crypto: drop home-grown elliptic crypto, use crypto/elliptic
As NEO uses P256 we can use standard crypto/elliptic library for almost everything, the only exception being decompression of the Y coordinate. For some reason the standard library only supports uncompressed format in its Marshal()/Unmarshal() functions. elliptic.P256() is known to have constant-time implementation, so it fixes #245 (and the decompression using big.Int operates on public key, so nobody really cares about that part being constant-time). New decompress function is inspired by https://stackoverflow.com/questions/46283760, even though the previous one really did the same thing just in a little less obvious way.
This commit is contained in:
parent
0b884b92b3
commit
f0fbe9f6c9
5 changed files with 66 additions and 348 deletions
|
@ -7,6 +7,7 @@ import (
|
|||
"crypto/x509"
|
||||
"encoding/binary"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
|
||||
|
@ -35,9 +36,10 @@ func (keys PublicKeys) Less(i, j int) bool {
|
|||
}
|
||||
|
||||
// PublicKey represents a public key and provides a high level
|
||||
// API around the ECPoint.
|
||||
// API around the X/Y point.
|
||||
type PublicKey struct {
|
||||
crypto.ECPoint
|
||||
X *big.Int
|
||||
Y *big.Int
|
||||
}
|
||||
|
||||
// NewPublicKeyFromString return a public key created from the
|
||||
|
@ -58,7 +60,7 @@ func NewPublicKeyFromString(s string) (*PublicKey, error) {
|
|||
|
||||
// Bytes returns the byte array representation of the public key.
|
||||
func (p *PublicKey) Bytes() []byte {
|
||||
if p.IsInfinity() {
|
||||
if p.isInfinity() {
|
||||
return []byte{0x00}
|
||||
}
|
||||
|
||||
|
@ -89,14 +91,38 @@ func NewPublicKeyFromRawBytes(data []byte) (*PublicKey, error) {
|
|||
return nil, errors.New("given bytes aren't ECDSA public key")
|
||||
}
|
||||
key := PublicKey{
|
||||
crypto.ECPoint{
|
||||
X: pk.X,
|
||||
Y: pk.Y,
|
||||
},
|
||||
X: pk.X,
|
||||
Y: pk.Y,
|
||||
}
|
||||
return &key, nil
|
||||
}
|
||||
|
||||
// decodeCompressedY performs decompression of Y coordinate for given X and Y's least significant bit
|
||||
func decodeCompressedY(x *big.Int, ylsb uint) (*big.Int, error) {
|
||||
c := elliptic.P256()
|
||||
cp := c.Params()
|
||||
three := big.NewInt(3)
|
||||
/* y**2 = x**3 + a*x + b % p */
|
||||
xCubed := new(big.Int).Exp(x, three, cp.P)
|
||||
threeX := new(big.Int).Mul(x, three)
|
||||
threeX.Mod(threeX, cp.P)
|
||||
ySquared := new(big.Int).Sub(xCubed, threeX)
|
||||
ySquared.Add(ySquared, cp.B)
|
||||
ySquared.Mod(ySquared, cp.P)
|
||||
y := new(big.Int).ModSqrt(ySquared, cp.P)
|
||||
if y == nil {
|
||||
return nil, errors.New("error computing Y for compressed point")
|
||||
}
|
||||
if y.Bit(0) != ylsb {
|
||||
y.Neg(y)
|
||||
y.Mod(y, cp.P)
|
||||
}
|
||||
if !c.IsOnCurve(x, y) {
|
||||
return nil, errors.New("compressed (x, ylsb) not on curve")
|
||||
}
|
||||
return y, nil
|
||||
}
|
||||
|
||||
// DecodeBytes decodes a PublicKey from the given slice of bytes.
|
||||
func (p *PublicKey) DecodeBytes(data []byte) error {
|
||||
l := len(data)
|
||||
|
@ -104,19 +130,22 @@ func (p *PublicKey) DecodeBytes(data []byte) error {
|
|||
switch prefix := data[0]; prefix {
|
||||
// Infinity
|
||||
case 0x00:
|
||||
p.ECPoint = crypto.ECPoint{}
|
||||
p.X = nil
|
||||
p.Y = nil
|
||||
// Compressed public keys
|
||||
case 0x02, 0x03:
|
||||
if l < 33 {
|
||||
return errors.Errorf("bad binary size(%d)", l)
|
||||
}
|
||||
|
||||
c := crypto.NewEllipticCurve()
|
||||
var err error
|
||||
p.ECPoint, err = c.Decompress(new(big.Int).SetBytes(data[1:]), uint(prefix&0x1))
|
||||
x := new(big.Int).SetBytes(data[1:])
|
||||
ylsb := uint(prefix&0x1)
|
||||
y, err := decodeCompressedY(x, ylsb)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
p.X = x
|
||||
p.Y = y
|
||||
case 0x04:
|
||||
if l < 66 {
|
||||
return errors.Errorf("bad binary size(%d)", l)
|
||||
|
@ -141,7 +170,8 @@ func (p *PublicKey) DecodeBinary(r io.Reader) error {
|
|||
// Infinity
|
||||
switch prefix {
|
||||
case 0x00:
|
||||
p.ECPoint = crypto.ECPoint{}
|
||||
p.X = nil
|
||||
p.Y = nil
|
||||
return nil
|
||||
// Compressed public keys
|
||||
case 0x02, 0x03:
|
||||
|
@ -206,3 +236,18 @@ func (p *PublicKey) Verify(signature []byte, hash []byte) bool {
|
|||
sBytes := new(big.Int).SetBytes(signature[32:64])
|
||||
return ecdsa.Verify(publicKey, hash, rBytes, sBytes)
|
||||
}
|
||||
|
||||
// isInfinity checks if point P is infinity on EllipticCurve ec.
|
||||
func (p *PublicKey) isInfinity() bool {
|
||||
return p.X == nil && p.Y == nil
|
||||
}
|
||||
|
||||
// String implements the Stringer interface.
|
||||
func (p *PublicKey) String() string {
|
||||
if p.isInfinity() {
|
||||
return "00"
|
||||
}
|
||||
bx := hex.EncodeToString(p.X.Bytes())
|
||||
by := hex.EncodeToString(p.Y.Bytes())
|
||||
return fmt.Sprintf("%s%s", bx, by)
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue