native: add test for multisignature Koblitz witness verification

Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
This commit is contained in:
Anna Shaleva 2024-05-02 19:17:02 +03:00
parent ee8ae6a8d5
commit fab5893b95
2 changed files with 325 additions and 5 deletions

View file

@ -2,6 +2,7 @@ package native_test
import ( import (
"math/big" "math/big"
"sort"
"testing" "testing"
"github.com/nspcc-dev/neo-go/pkg/core/interop/interopnames" "github.com/nspcc-dev/neo-go/pkg/core/interop/interopnames"
@ -84,7 +85,7 @@ func TestCryptoLib_KoblitzVerificationScript(t *testing.T) {
require.True(t, pk.PublicKey().Verify(signature, hash.Keccak256(msg).BytesBE())) require.True(t, pk.PublicKey().Verify(signature, hash.Keccak256(msg).BytesBE()))
// Build invocation witness script for the user's account. // Build invocation witness script for the user's account.
invBytes := buildKoblitzInvocationScript(t, signature) invBytes := buildKoblitzInvocationScript(t, [][]byte{signature})
// Construct witness for signer #0 (the user itself). // Construct witness for signer #0 (the user itself).
tx.Scripts = []transaction.Witness{ tx.Scripts = []transaction.Witness{
@ -512,22 +513,34 @@ func buildKoblitzVerificationScriptCompat(t *testing.T, pub *keys.PublicKey) []b
// 181 SYSCALL System.Contract.Call (627d5b52) // 181 SYSCALL System.Contract.Call (627d5b52)
} }
// buildKoblitzInvocationScript builds witness invocation script for the transaction signature. The signature // buildKoblitzInvocationScript builds witness invocation script for the transaction signatures. The signature
// itself may be produced by public key over any curve (not required Koblitz, the algorithm is the same). // itself may be produced by public key over any curve (not required Koblitz, the algorithm is the same).
func buildKoblitzInvocationScript(t *testing.T, signature []byte) []byte { // The signatures expected to be sorted by public key (if multiple signatures are provided).
func buildKoblitzInvocationScript(t *testing.T, signatures [][]byte) []byte {
//Exactly like during standard //Exactly like during standard
// signature verification, the resulting script pushes Koblitz signature bytes onto stack. // signature verification, the resulting script pushes Koblitz signature bytes onto stack.
inv := io.NewBufBinWriter() inv := io.NewBufBinWriter()
emit.Bytes(inv.BinWriter, signature) // message signatre bytes. for _, sig := range signatures {
emit.Bytes(inv.BinWriter, sig) // message signature bytes.
}
require.NoError(t, inv.Err) require.NoError(t, inv.Err)
return inv.Bytes() return inv.Bytes()
// Here's an example of the resulting witness invocation script (66 bytes length, always constant length): // Here's an example of the resulting single witness invocation script (66 bytes length, always constant length):
// NEO-GO-VM > loadbase64 DEBMGKU/MdSizlzaVNDUUbd1zMZQJ43eTaZ4vBCpmkJ/wVh1TYrAWEbFyHhkqq+aYxPCUS43NKJdJTXavcjB8sTP // NEO-GO-VM > loadbase64 DEBMGKU/MdSizlzaVNDUUbd1zMZQJ43eTaZ4vBCpmkJ/wVh1TYrAWEbFyHhkqq+aYxPCUS43NKJdJTXavcjB8sTP
// READY: loaded 66 instructions // READY: loaded 66 instructions
// NEO-GO-VM 0 > ops // NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER // INDEX OPCODE PARAMETER
// 0 PUSHDATA1 4c18a53f31d4a2ce5cda54d0d451b775ccc650278dde4da678bc10a99a427fc158754d8ac05846c5c87864aaaf9a6313c2512e3734a25d2535dabdc8c1f2c4cf << // 0 PUSHDATA1 4c18a53f31d4a2ce5cda54d0d451b775ccc650278dde4da678bc10a99a427fc158754d8ac05846c5c87864aaaf9a6313c2512e3734a25d2535dabdc8c1f2c4cf <<
//
// Here's an example of the 3 out of 4 multisignature invocation script (66 * m bytes length, always constant length):
