 10:45:54 +00:00
|
|
|
if err := pubKey.DecodeBinary(bytes.NewReader(b)); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
return pubKey, nil
|
|
|
|
}
|
|
|
|
|
2018-03-21 16:11:04 +00:00
|
|
|
// Bytes returns the byte array representation of the public key.
|
|
|
|
func (p *PublicKey) Bytes() []byte {
|
2019-09-04 21:12:39 +00:00
|
|
|
if p.isInfinity() {
|
2018-03-25 10:45:54 +00:00
|
|
|
return []byte{0x00}
|
|
|
|
}
|
|
|
|
|
2018-03-21 16:11:04 +00:00
|
|
|
var (
|
|
|
|
x = p.X.Bytes()
|
|
|
|
paddedX = append(bytes.Repeat([]byte{0x00}, 32-len(x)), x...)
|
|
|
|
prefix = byte(0x03)
|
|
|
|
)
|
|
|
|
|
|
|
|
if p.Y.Bit(0) == 0 {
|
|
|
|
prefix = byte(0x02)
|
|
|
|
}
|
|
|
|
|
|
|
|
return append([]byte{prefix}, paddedX...)
|
|
|
|
}
|
|
|
|
|
2019-02-20 13:34:28 +00:00
|
|
|
// NewPublicKeyFromRawBytes returns a NEO PublicKey from the ASN.1 serialized keys.
|
|
|
|
func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
|
|
|
|
var (
|
|
|
|
err error
|
|
|
|
pubkey interface{}
|
|
|
|
)
|
|
|
|
if pubkey, err = x509.ParsePKIXPublicKey(data); err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
pk, ok := pubkey.(*ecdsa.PublicKey)
|
|
|
|
if !ok {
|
|
|
|
return nil, errors.New("given bytes aren't ECDSA public key")
|
|
|
|
}
|
|
|
|
key := PublicKey{
|
2019-09-04 21:12:39 +00:00
|
|
|
X: pk.X,
|
|
|
|
Y: pk.Y,
|
2019-02-20 13:34:28 +00:00
|
|
|
}
|
|
|
|
return &key, nil
|
|
|
|
}
|
|
|
|
|
2019-09-04 21:12:39 +00:00
|
|
|
// decodeCompressedY performs decompression of Y coordinate for given X and Y's least significant bit
|
|
|
|
func decodeCompressedY(x *big.Int, ylsb uint) (*big.Int, error) {
|
|
|
|
c := elliptic.P256()
|
|
|
|
cp := c.Params()
|
|
|
|
three := big.NewInt(3)
|
|
|
|
/* y**2 = x**3 + a*x + b % p */
|
|
|
|
xCubed := new(big.Int).Exp(x, three, cp.P)
|
|
|
|
threeX := new(big.Int).Mul(x, three)
|
|
|
|
threeX.Mod(threeX, cp.P)
|
|
|
|
ySquared := new(big.Int).Sub(xCubed, threeX)
|
|
|
|
ySquared.Add(ySquared, cp.B)
|
|
|
|
ySquared.Mod(ySquared, cp.P)
|
|
|
|
y := new(big.Int).ModSqrt(ySquared, cp.P)
|
|
|
|
if y == nil {
|
|
|
|
return nil, errors.New("error computing Y for compressed point")
|
|
|
|
}
|
|
|
|
if y.Bit(0) != ylsb {
|
|
|
|
y.Neg(y)
|
|
|
|
y.Mod(y, cp.P)
|
|
|
|
}
|
|
|
|
return y, nil
|
|
|
|
}
|
|
|
|
|
2019-01-28 12:03:02 +00:00
|
|
|
// DecodeBytes decodes a PublicKey from the given slice of bytes.
|
|
|
|
func (p *PublicKey) DecodeBytes(data []byte) error {
|
2019-09-05 08:58:34 +00:00
|
|
|
var datab []byte
|
|
|
|
copy(datab, data)
|
|
|
|
b := bytes.NewBuffer(datab)
|
|
|
|
return p.DecodeBinary(b)
|
2019-01-28 12:03:02 +00:00
|
|
|
}
|
|
|
|
|
2018-03-21 16:11:04 +00:00
|
|
|
// DecodeBinary decodes a PublicKey from the given io.Reader.
