neoneo-go/pkg/vm/vm.go

719 lines
15 KiB
Go
Raw Permalink Normal View History

package vm
import (
"crypto/sha1"
"crypto/sha256"
"fmt"
"io/ioutil"
"log"
"math/big"
"os"
"text/tabwriter"
"github.com/CityOfZion/neo-go/pkg/util"
"golang.org/x/crypto/ripemd160"
)
// Mode configures behaviour of the VM.
type Mode uint
// Available VM Modes.
var (
ModeMute Mode = 1 << 0
)
// VM represents the virtual machine.
type VM struct {
state State
// registered interop hooks.
interop map[string]InteropFunc
// scripts loaded in memory.
scripts map[util.Uint160][]byte
istack *Stack // invocation stack.
estack *Stack // execution stack.
astack *Stack // alt stack.
// Mute all output after execution.
mute bool
}
// New returns a new VM object ready to load .avm bytecode scripts.
func New(mode Mode) *VM {
vm := &VM{
interop: make(map[string]InteropFunc),
scripts: make(map[util.Uint160][]byte),
state: haltState,
istack: NewStack("invocation"),
estack: NewStack("evaluation"),
astack: NewStack("alt"),
}
if mode == ModeMute {
vm.mute = true
}
// Register native interop hooks.
vm.RegisterInteropFunc("Neo.Runtime.Log", runtimeLog)
vm.RegisterInteropFunc("Neo.Runtime.Notify", runtimeNotify)
return vm
}
// RegisterInteropFunc will register the given InteropFunc to the VM.
func (v *VM) RegisterInteropFunc(name string, f InteropFunc) {
v.interop[name] = f
}
// Estack will return the evalutation stack so interop hooks can utilize this.
func (v *VM) Estack() *Stack {
return v.estack
}
// Astack will return the alt stack so interop hooks can utilize this.
func (v *VM) Astack() *Stack {
return v.astack
}
// Istack will return the invocation stack so interop hooks can utilize this.
func (v *VM) Istack() *Stack {
return v.istack
}
// LoadArgs will load in the arguments used in the Mian entry point.
func (v *VM) LoadArgs(method []byte, args []StackItem) {
if len(args) > 0 {
v.estack.PushVal(args)
}
if method != nil {
v.estack.PushVal([]byte(method))
}
}
// PrintOps will print the opcodes of the current loaded program to stdout.
func (v *VM) PrintOps() {
prog := v.Context().Program()
w := tabwriter.NewWriter(os.Stdout, 0, 0, 4, ' ', 0)
fmt.Fprintln(w, "INDEX\tOPCODE\tDESC\t")
cursor := ""
ip, _ := v.Context().CurrInstr()
for i := 0; i < len(prog); i++ {
if i == ip {
cursor = "<<"
} else {
cursor = ""
}
fmt.Fprintf(w, "%d\t0x%2x\t%s\t%s\n", i, prog[i], Opcode(prog[i]), cursor)
}
w.Flush()
}
// AddBreakPoint adds a breakpoint to the current context.
func (v *VM) AddBreakPoint(n int) {
ctx := v.Context()
ctx.breakPoints = append(ctx.breakPoints, n)
}
// AddBreakPointRel adds a breakpoint relative to the current
// instruction pointer.
func (v *VM) AddBreakPointRel(n int) {
ctx := v.Context()
v.AddBreakPoint(ctx.ip + n)
}
// LoadFile will load a program from the given path, ready to execute it.
func (v *VM) LoadFile(path string) error {
b, err := ioutil.ReadFile(path)
if err != nil {
return err
}
v.Load(b)
return nil
}
func (v *VM) Load(prog []byte) {
// clear all stacks, it could be a reload.
v.istack.Clear()
v.estack.Clear()
v.astack.Clear()
v.istack.PushVal(NewContext(prog))
}
// LoadScript will load a script from the internal script table. It
// will immediatly push a new context created from this script to
// the invocation stack and starts executing it.
func (v *VM) LoadScript(b []byte) {
ctx := NewContext(b)
v.istack.PushVal(ctx)
}
// Context returns the current executed context. Nil if there is no context,
// which implies no program is loaded.