// NEO-GO-VM > loadbase64 DEBsPMY3+7sWyZf0gCVcqPzwZ79p+KpeylgtbYIrXp4Tdi6E/8q3DIrEgK7DdVe3YdbfE+VPrpwym/ufBb8MRTB6DED5B9OZDGWdJApRfuy9LeUTa2mLsXP7mBRa181g0Jo7beylWzVgDqHHF2PilECMcLmRbFRknmQm4KgiGkDE+O6ZDEAYt61O2dMfasJHiQD95M5b4mR6NBnDsMTo2e59H3y4YguroVLiUxnQSc4qu9LWvEIKr4/ytjCCuANXOkJmSw8C
// READY: loaded 198 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 PUSHDATA1 6c3cc637fbbb16c997f480255ca8fcf067bf69f8aa5eca582d6d822b5e9e13762e84ffcab70c8ac480aec37557b761d6df13e54fae9c329bfb9f05bf0c45307a <<
// 66 PUSHDATA1 f907d3990c659d240a517eecbd2de5136b698bb173fb98145ad7cd60d09a3b6deca55b35600ea1c71763e294408c70b9916c54649e6426e0a8221a40c4f8ee99
// 132 PUSHDATA1 18b7ad4ed9d31f6ac2478900fde4ce5be2647a3419c3b0c4e8d9ee7d1f7cb8620baba152e25319d049ce2abbd2d6bc420aaf8ff2b63082b803573a42664b0f02
} }
// constructMessage constructs message for signing that consists of the // constructMessage constructs message for signing that consists of the
@ -562,3 +575,305 @@ func constructMessageSimple(t *testing.T, magic uint32, tx hash.Hashable) []byte
func constructMessageCompat(t *testing.T, magic uint32, tx hash.Hashable) []byte { func constructMessageCompat(t *testing.T, magic uint32, tx hash.Hashable) []byte {
return hash.NetSha256(magic, tx).BytesBE() return hash.NetSha256(magic, tx).BytesBE()
} }
// TestCryptoLib_KoblitzMultisigVerificationScript builds transaction with custom witness that contains
// the Koblitz tx multisignature bytes and Koblitz multisignature verification script.
// This test ensures that transaction signed by m out of n Koblitz keys passes verification and can
// be successfully accepted to the chain.
func TestCryptoLib_KoblitzMultisigVerificationScript(t *testing.T) {
check := func(
t *testing.T,
buildVerificationScript func(t *testing.T, m int, pub keys.PublicKeys) []byte,
constructMsg func(t *testing.T, magic uint32, tx hash.Hashable) []byte,
) {
c := newGasClient(t)
gasInvoker := c.WithSigners(c.Committee)
e := c.Executor
// Consider 4 users willing to sign 3/4 multisignature transaction Secp256k1 private keys.
const (
n = 4
m = 3
)
pks := make([]*keys.PrivateKey, n)
for i := range pks {
var err error
pks[i], err = keys.NewSecp256k1PrivateKey()
require.NoError(t, err)
}
// Sort private keys by their public keys.
sort.Slice(pks, func(i, j int) bool {
return pks[i].PublicKey().Cmp(pks[j].PublicKey()) < 0
})
// Firstly, we need to build the N3 multisig account address based on the users' public keys.
// Pubs must be sorted, exactly like for the standard CheckMultisig.
pubs := make(keys.PublicKeys, n)
for i := range pks {
pubs[i] = pks[i].PublicKey()
}
vrfBytes := buildVerificationScript(t, m, pubs)
// Construct the user's account script hash. It's effectively a verification script hash.
from := hash.Hash160(vrfBytes)
// Supply this account with some initial balance so that the user is able to pay for his transactions.
gasInvoker.Invoke(t, true, "transfer", c.Committee.ScriptHash(), from, 10000_0000_0000, nil)
// Construct transaction that transfers 5 GAS from the user's account to some other account.
to := util.Uint160{1, 2, 3}
amount := 5
tx := gasInvoker.PrepareInvokeNoSign(t, "transfer", from, to, amount, nil)
tx.Signers = []transaction.Signer{
{
Account: from,
Scopes: transaction.CalledByEntry,
},
}
neotest.AddNetworkFee(t, e.Chain, tx)
neotest.AddSystemFee(e.Chain, tx, -1)
// Add some more network fee to pay for the witness verification. This value may be calculated precisely,
// but let's keep some inaccurate value for the test.
tx.NetworkFee += 900_0000
// This transaction (along with the network magic) should be signed by the user's Koblitz private key.
msg := constructMsg(t, uint32(e.Chain.GetConfig().Magic), tx)
// The users have to sign the hash of the message by their Koblitz key. Collect m signatures from first m keys.
