package network import ( "context" "crypto/rand" "encoding/binary" "errors" "fmt" "math/big" mrand "math/rand" "net" "runtime" "sort" "strconv" "sync" "sync/atomic" "time" "github.com/nspcc-dev/neo-go/pkg/config" "github.com/nspcc-dev/neo-go/pkg/core/block" "github.com/nspcc-dev/neo-go/pkg/core/mempool" "github.com/nspcc-dev/neo-go/pkg/core/mempoolevent" "github.com/nspcc-dev/neo-go/pkg/core/mpt" "github.com/nspcc-dev/neo-go/pkg/core/transaction" "github.com/nspcc-dev/neo-go/pkg/encoding/address" "github.com/nspcc-dev/neo-go/pkg/io" "github.com/nspcc-dev/neo-go/pkg/network/bqueue" "github.com/nspcc-dev/neo-go/pkg/network/capability" "github.com/nspcc-dev/neo-go/pkg/network/extpool" "github.com/nspcc-dev/neo-go/pkg/network/payload" "github.com/nspcc-dev/neo-go/pkg/util" "go.uber.org/zap" ) const ( // peer numbers are arbitrary at the moment. defaultMinPeers = 5 defaultAttemptConnPeers = 20 defaultMaxPeers = 100 defaultExtensiblePoolSize = 20 defaultBroadcastFactor = 0 maxBlockBatch = 200 peerTimeFactor = 1000 ) var ( errAlreadyConnected = errors.New("already connected") errIdenticalID = errors.New("identical node id") errInvalidNetwork = errors.New("invalid network") errMaxPeers = errors.New("max peers reached") errServerShutdown = errors.New("server shutdown") errInvalidInvType = errors.New("invalid inventory type") ) type ( // Ledger is everything Server needs from the blockchain. Ledger interface { extpool.Ledger mempool.Feer bqueue.Blockqueuer GetBlock(hash util.Uint256) (*block.Block, error) GetConfig() config.Blockchain GetHeader(hash util.Uint256) (*block.Header, error) GetHeaderHash(uint32) util.Uint256 GetMaxVerificationGAS() int64 GetMemPool() *mempool.Pool GetNotaryBalance(acc util.Uint160) *big.Int GetNotaryContractScriptHash() util.Uint160 GetNotaryDepositExpiration(acc util.Uint160) uint32 GetTransaction(util.Uint256) (*transaction.Transaction, uint32, error) HasBlock(util.Uint256) bool HeaderHeight() uint32 P2PSigExtensionsEnabled() bool PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error PoolTxWithData(t *transaction.Transaction, data any, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(t *transaction.Transaction, data any) error) error RegisterPostBlock(f func(func(*transaction.Transaction, *mempool.Pool, bool) bool, *mempool.Pool, *block.Block)) SubscribeForBlocks(ch chan *block.Block) UnsubscribeFromBlocks(ch chan *block.Block) } // Service is a service abstraction (oracle, state root, consensus, etc). Service interface { Name() string Start() Shutdown() } // Server represents the local Node in the network. Its transport could // be of any kind. Server struct { // ServerConfig holds the Server configuration. ServerConfig // id also known as the nonce of the server. id uint32 // A copy of the Ledger's config. config config.ProtocolConfiguration transports []Transporter discovery Discoverer chain Ledger bQueue *bqueue.Queue bSyncQueue *bqueue.Queue mempool *mempool.Pool notaryRequestPool *mempool.Pool extensiblePool *extpool.Pool notaryFeer NotaryFeer serviceLock sync.RWMutex services map[string]Service extensHandlers map[string]func(*payload.Extensible) error txCallback func(*transaction.Transaction) txCbList atomic.Value txInLock sync.RWMutex txin chan *transaction.Transaction txInMap map[util.Uint256]struct{} lock sync.RWMutex peers map[Peer]bool // lastRequestedBlock contains a height of the last requested block. lastRequestedBlock atomic.Uint32 // lastRequestedHeader contains a height of the last requested header. lastRequestedHeader atomic.Uint32 register chan Peer unregister chan peerDrop handshake chan Peer quit chan struct{} relayFin chan struct{} transactions chan *transaction.Transaction syncReached atomic.Bool stateSync StateSync log *zap.Logger // started used to Start and Shutdown server only once. started atomic.Bool } peerDrop struct { peer Peer reason error } ) func randomID() uint32 { buf := make([]byte, 4) _, _ = rand.Read(buf) return binary.BigEndian.Uint32(buf) } // NewServer returns a new Server, initialized with the given configuration. func NewServer(config ServerConfig, chain Ledger, stSync StateSync, log *zap.Logger) (*Server, error) { return newServerFromConstructors(config, chain, stSync, log, func(s *Server, addr string) Transporter { return NewTCPTransport(s, addr, s.log) }, newDefaultDiscovery) } func newServerFromConstructors(config ServerConfig, chain Ledger, stSync StateSync, log *zap.Logger, newTransport func(*Server, string) Transporter, newDiscovery func([]string, time.Duration, Transporter) Discoverer, ) (*Server, error) { if log == nil { return nil, errors.New("logger is a required parameter") } if config.ExtensiblePoolSize <= 0 { config.ExtensiblePoolSize = defaultExtensiblePoolSize log.Info("ExtensiblePoolSize is not set or wrong, using default value", zap.Int("ExtensiblePoolSize", config.ExtensiblePoolSize)) } s := &Server{ ServerConfig: config, chain: chain, id: randomID(), config: chain.GetConfig().ProtocolConfiguration, quit: make(chan struct{}), relayFin: make(chan struct{}), register: make(chan Peer), unregister: make(chan peerDrop), handshake: make(chan Peer), txInMap: make(map[util.Uint256]struct{}), peers: make(map[Peer]bool), mempool: chain.GetMemPool(), extensiblePool: extpool.New(chain, config.ExtensiblePoolSize), log: log, txin: make(chan *transaction.Transaction, 64), transactions: make(chan *transaction.Transaction, 64), services: make(map[string]Service), extensHandlers: make(map[string]func(*payload.Extensible) error), stateSync: stSync, } if chain.P2PSigExtensionsEnabled() { s.notaryFeer = NewNotaryFeer(chain) s.notaryRequestPool = mempool.New(s.config.P2PNotaryRequestPayloadPoolSize, 1, true, updateNotarypoolMetrics) chain.RegisterPostBlock(func(isRelevant func(*transaction.Transaction, *mempool.Pool, bool) bool, txpool *mempool.Pool, _ *block.Block) { s.notaryRequestPool.RemoveStale(func(t *transaction.Transaction) bool { return isRelevant(t, txpool, true) }, s.notaryFeer) }) } s.bQueue = bqueue.New(chain, log, func(b *block.Block) { s.tryStartServices() }, updateBlockQueueLenMetric) s.bSyncQueue = bqueue.New(s.stateSync, log, nil, updateBlockQueueLenMetric) if s.MinPeers < 0 { s.log.Info("bad MinPeers configured, using the default value", zap.Int("configured", s.MinPeers), zap.Int("actual", defaultMinPeers)) s.MinPeers = defaultMinPeers } if s.MaxPeers <= 0 { s.log.Info("bad MaxPeers configured, using the default value", zap.Int("configured", s.MaxPeers), zap.Int("actual", defaultMaxPeers)) s.MaxPeers = defaultMaxPeers } if s.AttemptConnPeers <= 0 { s.log.Info("bad AttemptConnPeers configured, using the default value", zap.Int("configured", s.AttemptConnPeers), zap.Int("actual", defaultAttemptConnPeers)) s.AttemptConnPeers = defaultAttemptConnPeers } if s.BroadcastFactor < 0 || s.BroadcastFactor > 100 { s.log.Info("bad BroadcastFactor configured, using the default value", zap.Int("configured", s.BroadcastFactor), zap.Int("actual", defaultBroadcastFactor)) s.BroadcastFactor = defaultBroadcastFactor } if len(s.ServerConfig.Addresses) == 0 { return nil, errors.New("no bind addresses configured") } transports := make([]Transporter, len(s.ServerConfig.Addresses)) for i, addr := range s.ServerConfig.Addresses { transports[i] = newTransport(s, addr.Address) } s.transports = transports s.discovery = newDiscovery( s.Seeds, s.DialTimeout, // Here we need to pick up a single transporter, it will be used to // dial, and it doesn't matter which one. s.transports[0], ) return s, nil } // ID returns the servers ID. func (s *Server) ID() uint32 { return s.id } // Start will start the server and its underlying transport. Calling it twice // is a no-op. Caller should wait for Start to finish for normal server operation. func (s *Server) Start() { if !s.started.CompareAndSwap(false, true) { s.log.Info("node server already started") return } s.log.Info("node started", zap.Uint32("blockHeight", s.chain.BlockHeight()), zap.Uint32("headerHeight", s.chain.HeaderHeight())) s.tryStartServices() s.initStaleMemPools() var txThreads = optimalNumOfThreads() for i := 0; i < txThreads; i++ { go s.txHandlerLoop() } go s.broadcastTxLoop() go s.relayBlocksLoop() go s.bQueue.Run() go s.bSyncQueue.Run() for _, tr := range s.transports { go tr.Accept() } setServerAndNodeVersions(s.UserAgent, strconv.FormatUint(uint64(s.id), 10)) setNeoGoVersion(config.Version) setSeverID(strconv.FormatUint(uint64(s.id), 10)) go s.run() } // Shutdown disconnects all