func (v *VM) Context() *Context {
if v.istack.Len() == 0 {
return nil
}
return v.istack.Peek(0).value.Value().(*Context)
}
// PopResult is used to pop the first item of the evaluation stack. This allows
// us to test compiler and vm in a bi-directional way.
func (v *VM) PopResult() interface{} {
return v.estack.Pop().value.Value()
}
// Stack returns json formatted representation of the given stack.
func (v *VM) Stack(n string) string {
var s *Stack
if n == "astack" {
s = v.astack
}
if n == "istack" {
s = v.istack
}
if n == "estack" {
s = v.estack
}
return buildStackOutput(s)
}
// Ready return true if the VM ready to execute the loaded program.
// Will return false if no program is loaded.
func (v *VM) Ready() bool {
return v.istack.Len() > 0
}
// Run starts the execution of the loaded program.
func (v *VM) Run() {
if !v.Ready() {
fmt.Println("no program loaded")
return
}
v.state = noneState
for {
switch v.state {
case haltState:
if !v.mute {
fmt.Println(v.Stack("estack"))
}
return
case breakState:
ctx := v.Context()
i, op := ctx.CurrInstr()
fmt.Printf("at breakpoint %d (%s)\n", i, op)
return
case faultState:
fmt.Println("FAULT")
return
case noneState:
v.Step()
}
}
}
// Step 1 instruction in the program.
func (v *VM) Step() {
ctx := v.Context()
op := ctx.Next()
v.execute(ctx, op)
// re-peek the context as it could been changed during execution.
cctx := v.Context()
if cctx != nil && cctx.atBreakPoint() {
v.state = breakState
}
}
// execute performs an instruction cycle in the VM. Acting on the instruction (opcode).
func (v *VM) execute(ctx *Context, op Opcode) {
// Instead of poluting the whole VM logic with error handling, we will recover
// each panic at a central point, putting the VM in a fault state.
defer func() {
if err := recover(); err != nil {
log.Printf("error encountered at instruction %d (%s)", ctx.ip, op)
log.Println(err)
v.state = faultState
}
}()
if op >= Opushbytes1 && op <= Opushbytes75 {
b := ctx.readBytes(int(op))
v.estack.PushVal(b)
return
}
switch op {
case Opushm1, Opush1, Opush2, Opush3, Opush4, Opush5,
Opush6, Opush7, Opush8, Opush9, Opush10, Opush11,
Opush12, Opush13, Opush14, Opush15, Opush16:
val := int(op) - int(Opush1) + 1
v.estack.PushVal(val)
case Opush0:
v.estack.PushVal(0)
case Opushdata1:
n := ctx.readByte()
b := ctx.readBytes(int(n))
v.estack.PushVal(b)
case Opushdata2:
n := ctx.readUint16()
b := ctx.readBytes(int(n))
v.estack.PushVal(b)
case Opushdata4:
n := ctx.readUint32()
b := ctx.readBytes(int(n))
v.estack.PushVal(b)
// Stack operations.
case Otoaltstack:
v.astack.Push(v.estack.Pop())
case Ofromaltstack:
v.estack.Push(v.astack.Pop())
case Odupfromaltstack:
v.estack.Push(v.astack.Dup(0))
case Odup:
v.estack.Push(v.estack.Dup(0))
case Oswap:
a := v.estack.Pop()
b := v.estack.Pop()
v.estack.Push(a)
v.estack.Push(b)
case Oxswap:
n := int(v.estack.Pop().BigInt().Int64())
if n < 0 {
panic("XSWAP: invalid length")
}
// Swap values of elements instead of reordening stack elements.
if n > 0 {
a := v.estack.Peek(n)
b := v.estack.Peek(0)
aval := a.value
bval := b.value
a.value = bval
b.value = aval
}
case Otuck:
n := int(v.estack.Pop().BigInt().Int64())
if n <= 0 {
panic("OTUCK: invalid length")
}
v.estack.InsertAt(v.estack.Peek(0), n)
case Orot:
c := v.estack.Pop()
b := v.estack.Pop()
a := v.estack.Pop()
v.estack.Push(b)
v.estack.Push(c)
v.estack.Push(a)
case Odepth:
v.estack.PushVal(v.estack.Len())
case Onip:
elem := v.estack.Pop()
_ = v.estack.Pop()
v.estack.Push(elem)
case Oover:
b := v.estack.Pop()
a := v.estack.Peek(0)
v.estack.Push(b)
v.estack.Push(a)
case Oroll:
n := int(v.estack.Pop().BigInt().Int64())
if n < 0 {
panic("negative stack item returned")
}
if n > 0 {
v.estack.Push(v.estack.RemoveAt(n))
}
case Odrop:
v.estack.Pop()
case Oequal:
panic("TODO EQUAL")
// Bit operations.