// Signatures must be sorted by public key.
sigs := make([][]byte, m)
for i := range sigs {
j := i
if i > 0 {
j++ // Add some shift to ensure that verification script works correctly.
}
if i > 3 {
j++ // Add more shift for large number of public keys for the same purpose.
}
sigs[i] = pks[j].SignHash(hash.Keccak256(msg))
}
// Build invocation witness script for the signatures.
invBytes := buildKoblitzInvocationScript(t, sigs)
// Construct witness for signer #0 (the multisig account itself).
tx.Scripts = []transaction.Witness{
{
InvocationScript: invBytes,
VerificationScript: vrfBytes,
},
}
// Add transaction to the chain. No error is expected on new block addition. Note, that this line performs
// all those checks that are executed during transaction acceptance in the real network.
e.AddNewBlock(t, tx)
// Double-check: ensure funds have been transferred.
e.CheckGASBalance(t, to, big.NewInt(int64(amount)))
}
// The proposed multisig verification script.
// (261 bytes, 8389470 GAS including Invocation script execution for 3/4 multisig).
// The user has to sign the keccak256([4-bytes-network-magic-LE, txHash-bytes-BE]).
check(t, buildKoblitzMultisigVerificationScript, constructMessage)
}
// buildKoblitzMultisigVerificationScript builds witness verification script for m signatures out of n Koblitz public keys.
// Public keys must be sorted. Signatures (pushed by witness Invocation script) must be sorted by public keys.
// It checks m out of n multisignature of the following message:
//
// keccak256([4-bytes-network-magic-LE, txHash-bytes-BE])
func buildKoblitzMultisigVerificationScript(t *testing.T, m int, pubs keys.PublicKeys) []byte {
if len(pubs) == 0 {
t.Fatalf("empty pubs list")
}
if m > len(pubs) {
t.Fatalf("m must be not greater than the number of public keys")
}
n := len(pubs) // public keys must be sorted.
cryptoLibH := state.CreateNativeContractHash(nativenames.CryptoLib)
// In fact, the following algorithm is implemented via NeoVM instructions:
//
// func Check(sigs []interop.Signature) bool {
// if m != len(sigs) {
// return false
// }
// var pubs []interop.PublicKey = []interop.PublicKey{...}
// msg := append(convert.ToBytes(runtime.GetNetwork()), runtime.GetScriptContainer().Hash...)
// var sigCnt = 0
// var pubCnt = 0
// for ; sigCnt < m && pubCnt < n; { // sigs must be sorted by pub
// sigCnt += crypto.VerifyWithECDsa(msg, pubs[pubCnt], sigs[sigCnt], crypto.Secp256k1Keccak256)
// pubCnt++
// }
// return sigCnt == m
// }
vrf := io.NewBufBinWriter()
// Initialize slots for local variables. Locals slot scheme:
// LOC0 -> sigs
// LOC1 -> pubs
// LOC2 -> msg (ByteString)
// LOC3 -> sigCnt (Integer)
// LOC4 -> pubCnt (Integer)
emit.InitSlot(vrf.BinWriter, 5, 0)
// Check the number of signatures is m. Return false if not.
emit.Opcodes(vrf.BinWriter, opcode.DEPTH) // Push the number of signatures onto stack.
emit.Int(vrf.BinWriter, int64(m))
emit.Instruction(vrf.BinWriter, opcode.JMPEQ, []byte{0}) // here and below short jumps are sufficient.
sigsLenCheckEndOffset := vrf.Len() // offset of the signatures count check.
emit.Opcodes(vrf.BinWriter, opcode.CLEAR, opcode.PUSHF, opcode.RET) // return if length of the signatures not equal to m.
// Start the check.
checkStartOffset := vrf.Len()
// Pack signatures and store at LOC0.
emit.Int(vrf.BinWriter, int64(m))
emit.Opcodes(vrf.BinWriter, opcode.PACK, opcode.STLOC0)
// Pack public keys and store at LOC1.
for _, pub := range pubs {
emit.Bytes(vrf.BinWriter, pub.Bytes())
}
emit.Int(vrf.BinWriter, int64(len(pubs)))
emit.Opcodes(vrf.BinWriter, opcode.PACK, opcode.STLOC1)
// Get message and store it at LOC2.