peers and stops listening. Calling it twice is a no-op, // once stopped the same instance of the Server can't be started again by calling Start. func (s *Server) Shutdown() { if !s.started.CompareAndSwap(true, false) { return } s.log.Info("shutting down server", zap.Int("peers", s.PeerCount())) for _, tr := range s.transports { tr.Close() } for _, p := range s.getPeers(nil) { p.Disconnect(errServerShutdown) } s.bQueue.Discard() s.bSyncQueue.Discard() s.serviceLock.RLock() for _, svc := range s.services { svc.Shutdown() } s.serviceLock.RUnlock() if s.chain.P2PSigExtensionsEnabled() { s.notaryRequestPool.StopSubscriptions() } close(s.quit) <-s.relayFin _ = s.log.Sync() } // AddService allows to add a service to be started/stopped by Server. func (s *Server) AddService(svc Service) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.addService(svc) } // addService is an unlocked version of AddService. func (s *Server) addService(svc Service) { s.services[svc.Name()] = svc } // GetBlockQueue returns the block queue instance managed by Server. func (s *Server) GetBlockQueue() *bqueue.Queue { return s.bQueue } // AddExtensibleService register a service that handles an extensible payload of some kind. func (s *Server) AddExtensibleService(svc Service, category string, handler func(*payload.Extensible) error) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.addExtensibleService(svc, category, handler) } // addExtensibleService is an unlocked version of AddExtensibleService. func (s *Server) addExtensibleService(svc Service, category string, handler func(*payload.Extensible) error) { s.extensHandlers[category] = handler s.addService(svc) } // AddConsensusService registers consensus service that handles transactions and dBFT extensible payloads. func (s *Server) AddConsensusService(svc Service, handler func(*payload.Extensible) error, txCallback func(*transaction.Transaction)) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.txCallback = txCallback s.addExtensibleService(svc, payload.ConsensusCategory, handler) } // DelService drops a service from the list, use it when the service is stopped // outside of the Server. func (s *Server) DelService(svc Service) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.delService(svc) } // delService is an unlocked version of DelService. func (s *Server) delService(svc Service) { delete(s.services, svc.Name()) } // DelExtensibleService drops a service that handler extensible payloads from the // list, use it when the service is stopped outside of the Server. func (s *Server) DelExtensibleService(svc Service, category string) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.delExtensibleService(svc, category) } // delExtensibleService is an unlocked version of DelExtensibleService. func (s *Server) delExtensibleService(svc Service, category string) { delete(s.extensHandlers, category) s.delService(svc) } // DelConsensusService unregisters consensus service that handles transactions and dBFT extensible payloads. func (s *Server) DelConsensusService(svc Service) { s.serviceLock.Lock() defer s.serviceLock.Unlock() s.txCallback = nil s.delExtensibleService(svc, payload.ConsensusCategory) } // GetNotaryPool allows to retrieve notary pool, if it's configured. func (s *Server) GetNotaryPool() *mempool.Pool { return s.notaryRequestPool } // UnconnectedPeers returns a list of peers that are in the discovery peer list // but are not connected to the server. func (s *Server) UnconnectedPeers() []string { return s.discovery.UnconnectedPeers() } // BadPeers returns a list of peers that are flagged as "bad" peers. func (s *Server) BadPeers() []string { return s.discovery.BadPeers() } // ConnectedPeers returns a list of currently connected peers. func (s *Server) ConnectedPeers() []string { s.lock.RLock() defer s.lock.RUnlock() peers := make([]string, 0, len(s.peers)) for k := range s.peers { peers = append(peers, k.PeerAddr().String()) } return peers } // run is a goroutine that starts another goroutine to manage protocol specifics // while itself dealing with peers management (handling connects/disconnects). func (s *Server) run() { var ( peerCheckTime = s.TimePerBlock * peerTimeFactor addrCheckTimeout bool addrTimer = time.NewTimer(peerCheckTime) peerTimer = time.NewTimer(s.ProtoTickInterval) ) defer addrTimer.Stop() defer peerTimer.Stop() go s.runProto() for loopCnt := 0; ; loopCnt++ { var ( netSize = s.discovery.NetworkSize() // "Optimal" number of peers. optimalN = s.discovery.GetFanOut() * 2 // Real number of peers. peerN = s.HandshakedPeersCount() // Timeout value for the next peerTimer, long one by default. peerT = peerCheckTime ) if peerN < s.MinPeers { // Starting up or going below the minimum -> quickly get many new peers. s.discovery.RequestRemote(s.AttemptConnPeers) // Check/retry new connections soon. peerT = s.ProtoTickInterval } else if s.MinPeers > 0 && loopCnt%s.MinPeers == 0 && optimalN > peerN && optimalN < s.MaxPeers && optimalN < netSize { // Having some number of peers, but probably can get some more, the network is big. // It also allows to start picking up new peers proactively, before we suddenly have optimalN-peerN { connN = optimalN - peerN } s.discovery.RequestRemote(connN) } if addrCheckTimeout || s.discovery.PoolCount() < s.AttemptConnPeers { s.broadcastHPMessage(NewMessage(CMDGetAddr, payload.NewNullPayload())) addrCheckTimeout = false } select { case <-s.quit: return case <-addrTimer.C: addrCheckTimeout = true addrTimer.Reset(peerCheckTime) case <-peerTimer.C: peerTimer.Reset(peerT) case p := <-s.register: s.lock.Lock() s.peers[p] = true s.lock.Unlock() peerCount := s.PeerCount() s.log.Info("new peer connected", zap.Stringer("addr", p.RemoteAddr()), zap.Int("peerCount", peerCount)) if peerCount > s.MaxPeers { s.lock.RLock() // Pick a random peer and drop connection to it. for peer := range s.peers { // It will send us unregister signal. go peer.Disconnect(errMaxPeers) break } s.lock.RUnlock() } updatePeersConnectedMetric(s.PeerCount()) case drop := <-s.unregister: s.lock.Lock() if s.peers[drop.peer] { delete(s.peers, drop.peer) s.lock.Unlock() s.log.Warn("peer disconnected", zap.Stringer("addr", drop.peer.RemoteAddr()), zap.Error(drop.reason), zap.Int("peerCount", s.PeerCount())) if errors.Is(drop.reason, errIdenticalID) { s.discovery.RegisterSelf(drop.peer) } else { s.discovery.UnregisterConnected(drop.peer, errors.Is(drop.reason, errAlreadyConnected)) } updatePeersConnectedMetric(s.PeerCount()) } else { // else the peer is already gone, which can happen // because we have two goroutines sending signals here s.lock.Unlock() } case p := <-s.handshake: ver := p.Version() s.log.Info("started protocol", zap.Stringer("addr", p.RemoteAddr()), zap.ByteString("userAgent", ver.UserAgent), zap.Uint32("startHeight", p.LastBlockIndex()), zap.Uint32("id", ver.Nonce)) s.discovery.RegisterGood(p) s.tryInitStateSync() s.tryStartServices() } } } // runProto is a goroutine that manages server-wide protocol events. func (s *Server) runProto() { pingTimer := time.NewTimer(s.PingInterval) for { prevHeight := s.chain.BlockHeight() select { case <-s.quit: return case <-pingTimer.C: if s.chain.BlockHeight() == prevHeight { s.broadcastMessage(NewMessage(CMDPing, payload.NewPing(s.chain.BlockHeight(), s.id))) } pingTimer.Reset(s.PingInterval) } } } func (s *Server) tryStartServices() { if s.syncReached.Load() { return } if s.IsInSync() && s.syncReached.CompareAndSwap(false, true) { s.log.Info("node reached synchronized state, starting services") if s.chain.P2PSigExtensionsEnabled() { s.notaryRequestPool.RunSubscriptions() // WSClient is also a subscriber. } s.serviceLock.RLock() for _, svc := range s.services { svc.Start() } s.serviceLock.RUnlock() } } // SubscribeForNotaryRequests adds the given channel to a notary request event // broadcasting, so when a new P2PNotaryRequest is received or an existing // P2PNotaryRequest is removed from the pool you'll receive it via this channel. // Make sure it's read from regularly as not reading these events might affect // other Server functions. Make sure you're not changing the received mempool // events, as it may affect the functionality of Blockchain and other subscribers. // Ensure that P2PSigExtensions are enabled before calling this method. func (s *Server) SubscribeForNotaryRequests(ch chan<- mempoolevent.Event) { if !s.chain.P2PSigExtensionsEnabled() { panic("P2PSigExtensions are