|
|
|
|
func (p *PublicKey) DecodeBinary(r io.Reader) error {
|
2019-09-05 08:58:34 +00:00
|
|
|
var prefix uint8
|
|
|
|
var x, y *big.Int
|
|
|
|
var err error
|
2019-01-28 12:03:02 +00:00
|
|
|
|
2019-09-05 08:58:34 +00:00
|
|
|
if err = binary.Read(r, binary.LittleEndian, &prefix); err != nil {
|
2018-03-21 16:11:04 +00:00
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
2018-03-25 10:45:54 +00:00
|
|
|
// Infinity
|
2019-01-28 12:03:02 +00:00
|
|
|
switch prefix {
|
|
|
|
case 0x00:
|
2019-09-05 08:58:34 +00:00
|
|
|
// noop, initialized to nil
|
2019-09-05 09:31:03 +00:00
|
|
|
return nil
|
2019-01-28 12:03:02 +00:00
|
|
|
case 0x02, 0x03:
|
2019-09-05 08:58:34 +00:00
|
|
|
// Compressed public keys
|
|
|
|
xbytes := make([]byte, 32)
|
|
|
|
if _, err := io.ReadFull(r, xbytes); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
x = new(big.Int).SetBytes(xbytes)
|
|
|
|
ylsb := uint(prefix&0x1)
|
|
|
|
y, err = decodeCompressedY(x, ylsb)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
2019-01-28 12:03:02 +00:00
|
|
|
case 0x04:
|
2019-09-05 08:58:34 +00:00
|
|
|
xbytes := make([]byte, 32)
|
|
|
|
ybytes := make([]byte, 32)
|
|
|
|
if _, err = io.ReadFull(r, xbytes); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
if _, err = io.ReadFull(r, ybytes); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
x = new(big.Int).SetBytes(xbytes)
|
|
|
|
y = new(big.Int).SetBytes(ybytes)
|
2019-01-28 12:03:02 +00:00
|
|
|
default:
|
|
|
|
return errors.Errorf("invalid prefix %d", prefix)
|
2018-03-25 10:45:54 +00:00
|
|
|
}
|
2019-09-05 09:31:03 +00:00
|
|
|
c := elliptic.P256()
|
|
|
|
cp := c.Params()
|
|
|
|
if !c.IsOnCurve(x, y) {
|
|
|
|
return errors.New("enccoded point is not on the P256 curve")
|
|
|
|
}
|
|
|
|
if x.Cmp(cp.P) >= 0 || y.Cmp(cp.P) >= 0 {
|
|
|
|
return errors.New("enccoded point is not correct (X or Y is bigger than P")
|
|
|
|
}
|
2019-09-05 08:58:34 +00:00
|
|
|
p.X, p.Y = x, y
|
2018-03-25 10:45:54 +00:00
|
|
|
|
2019-09-05 08:58:34 +00:00
|
|
|
return nil
|
2018-03-21 16:11:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// EncodeBinary encodes a PublicKey to the given io.Writer.
|
|
|
|
func (p *PublicKey) EncodeBinary(w io.Writer) error {
|
|
|
|
return binary.Write(w, binary.LittleEndian, p.Bytes())
|
|
|
|
}
|
2019-02-19 18:37:35 +00:00
|
|
|
|
2019-09-03 14:51:37 +00:00
|
|
|
// Signature returns a NEO-specific hash of the key.
|
2019-08-27 14:16:33 +00:00
|
|
|
func (p *PublicKey) Signature() []byte {
|
2019-02-19 18:37:35 +00:00
|
|
|
b := p.Bytes()
|
|
|
|
b = append([]byte{0x21}, b...)
|
|
|
|
b = append(b, 0xAC)
|
|
|
|
|
2019-08-23 15:50:45 +00:00
|
|
|
sig := hash.Hash160(b)
|
2019-02-19 18:37:35 +00:00
|
|
|
|
2019-08-27 14:16:33 +00:00
|
|
|
return sig.Bytes()
|
2019-02-19 18:37:35 +00:00
|
|
|
}
|
|
|
|
|
2019-09-03 14:51:37 +00:00
|
|
|
// Address returns a base58-encoded NEO-specific address based on the key hash.
|
2019-08-27 14:16:33 +00:00
|
|
|
func (p *PublicKey) Address() string {
|
2019-09-03 15:06:16 +00:00
|
|
|
var b = p.Signature()
|
2019-02-19 18:37:35 +00:00
|
|
|
|
|
|
|
b = append([]byte{0x17}, b...)
|
2019-08-23 15:50:45 +00:00
|
|
|
csum := hash.Checksum(b)
|
|
|
|
b = append(b, csum...)
|
2019-02-19 18:37:35 +00:00
|
|
|
|
2019-08-27 13:29:42 +00:00
|
|
|
address := crypto.Base58Encode(b)
|
2019-08-27 14:16:33 +00:00
|
|
|
return address
|
2019-02-19 18:37:35 +00:00
|
|
|
}
|
2019-08-27 13:29:42 +00:00
|
|
|
|
|
|
|
// Verify returns true if the signature is valid and corresponds
|
|
|
|
// to the hash and public key
|
|
|
|
func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
|
|
|
|
|
|
|
|
publicKey := &ecdsa.PublicKey{}
|
|
|
|
publicKey.Curve = elliptic.P256()
|
|
|
|
publicKey.X = p.X
|
|
|
|
publicKey.Y = p.Y
|
|
|
|
if p.X == nil || p.Y == nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
rBytes := new(big.Int).SetBytes(signature[0:32])
|
|
|
|
sBytes := new(big.Int).SetBytes(signature[32:64])
|
|
|
|
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
|
|
|
|
}
|
2019-09-04 21:12:39 +00:00
|
|
|
|
|
|
|
// isInfinity checks if point P is infinity on EllipticCurve ec.
|
|
|
|
func (p *PublicKey) isInfinity() bool {
|
|
|
|
return p.X == nil && p.Y == nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// String implements the Stringer interface.
|
|
|
|
func (p *PublicKey) String() string {
|
|
|
|
if p.isInfinity() {
|
|
|
|
return "00"
|
|
|
|
}
|
|
|
|
bx := hex.EncodeToString(p.X.Bytes())
|
|
|
|
by := hex.EncodeToString(p.Y.Bytes())
|
|
|
|
return fmt.Sprintf("%s%s", bx, by)
|
|
|
|
}
|