Now we have VerifyTx() and PoolTx() APIs that either verify transaction in
isolation or verify it against the mempool (either the primary one or the one
given) and then add it there. There is no possibility to check against the
mempool, but not add a transaction to it, but I doubt we really need it.
It allows to remove some duplication between old PoolTx and verifyTx where
they both tried to check transaction against mempool (verifying first and then
adding it). It also saves us utility token balance check because it's done by
the mempool anyway and we no longer need to do that explicitly in verifyTx.
It makes AddBlock() and verifyBlock() transaction's checks more correct,
because previously they could miss that even though sender S has enough
balance to pay for A, B or C, he can't pay for all of them.
Caveats:
* consensus is running concurrently to other processes, so things could
change while verifyBlock() is iterating over transactions, this will be
mitigated in subsequent commits
Improves TPS value for single node by at least 11%.
Fixes#667, fixes#668.
It's cached in dbft for a view anyway, so there is no big difference here
from security POV. Lets us squeeze yet another 4% TPS improvement.
Make the system fail if unable to decrypt the key along the way, which is a
part of #1312.
GetValidators without parameter is called upon DBFT initialization and it
should receive validators for the next block (that will create it),
parameterized GetValidators is used for NextConsensus calculation where we
need a list for the current state of the chain.
In order to avoid dependency cycle at the next commits:
imports github.com/nspcc-dev/neo-go/pkg/config
imports github.com/nspcc-dev/neo-go/pkg/wallet
imports github.com/nspcc-dev/neo-go/pkg/vm
imports github.com/nspcc-dev/neo-go/pkg/smartcontract/nef
imports github.com/nspcc-dev/neo-go/pkg/config
When CN is not up to date with the network is synchonizes blocks first and
only then starts consensus process. But while synchronizing it receives
consensus payloads and tries to process them even though messages reader
routine is not started yet. This leads to lots of goroutines waiting to send
their messages:
Jun 25 23:55:53 nodoka neo-go[32733]: goroutine 1639919 [chan send, 4 minutes]:
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/consensus.(*service).OnPayload(0xc0000ecb40, 0xc005bd7680)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/consensus/consensus.go:329 +0x31b
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleConsensusCmd(...)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:687
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleMessage(0xc0000ba160, 0x1053260, 0xc00507d170, 0xc005bdd560, 0x0, 0x0)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:806 +0xd58
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*TCPPeer).handleConn(0xc00507d170)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_peer.go:160 +0x294
Jun 25 23:55:53 nodoka neo-go[32733]: created by github.com/nspcc-dev/neo-go/pkg/network.(*TCPTransport).Dial
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_transport.go:38 +0x1ad
Jun 25 23:55:53 nodoka neo-go[32733]: goroutine 1639181 [chan send, 10 minutes]:
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/consensus.(*service).OnPayload(0xc0000ecb40, 0xc013bb6600)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/consensus/consensus.go:329 +0x31b
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleConsensusCmd(...)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:687
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleMessage(0xc0000ba160, 0x1053260, 0xc01361ee10, 0xc01342c780, 0x0, 0x0)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:806 +0xd58
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*TCPPeer).handleConn(0xc01361ee10)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_peer.go:160 +0x294
Jun 25 23:55:53 nodoka neo-go[32733]: created by github.com/nspcc-dev/neo-go/pkg/network.(*TCPTransport).Dial
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_transport.go:38 +0x1ad
Jun 25 23:55:53 nodoka neo-go[32733]: goroutine 39454 [chan send, 32 minutes]:
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/consensus.(*service).OnPayload(0xc0000ecb40, 0xc014fea680)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/consensus/consensus.go:329 +0x31b
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleConsensusCmd(...)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:687
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleMessage(0xc0000ba160, 0x1053260, 0xc0140b2ea0, 0xc014fe0ed0, 0x0, 0x0)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/server.go:806 +0xd58
Jun 25 23:55:53 nodoka neo-go[32733]: github.com/nspcc-dev/neo-go/pkg/network.(*TCPPeer).handleConn(0xc0140b2ea0)
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_peer.go:160 +0x294
Jun 25 23:55:53 nodoka neo-go[32733]: created by github.com/nspcc-dev/neo-go/pkg/network.(*TCPTransport).Dial
Jun 25 23:55:53 nodoka neo-go[32733]: #011/go/src/github.com/nspcc-dev/neo-go/pkg/network/tcp_transport.go:38 +0x1ad
Luckily it doesn't break synchronization completely as eventually connection
timers fire, the node breaks all connections, create new ones and these new
ones request blocks successfully until another consensus payload stalls them
too. In the end the node reaches synchronization, message processing loop
starts and releases all of these waiting goroutines, but it's better for us to
avoid this happening at all.
This also makes double-starting a no-op which is a nice property.
part of #904
1. We now have MaxTransactionsPerBlock set in native Policy contract,
so this value should be used in (dbft).GetVerified method instead
of passing it as an argument.
2. Removed (dbft).WithTxPerBlock.
2. DBFT API has changed, so update it's version.
3. Removed MaxTransactionsPerBlock from node configuration, as we
have it set in native Policy contract.
We make it explicit in the appropriate Block/Transaction structures, not via a
singleton as C# node does. I think this approach has a bit more potential and
allows better packages reuse for different purposes.
Get new blocks directly from the Blockchain. It may lead to some duplications
(as we'll also receive our own blocks), but at the same time it's more
correct, because technically we can also get blocks via other means besides
network server like RPC (submitblock call). And it simplifies network server
at the same time.
1. Closes#840: added Nonce field to transaction.Transaction and
removed Nonce field from transaction.MinerTx
2. Added following methods to different tx types:
- NewMinerTx()
- NewMinerTxWithNonce(...)
- NewEnrollmentTx(...)
- NewIssueTx()
- NewPublishTx(...)
- NewRegisterTx(...)
- NewStateTx(...)
in order to avoid code duplication when new transaction is created.
3. Commented out test cases where binary transaction/block are used.
These test cases marked with `TODO NEO3.0: Update binary` and need to be
updated.
4. Updated other tests
5. Added constant Nonce to GoveringTockenTx, UtilityTokenTx and genesis
block to avoid data variability. Also marked with TODO.
Implement mempool and consensus block creation policies, almost the same as
SimplePolicy plugin for C# node provides with two caveats:
* HighPriorityTxType is not configured and hardcoded to ClaimType
* BlockedAccounts are not supported
Other than that it allows us to run successfuly as testnet CN, previously our
proposals were rejected because we were proposing blocks with oversized
transactions (that are rejected by PoolTx() now).
Mainnet and testnet configuration files are updated accordingly, but privnet
is left as is with no limits.
Configuration is currently attached to the Blockchain and so is the code that
does policying, it may be moved somewhere in the future, but it works for
now.
We can only add one block of the given height and we have two competing
goroutines to do that --- consensus and block queue. Whomever adds the block
first shouldn't trigger an error in another one.
Fix block relaying for blocks added via the block queue also, previously one
consensus-generated blocks were broadcasted.
The chain may already be more current than our dBFT state (like when the node
has commited something at view 0, but all the other nodes changed view and
accepted something at view 1), so in this case we should reinit dBFT on new
height.
While decoding payload, local implementations of Recovery*
messages were used, but when creating RecoveryMessage inside dBFT
library default NewRecoveryMessage was invoked. This lead to parsing
errors.