disabled") } s.notaryRequestPool.SubscribeForTransactions(ch) } // UnsubscribeFromNotaryRequests unsubscribes the given channel from notary request // notifications, you can close it afterwards. Passing non-subscribed channel // is a no-op. // Ensure that P2PSigExtensions are enabled before calling this method. func (s *Server) UnsubscribeFromNotaryRequests(ch chan<- mempoolevent.Event) { if !s.chain.P2PSigExtensionsEnabled() { panic("P2PSigExtensions are disabled") } s.notaryRequestPool.UnsubscribeFromTransactions(ch) } // getPeers returns the current list of the peers connected to the server filtered by // isOK function if it's given. func (s *Server) getPeers(isOK func(Peer) bool) []Peer { s.lock.RLock() defer s.lock.RUnlock() peers := make([]Peer, 0, len(s.peers)) for k := range s.peers { if isOK != nil && !isOK(k) { continue } peers = append(peers, k) } return peers } // PeerCount returns the number of the currently connected peers. func (s *Server) PeerCount() int { s.lock.RLock() defer s.lock.RUnlock() return len(s.peers) } // HandshakedPeersCount returns the number of the connected peers // which have already performed handshake. func (s *Server) HandshakedPeersCount() int { s.lock.RLock() defer s.lock.RUnlock() var count int for p := range s.peers { if p.Handshaked() { count++ } } return count } // getVersionMsg returns the current version message generated for the specified // connection. func (s *Server) getVersionMsg(localAddr net.Addr) (*Message, error) { port, err := s.Port(localAddr) if err != nil { return nil, fmt.Errorf("failed to fetch server port: %w", err) } capabilities := []capability.Capability{ { Type: capability.TCPServer, Data: &capability.Server{ Port: port, }, }, } if s.Relay { capabilities = append(capabilities, capability.Capability{ Type: capability.FullNode, Data: &capability.Node{ StartHeight: s.chain.BlockHeight(), }, }) } payload := payload.NewVersion( s.Net, s.id, s.UserAgent, capabilities, ) return NewMessage(CMDVersion, payload), nil } // IsInSync answers the question of whether the server is in sync with the // network or not (at least how the server itself sees it). The server operates // with the data that it has, the number of peers (that has to be more than // minimum number) and the height of these peers (our chain has to be not lower // than 2/3 of our peers have). Ideally, we would check for the highest of the // peers, but the problem is that they can lie to us and send whatever height // they want to. Once sync reached, IsInSync will always return `true`, even if // server is temporary out of sync after that. func (s *Server) IsInSync() bool { if s.syncReached.Load() { return true } var peersNumber int var notHigher int if s.stateSync.IsActive() { return false } if s.MinPeers == 0 { return true } ourLastBlock := s.chain.BlockHeight() s.lock.RLock() for p := range s.peers { if p.Handshaked() { peersNumber++ if ourLastBlock >= p.LastBlockIndex() { notHigher++ } } } s.lock.RUnlock() // Checking bQueue would also be nice, but it can be filled with garbage // easily at the moment. return peersNumber >= s.MinPeers && (3*notHigher > 2*peersNumber) // && s.bQueue.length() == 0 } // When a peer sends out its version, we reply with verack after validating // the version. func (s *Server) handleVersionCmd(p Peer, version *payload.Version) error { err := p.HandleVersion(version) if err != nil { return err } if s.id == version.Nonce { return errIdenticalID } // Make sure both the server and the peer are operating on // the same network. if s.Net != version.Magic { return errInvalidNetwork } peerAddr := p.PeerAddr().String() s.lock.RLock() for peer := range s.peers { if p == peer { continue } ver := peer.Version() // Already connected, drop this connection. if ver != nil && ver.Nonce == version.Nonce && peer.PeerAddr().String() == peerAddr { s.lock.RUnlock() return errAlreadyConnected } } s.lock.RUnlock() return p.SendVersionAck(NewMessage(CMDVerack, payload.NewNullPayload())) } // handleBlockCmd processes the block received from its peer. func (s *Server) handleBlockCmd(p Peer, block *block.Block) error { if s.stateSync.IsActive() { return s.bSyncQueue.PutBlock(block) } return s.bQueue.PutBlock(block) } // handlePing processes a ping request. func (s *Server) handlePing(p Peer, ping *payload.Ping) error { err := p.HandlePing(ping) if err != nil { return err } err = s.requestBlocksOrHeaders(p) if err != nil { return err } return p.EnqueueP2PMessage(NewMessage(CMDPong, payload.NewPing(s.chain.BlockHeight(), s.id))) } func (s *Server) requestBlocksOrHeaders(p Peer) error { if s.stateSync.NeedHeaders() { if s.chain.HeaderHeight() < p.LastBlockIndex() { return s.requestHeaders(p) } return nil } var ( bq bqueue.Blockqueuer = s.chain requestMPTNodes bool ) if s.stateSync.IsActive() { bq = s.stateSync requestMPTNodes = s.stateSync.NeedMPTNodes() } if bq.BlockHeight() >= p.LastBlockIndex() { return nil } err := s.requestBlocks(bq, p) if err != nil { return err } if requestMPTNodes { return s.requestMPTNodes(p, s.stateSync.GetUnknownMPTNodesBatch(payload.MaxMPTHashesCount)) } return nil } // requestHeaders sends a CMDGetHeaders message to the peer to sync up in headers. func (s *Server) requestHeaders(p Peer) error { pl := getRequestBlocksPayload(p, s.chain.HeaderHeight(), &s.lastRequestedHeader) return p.EnqueueP2PMessage(NewMessage(CMDGetHeaders, pl)) } // handlePing processes a pong request. func (s *Server) handlePong(p Peer, pong *payload.Ping) error { err := p.HandlePong(pong) if err != nil { return err } return s.requestBlocksOrHeaders(p) } // handleInvCmd processes the received inventory. func (s *Server) handleInvCmd(p Peer, inv *payload.Inventory) error { var reqHashes = inv.Hashes[:0] var typExists = map[payload.InventoryType]func(util.Uint256) bool{ payload.TXType: func(h util.Uint256) bool { s.txInLock.RLock() _, ok := s.txInMap[h] s.txInLock.RUnlock() return ok || s.mempool.ContainsKey(h) }, payload.BlockType: s.chain.HasBlock, payload.ExtensibleType: func(h util.Uint256) bool { cp := s.extensiblePool.Get(h) return cp != nil }, payload.P2PNotaryRequestType: func(h util.Uint256) bool { return s.notaryRequestPool.ContainsKey(h) }, } if exists := typExists[inv.Type]; exists != nil { for _, hash := range inv.Hashes { if !exists(hash) { reqHashes = append(reqHashes, hash) } } } if len(reqHashes) > 0 { msg := NewMessage(CMDGetData, payload.NewInventory(inv.Type, reqHashes)) if inv.Type == payload.ExtensibleType { return p.EnqueueHPMessage(msg) } return p.EnqueueP2PMessage(msg) } return nil } // handleMempoolCmd handles getmempool command. func (s *Server) handleMempoolCmd(p Peer) error { txs := s.mempool.GetVerifiedTransactions() hs := make([]util.Uint256, 0, payload.MaxHashesCount) for i := range txs { hs = append(hs, txs[i].Hash()) if len(hs) < payload.MaxHashesCount && i != len(txs)-1 { continue } msg := NewMessage(CMDInv, payload.NewInventory(payload.TXType, hs)) err := p.EnqueueP2PMessage(msg) if err != nil { return err } hs = hs[:0] } return nil } // handleInvCmd processes the received inventory. func (s *Server) handleGetDataCmd(p Peer, inv *payload.Inventory) error { var ( err error notFound []util.Uint256 reply = io.NewBufBinWriter() send = p.EnqueueP2PPacket ) if inv.Type == payload.ExtensibleType { send = p.EnqueueHPPacket } for _, hash := range inv.Hashes { var msg *Message switch inv.Type { case payload.TXType: tx, _, err := s.chain.GetTransaction(hash) if err == nil { msg = NewMessage(CMDTX, tx) } else { notFound = append(notFound, hash) } case payload.BlockType: b, err := s.chain.GetBlock(hash) if err == nil { msg = NewMessage(CMDBlock, b) } else { notFound = append(notFound, hash) } case payload.ExtensibleType: if cp := s.extensiblePool.Get(hash); cp != nil { msg = NewMessage(CMDExtensible, cp) } case payload.P2PNotaryRequestType: if nrp, ok := s.notaryRequestPool.TryGetData(hash); ok { // already have checked P2PSigExtEnabled msg = NewMessage(CMDP2PNotaryRequest, nrp.