neoneo-go/examples/zkp/cubic_circuit/main.go

94 lines
3.8 KiB
Go
Raw Normal View History

// Package cubic describes how to create and verify proofs on the Neo
// blockchain. The example shows how to check that the prover knows the solution
// of the cubic equation: y = x^3 + x + 5. The example is constructed for
// BLS12-381 curve points using Groth-16 proving system. The example includes
// everything that developer needs to start using ZKP on the Neo platform with
// Go SDK:
// 1. The described cubic circuit implementation.
// 2. The off-chain proof generation with the help of gnark-crypto library.
// 3. The Go verification contract generation and deployment with the help of
// NeoGo library.
// 4. The on-chain proof verification for various sets of input data (implemented
// as end-to-end test).
// 5. A set of unit-tests aimed to check the circuit validity.
package cubic
import (
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark/backend/groth16"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/frontend/cs/r1cs"
)
// CubicCircuit defines a simple circuit x**3 + x + 5 == y
// that checks that the prover knows the solution for the provided expression.
// The circuit must declare its public and secret inputs as frontend.Variable.
// At compile time, frontend.Compile(...) recursively parses the struct fields
// that contains frontend.Variable to build the frontend.constraintSystem.
// By default, a frontend.Variable has the gnark:",secret" visibility.
type CubicCircuit struct {
// Struct tags on a variable is optional.
// Default uses variable name and secret visibility.
X frontend.Variable `gnark:"x,secret"` // Secret input.
Y frontend.Variable `gnark:"y,public"` // Public input.
}
// A gnark circuit must implement the frontend.Circuit interface
// (https://docs.gnark.consensys.net/HowTo/write/circuit_structure).
var _ = frontend.Circuit(&CubicCircuit{})
// Define declares the circuit constraints
// x**3 + x + 5 == y.
func (circuit *CubicCircuit) Define(api frontend.API) error {
x3 := api.Mul(circuit.X, circuit.X, circuit.X)
// Can be used for the circuit debugging.
api.Println("X^3", x3)
api.AssertIsEqual(circuit.Y, api.Add(x3, circuit.X, 5))
return nil
}
// main demonstrates how to build the proof and verify it with the help of gnark
// library. Error handling omitted intentionally to simplify the example.
func main() {
var (
circuit CubicCircuit
assignment = CubicCircuit{X: 3, Y: 35}
)
// Compile our circuit into a R1CS (a constraint system).
ccs, _ := frontend.Compile(ecc.BLS12_381.ScalarField(), r1cs.NewBuilder, &circuit)
// Once the circuit is compiled, you can run the three algorithms of a zk-SNARK back end:
// 1. One time setup (groth16 zkSNARK).
pk, vk, _ := groth16.Setup(ccs)
// Intermediate step: witness definition.
witness, _ := frontend.NewWitness(&assignment, ecc.BLS12_381.ScalarField())
publicWitness, _ := witness.Public()
// 2. Proof creation (groth16).
proof, _ := groth16.Prove(ccs, pk, witness)
// 3. Proof verification (groth16) via gnark-crypto library.
_ = groth16.Verify(proof, vk, publicWitness)
// 4. If building ZKP systems for Neo, you'll need a verification contract
// deployed to the Neo chain to be able to verify generated proofs. This
// contract can be generated automatically using NeoGo zkpbinding package:
// err := zkpbinding.GenerateVerifier(zkpbinding.Config{
// VerifyingKey: vk,
// Output: f, // Verifier Go contract writer
// CfgOutput: fCfg, // Verifier Go contract configuration YAML file
// GomodOutput: fMod, // go.mod file for the Verifier contract
// GosumOutput: fSum, // go.sum file for the Verifier contract
// })
//
// Create arguments to invoke `verifyProof` mathod of Verifier contract:
// verifyProofArgs, err := zkpbinding.GetVerifyProofArgs(proof, publicWitness)
//
// For end-to-end usage example, please, see the TestCubicCircuit_EndToEnd test.
}