// msg = [4-network-magic-bytes-LE, tx-hash-BE]
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetNetwork) // push network magic (Integer stackitem), can have 0-5 bytes length serialized.
// Convert network magic to 4-bytes-length LE byte array representation.
emit.Int(vrf.BinWriter, 0x100000000)
emit.Opcodes(vrf.BinWriter, opcode.ADD, // some new number that is 5 bytes at least when serialized, but first 4 bytes are intact network value (LE).
opcode.PUSH4, opcode.LEFT) // cut the first 4 bytes out of a number that is at least 5 bytes long, the result is 4-bytes-length LE network representation.
// Retrieve executing transaction hash.
emit.Syscall(vrf.BinWriter, interopnames.SystemRuntimeGetScriptContainer) // push the script container (executing transaction, actually).
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.PICKITEM) // pick 0-th transaction item (the transaction hash).
// Concatenate network magic and transaction hash.
emit.Opcodes(vrf.BinWriter, opcode.CAT) // this instruction will convert network magic to bytes using BigInteger rules of conversion.
emit.Opcodes(vrf.BinWriter, opcode.STLOC2) // store msg as a local variable #2.
// Initialize local variables: sigCnt, pubCnt.
emit.Opcodes(vrf.BinWriter, opcode.PUSH0, opcode.STLOC3, // initialize sigCnt.
opcode.PUSH0, opcode.STLOC4) // initialize pubCnt.
// Loop condition check.
loopStartOffset := vrf.Len()
emit.Opcodes(vrf.BinWriter, opcode.LDLOC3) // load sigCnt.
emit.Int(vrf.BinWriter, int64(m)) // push m.
emit.Opcodes(vrf.BinWriter, opcode.GE, // sigCnt >= m
opcode.LDLOC4) // load pubCnt
emit.Int(vrf.BinWriter, int64(n)) // push n.
emit.Opcodes(vrf.BinWriter, opcode.GE, // pubCnt >= n
opcode.OR) // sigCnt >= m || pubCnt >= n
emit.Instruction(vrf.BinWriter, opcode.JMPIF, []byte{0}) // jump to the end of the script if (sigCnt >= m || pubCnt >= n).
loopConditionOffset := vrf.Len()
// Loop start. Prepare arguments and call CryptoLib's verifyWithECDsa.
emit.Int(vrf.BinWriter, int64(native.Secp256k1Keccak256)) // push Koblitz curve identifier.
emit.Opcodes(vrf.BinWriter, opcode.LDLOC0, // load signatures.
opcode.LDLOC3, // load sigCnt.
opcode.PICKITEM, // pick signature at index sigCnt.
opcode.LDLOC1, // load pubs.
opcode.LDLOC4, // load pubCnt.
opcode.PICKITEM, // pick pub at index pubCnt.
opcode.LDLOC2, // load msg.
opcode.PUSH4, opcode.PACK) // pack 4 arguments for 'verifyWithECDsa' call.
emit.AppCallNoArgs(vrf.BinWriter, cryptoLibH, "verifyWithECDsa", callflag.All) // emit the call to 'verifyWithECDsa' itself.
// Update loop variables.
emit.Opcodes(vrf.BinWriter, opcode.LDLOC3, opcode.ADD, opcode.STLOC3, // increment sigCnt if signature is valid.
opcode.LDLOC4, opcode.INC, opcode.STLOC4) // increment pubCnt.
// End of the loop.
emit.Instruction(vrf.BinWriter, opcode.JMP, []byte{0}) // jump to the start of cycle.
loopEndOffset := vrf.Len()
// Return condition: the number of valid signatures should be equal to m.
progRetOffset := vrf.Len()
emit.Opcodes(vrf.BinWriter, opcode.LDLOC3) // load sigCnt.
emit.Int(vrf.BinWriter, int64(m)) // push m.
emit.Opcodes(vrf.BinWriter, opcode.NUMEQUAL) // push m == sigCnt.
require.NoError(t, vrf.Err)
script := vrf.Bytes()
// Set JMP* instructions offsets. "-1" is for short JMP parameter offset. JMP parameters
// are relative offsets.