(*payload.P2PNotaryRequest)) } else { notFound = append(notFound, hash) } } if msg != nil { err = addMessageToPacket(reply, msg, send) if err != nil { return err } } } if len(notFound) != 0 { err = addMessageToPacket(reply, NewMessage(CMDNotFound, payload.NewInventory(inv.Type, notFound)), send) if err != nil { return err } } if reply.Len() == 0 { return nil } return send(reply.Bytes()) } // addMessageToPacket serializes given message into the given buffer and sends whole // batch if it exceeds MaxSize/2 memory limit (to prevent DoS). func addMessageToPacket(batch *io.BufBinWriter, msg *Message, send func([]byte) error) error { err := msg.Encode(batch.BinWriter) if err != nil { return err } if batch.Len() > payload.MaxSize/2 { err = send(batch.Bytes()) if err != nil { return err } batch.Reset() } return nil } // handleGetMPTDataCmd processes the received MPT inventory. func (s *Server) handleGetMPTDataCmd(p Peer, inv *payload.MPTInventory) error { if !s.config.P2PStateExchangeExtensions { return errors.New("GetMPTDataCMD was received, but P2PStateExchangeExtensions are disabled") } // Even if s.config.KeepOnlyLatestState enabled, we'll keep latest P1 and P2 MPT states. resp := payload.MPTData{} capLeft := payload.MaxSize - 8 // max(io.GetVarSize(len(resp.Nodes))) added := make(map[util.Uint256]struct{}) for _, h := range inv.Hashes { if capLeft <= 2 { // at least 1 byte for len(nodeBytes) and 1 byte for node type break } err := s.stateSync.Traverse(h, func(n mpt.Node, node []byte) bool { if _, ok := added[n.Hash()]; ok { return false } l := len(node) size := l + io.GetVarSize(l) if size > capLeft { return true } resp.Nodes = append(resp.Nodes, node) added[n.Hash()] = struct{}{} capLeft -= size return false }) if err != nil { return fmt.Errorf("failed to traverse MPT starting from %s: %w", h.StringBE(), err) } } if len(resp.Nodes) > 0 { msg := NewMessage(CMDMPTData, &resp) return p.EnqueueP2PMessage(msg) } return nil } func (s *Server) handleMPTDataCmd(p Peer, data *payload.MPTData) error { if !s.config.P2PStateExchangeExtensions { return errors.New("MPTDataCMD was received, but P2PStateExchangeExtensions are disabled") } return s.stateSync.AddMPTNodes(data.Nodes) } // requestMPTNodes requests the specified MPT nodes from the peer or broadcasts // request if no peer is specified. func (s *Server) requestMPTNodes(p Peer, itms []util.Uint256) error { if len(itms) == 0 { return nil } if len(itms) > payload.MaxMPTHashesCount { itms = itms[:payload.MaxMPTHashesCount] } pl := payload.NewMPTInventory(itms) msg := NewMessage(CMDGetMPTData, pl) return p.EnqueueP2PMessage(msg) } // handleGetBlocksCmd processes the getblocks request. func (s *Server) handleGetBlocksCmd(p Peer, gb *payload.GetBlocks) error { count := gb.Count if gb.Count < 0 || gb.Count > payload.MaxHashesCount { count = payload.MaxHashesCount } start, err := s.chain.GetHeader(gb.HashStart) if err != nil { return err } blockHashes := make([]util.Uint256, 0) for i := start.Index + 1; i <= start.Index+uint32(count); i++ { hash := s.chain.GetHeaderHash(i) if hash.Equals(util.Uint256{}) { break } blockHashes = append(blockHashes, hash) } if len(blockHashes) == 0 { return nil } payload := payload.NewInventory(payload.BlockType, blockHashes) msg := NewMessage(CMDInv, payload) return p.EnqueueP2PMessage(msg) } // handleGetBlockByIndexCmd processes the getblockbyindex request. func (s *Server) handleGetBlockByIndexCmd(p Peer, gbd *payload.GetBlockByIndex) error { var reply = io.NewBufBinWriter() count := gbd.Count if gbd.Count < 0 || gbd.Count > payload.MaxHashesCount { count = payload.MaxHashesCount } for i := gbd.IndexStart; i < gbd.IndexStart+uint32(count); i++ { hash := s.chain.GetHeaderHash(i) if hash.Equals(util.Uint256{}) { break } b, err := s.chain.GetBlock(hash) if err != nil { break } err = addMessageToPacket(reply, NewMessage(CMDBlock, b), p.EnqueueP2PPacket) if err != nil { return err } } if reply.Len() == 0 { return nil } return p.EnqueueP2PPacket(reply.Bytes()) } // handleGetHeadersCmd processes the getheaders request. func (s *Server) handleGetHeadersCmd(p Peer, gh *payload.GetBlockByIndex) error { if gh.IndexStart > s.chain.HeaderHeight() { return nil } count := gh.Count if gh.Count < 0 || gh.Count > payload.MaxHeadersAllowed { count = payload.MaxHeadersAllowed } resp := payload.Headers{} resp.Hdrs = make([]*block.Header, 0, count) for i := gh.IndexStart; i < gh.IndexStart+uint32(count); i++ { hash := s.chain.GetHeaderHash(i) if hash.Equals(util.Uint256{}) { break } header, err := s.chain.GetHeader(hash) if err != nil { break } resp.Hdrs = append(resp.Hdrs, header) } if len(resp.Hdrs) == 0 { return nil } msg := NewMessage(CMDHeaders, &resp) return p.EnqueueP2PMessage(msg) } // handleHeadersCmd processes headers