case Oand:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).And(b, a))
case Oor:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Or(b, a))
case Oxor:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Xor(b, a))
// Numeric operations.
case Oadd:
a := v.estack.Pop().BigInt()
b := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Add(a, b))
case Osub:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Sub(a, b))
case Odiv:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Div(a, b))
case Omul:
a := v.estack.Pop().BigInt()
b := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Mul(a, b))
case Omod:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Mod(a, b))
case Oshl:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Lsh(a, uint(b.Int64())))
case Oshr:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Rsh(a, uint(b.Int64())))
case Obooland:
b := v.estack.Pop().Bool()
a := v.estack.Pop().Bool()
v.estack.PushVal(a && b)
case Oboolor:
b := v.estack.Pop().Bool()
a := v.estack.Pop().Bool()
v.estack.PushVal(a || b)
case Onumequal:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) == 0)
case Onumnotequal:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) != 0)
case Olt:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) == -1)
case Ogt:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) == 1)
case Olte:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) <= 0)
case Ogte:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(b) >= 0)
case Omin:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
val := a
if a.Cmp(b) == 1 {
val = b
}
v.estack.PushVal(val)
case Omax:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
val := a
if a.Cmp(b) == -1 {
val = b
}
v.estack.PushVal(val)
case Owithin:
b := v.estack.Pop().BigInt()
a := v.estack.Pop().BigInt()
x := v.estack.Pop().BigInt()
v.estack.PushVal(a.Cmp(x) <= 0 && x.Cmp(b) == -1)
case Oinc:
x := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Add(x, big.NewInt(1)))
case Odec:
x := v.estack.Pop().BigInt()
v.estack.PushVal(new(big.Int).Sub(x, big.NewInt(1)))
case Osign:
x := v.estack.Pop().BigInt()
v.estack.PushVal(x.Sign())
case Onegate:
x := v.estack.Pop().BigInt()
v.estack.PushVal(x.Neg(x))
case Oabs:
x := v.estack.Pop().BigInt()
v.estack.PushVal(x.Abs(x))
case Onot:
x := v.estack.Pop().Bool()
v.estack.PushVal(!x)
case Onz:
panic("todo NZ")
// x := v.estack.Pop().BigInt()
// Object operations.
case Onewarray:
n := v.estack.Pop().BigInt().Int64()
items := make([]StackItem, n)
v.estack.PushVal(&ArrayItem{items})
case Onewstruct:
n := v.estack.Pop().BigInt().Int64()
items := make([]StackItem, n)
v.estack.PushVal(&StructItem{items})
case Oappend:
itemElem := v.estack.Pop()
arrElem := v.estack.Pop()
switch t := arrElem.value.(type) {
case *ArrayItem, *StructItem:
arr := t.Value().([]StackItem)
arr = append(arr, itemElem.value)
v.estack.PushVal(arr)
2018-04-05 08:35:33 +00:00
case *ByteArrayItem:
newVal := append(t.value, itemElem.value.Value().([]byte)...)
v.estack.PushVal(newVal)
default:
panic("APPEND: not of underlying type Array")
}
case Oreverse:
case Oremove:
case Opack:
n := int(v.estack.Pop().BigInt().Int64())
if n < 0 || n > v.estack.Len() {
panic("OPACK: invalid length")
}
items := make([]StackItem, n)
for i := 0; i < n; i++ {
items[i] = v.estack.Pop().value
}
v.estack.PushVal(items)
case Ounpack:
panic("TODO")
case Opickitem:
var (
key = v.estack.Pop()
obj = v.estack.Pop()
index = int(key.BigInt().Int64())
)
switch t := obj.value.(type) {
// Struct and Array items have their underlying value as []StackItem.
case *ArrayItem, *StructItem:
arr := t.Value().([]StackItem)
if index < 0 || index >= len(arr) {
panic("PICKITEM: invalid index")
}
item := arr[index]
v.estack.PushVal(item)
default:
panic("PICKITEM: unknown type")
}
case Osetitem:
var (
item = v.estack.Pop().value
key = v.estack.Pop()
obj = v.estack.Pop()
index = int(key.BigInt().Int64())
)
switch t := obj.value.(type) {
// Struct and Array items have their underlying value as []StackItem.
case *ArrayItem, *StructItem:
arr := t.Value().([]StackItem)
if index < 0 || index >= len(arr) {
panic("SETITEM: invalid index")
}
arr[index] = item
default:
panic(fmt.Sprintf("SETITEM: invalid item type %s", t))
}
case Oarraysize:
elem := v.estack.Pop()
arr, ok := elem.value.Value().([]StackItem)
if !ok {
panic("ARRAYSIZE: item not of type []StackItem")
}
v.estack.PushVal(len(arr))
case Osize:
elem := v.estack.Pop()
arr, ok := elem.value.Value().([]uint8)
if !ok {
panic("SIZE: item not of type []uint8")
}
v.estack.PushVal(len(arr))
case Ojmp, Ojmpif, Ojmpifnot:
var (
rOffset = int16(ctx.readUint16())
offset = ctx.ip + int(rOffset) - 3 // sizeOf(int16 + uint8)
)
if offset < 0 || offset > len(ctx.prog) {
panic(fmt.Sprintf("JMP: invalid offset %d ip at %d", offset, ctx.ip))
}
cond := true
if op > Ojmp {
cond = v.estack.Pop().Bool()
if op == Ojmpifnot {
cond = !cond
}
}
if cond {
ctx.ip = offset
}
case Ocall:
v.istack.PushVal(ctx.Copy())
ctx.ip += 2
v.execute(v.Context(), Ojmp)
case Osyscall:
api := ctx.readVarBytes()
ifunc, ok := v.interop[string(api)]
if !ok {
panic(fmt.Sprintf("interop hook (%s) not registered", api))
}
if err := ifunc(v); err != nil {
panic(fmt.Sprintf("failed to invoke syscall: %s", err))
}
case Oappcall, Otailcall:
if len(v.scripts) == 0 {
panic("script table is empty")
}
hash, err := util.Uint160DecodeBytes(ctx.readBytes(20))
if err != nil {
panic(err)
}
script, ok := v.scripts[hash]
if !ok {
panic("could not find script")
}
if op == Otailcall {
_ = v.istack.Pop()
}
v.LoadScript(script)
case Oret:
_ = v.istack.Pop()
if v.istack.Len() == 0 {
v.state = haltState
}
// Cryptographic operations.
case Osha1:
b := v.estack.Pop().Bytes()
sha := sha1.New()
sha.Write(b)
v.estack.PushVal(sha.Sum(nil))
case Osha256:
b := v.estack.Pop().Bytes()
sha := sha256.New()
sha.Write(b)
v.estack.PushVal(sha.Sum(nil))
case Ohash160:
b := v.estack.Pop().Bytes()
sha := sha256.New()
sha.Write(b)
h := sha.Sum(nil)
ripemd := ripemd160.New()
ripemd.Write(h)
v.estack.PushVal(ripemd.Sum(nil))
case Ohash256:
b := v.estack.Pop().Bytes()
sha := sha256.New()
sha.Write(b)
h := sha.Sum(nil)
sha.Reset()
sha.Write(h)
v.estack.PushVal(sha.Sum(nil))
case Ochecksig:
//pubkey := v.estack.Pop().Bytes()
//sig := v.estack.Pop().Bytes()
case Ocheckmultisig:
case Onop:
// unlucky ^^
case Othrow:
panic("THROW")
case Othrowifnot:
if !v.estack.Pop().Bool() {
panic("THROWIFNOT")
}
default:
panic(fmt.Sprintf("unknown opcode %s", op))
}
}
func init() {
log.SetPrefix("NEO-GO-VM > ")
log.SetFlags(0)
}