script[sigsLenCheckEndOffset-1] = byte(checkStartOffset - sigsLenCheckEndOffset + 2)
script[loopEndOffset-1] = byte(loopStartOffset - loopEndOffset + 2)
script[loopConditionOffset-1] = byte(progRetOffset - loopConditionOffset + 2)
return script
// Here's an example of the resulting single witness invocation script (261 bytes length, the length may vary depending on m/n):
// NEO-GO-VM > loadbase64 VwUAQxMoBUkJQBPAcAwhAnDdr99Ja4K3I81KURO2xs8b+dYYVIaMhbDFTYO4FCnKDCECuBwcms5bdqbWeBZ1cnMAJ8z/uUMcxnIK0CxTyxNdYqAMIQLQHl4aPx8PZOgu4EQUh0qCPaCfaZZPLNNS9ZVPcmuXpwwhA+YKTuJo6wB/u/CQdzJczfQQaMk6LHfMlSZMdBD2qCV1FMBxQcX7oOADAAAAAAEAAACeFI1BLVEIMBDOi3IQcxB0axO4bBS4kiRCABhoa85pbM5qFMAfDA92ZXJpZnlXaXRoRUNEc2EMFBv1dasRiWiEE2EKNaEohs3gtmxyQWJ9W1JrnnNsnHQiuWsTsw==
// READY: loaded 262 instructions
// NEO-GO-VM 0 > ops
// INDEX OPCODE PARAMETER
// 0 INITSLOT 5 local, 0 arg <<
// 3 DEPTH
// 4 PUSH3
// 5 JMPEQ 10 (5/05)
// 7 CLEAR
// 8 PUSHF
// 9 RET
// 10 PUSH3
// 11 PACK
// 12 STLOC0
// 13 PUSHDATA1 0270ddafdf496b82b723cd4a5113b6c6cf1bf9d61854868c85b0c54d83b81429ca
// 48 PUSHDATA1 02b81c1c9ace5b76a6d678167572730027ccffb9431cc6720ad02c53cb135d62a0
// 83 PUSHDATA1 02d01e5e1a3f1f0f64e82ee04414874a823da09f69964f2cd352f5954f726b97a7
// 118 PUSHDATA1 03e60a4ee268eb007fbbf09077325ccdf41068c93a2c77cc95264c7410f6a82575
// 153 PUSH4
// 154 PACK
// 155 STLOC1
// 156 SYSCALL System.Runtime.GetNetwork (c5fba0e0)
// 161 PUSHINT64 4294967296 (0000000001000000)
// 170 ADD
// 171 PUSH4
// 172 LEFT
// 173 SYSCALL System.Runtime.GetScriptContainer (2d510830)
// 178 PUSH0
// 179 PICKITEM
// 180 CAT
// 181 STLOC2
// 182 PUSH0
// 183 STLOC3
// 184 PUSH0
// 185 STLOC4
// 186 LDLOC3
// 187 PUSH3
// 188 GE
// 189 LDLOC4
// 190 PUSH4
// 191 GE
// 192 OR
// 193 JMPIF 259 (66/42)
// 195 PUSHINT8 24 (18)
// 197 LDLOC0
// 198 LDLOC3
// 199 PICKITEM
// 200 LDLOC1
// 201 LDLOC4
// 202 PICKITEM
// 203 LDLOC2
// 204 PUSH4
// 205 PACK
// 206 PUSH15
// 207 PUSHDATA1 766572696679576974684543447361 ("verifyWithECDsa")
// 224 PUSHDATA1 1bf575ab1189688413610a35a12886cde0b66c72 ("NNToUmdQBe5n8o53BTzjTFAnSEcpouyy3B", "0x726cb6e0cd8628a1350a611384688911ab75f51b")
// 246 SYSCALL System.Contract.Call (627d5b52)
// 251 LDLOC3
// 252 ADD
// 253 STLOC3
// 254 LDLOC4
// 255 INC
// 256 STLOC4
// 257 JMP 186 (-71/b9)
// 259 LDLOC3
// 260 PUSH3
// 261 NUMEQUAL
}

View file

@ -29,6 +29,11 @@ func Opcodes(w *io.BinWriter, ops ...opcode.Opcode) {
} }
} }
// InitSlot emits INITSLOT instruction with the specified size of locals/args slots.
func InitSlot(w *io.BinWriter, locals, args uint8) {
Instruction(w, opcode.INITSLOT, []byte{locals, args})
}
// Bool emits a bool type to the given buffer. // Bool emits a bool type to the given buffer.
func Bool(w *io.BinWriter, ok bool) { func Bool(w *io.BinWriter, ok bool) {
var opVal = opcode.PUSHT var opVal = opcode.PUSHT