payload. func (s *Server) handleHeadersCmd(p Peer, h *payload.Headers) error { return s.stateSync.AddHeaders(h.Hdrs...) } // handleExtensibleCmd processes the received extensible payload. func (s *Server) handleExtensibleCmd(e *payload.Extensible) error { if !s.syncReached.Load() { return nil } ok, err := s.extensiblePool.Add(e) if err != nil { return err } if !ok { // payload is already in cache return nil } s.serviceLock.RLock() handler := s.extensHandlers[e.Category] s.serviceLock.RUnlock() if handler != nil { err = handler(e) if err != nil { return err } } s.advertiseExtensible(e) return nil } func (s *Server) advertiseExtensible(e *payload.Extensible) { msg := NewMessage(CMDInv, payload.NewInventory(payload.ExtensibleType, []util.Uint256{e.Hash()})) if e.Category == payload.ConsensusCategory { // It's high priority because it directly affects consensus process, // even though it's just an inv. s.broadcastHPMessage(msg) } else { s.broadcastMessage(msg) } } // handleTxCmd processes the received transaction. // It never returns an error. func (s *Server) handleTxCmd(tx *transaction.Transaction) error { // It's OK for it to fail for various reasons like tx already existing // in the pool. s.txInLock.Lock() _, ok := s.txInMap[tx.Hash()] if ok || s.mempool.ContainsKey(tx.Hash()) { s.txInLock.Unlock() return nil } s.txInMap[tx.Hash()] = struct{}{} s.txInLock.Unlock() s.txin <- tx return nil } func (s *Server) txHandlerLoop() { txloop: for { select { case tx := <-s.txin: s.serviceLock.RLock() txCallback := s.txCallback s.serviceLock.RUnlock() if txCallback != nil { var cbList = s.txCbList.Load() if cbList != nil { var list = cbList.([]util.Uint256) var i = sort.Search(len(list), func(i int) bool { return list[i].CompareTo(tx.Hash()) >= 0 }) if i < len(list) && list[i].Equals(tx.Hash()) { txCallback(tx) } } } err := s.verifyAndPoolTX(tx) if err == nil { s.broadcastTX(tx, nil) } else { s.log.Debug("tx handler", zap.Error(err), zap.String("hash", tx.Hash().StringLE())) } s.txInLock.Lock() delete(s.txInMap, tx.Hash()) s.txInLock.Unlock() case <-s.quit: break txloop } } drainloop: for { select { case <-s.txin: default: break drainloop } } } // handleP2PNotaryRequestCmd process the received P2PNotaryRequest payload. func (s *Server) handleP2PNotaryRequestCmd(r *payload.P2PNotaryRequest) error { if !s.chain.P2PSigExtensionsEnabled() { return errors.New("P2PNotaryRequestCMD was received, but P2PSignatureExtensions are disabled") } // It's OK for it to fail for various reasons like request already existing // in the pool. err := s.RelayP2PNotaryRequest(r) if err != nil { s.log.Debug("p2p notary request", zap.Error(err), zap.String("hash", r.Hash().StringLE()), zap.String("main", r.MainTransaction.Hash().StringLE())) } return nil } // RelayP2PNotaryRequest adds the given request to the pool and relays. It does not check // P2PSigExtensions enabled. func (s *Server) RelayP2PNotaryRequest(r *payload.P2PNotaryRequest) error { err := s.verifyAndPoolNotaryRequest(r) if err == nil { s.broadcastP2PNotaryRequestPayload(nil, r) } return err } // verifyAndPoolNotaryRequest verifies NotaryRequest payload and adds it to the payload mempool. func (s *Server) verifyAndPoolNotaryRequest(r *payload.P2PNotaryRequest) error { return s.chain.PoolTxWithData(r.FallbackTransaction, r, s.notaryRequestPool, s.notaryFeer, s.verifyNotaryRequest) } // verifyNotaryRequest is a function for state-dependant P2PNotaryRequest payload verification which is executed before ordinary blockchain's verification. func (s *Server) verifyNotaryRequest(_ *transaction.Transaction, data any) error { r := data.(*payload.P2PNotaryRequest) payer := r.FallbackTransaction.Signers[1].Account if _, err := s.chain.VerifyWitness(payer, r, &r.Witness, s.chain.GetMaxVerificationGAS()); err != nil { return fmt.Errorf("bad P2PNotaryRequest payload witness: %w", err) } notaryHash := s.chain.GetNotaryContractScriptHash() if r.FallbackTransaction.Sender() != notaryHash { return fmt.Errorf("P2PNotary contract should be a sender of the fallback transaction, got %s", address.Uint160ToString(r.FallbackTransaction.Sender())) } if r.MainTransaction.Sender() == notaryHash { return errors.New("P2PNotary contract is not allowed to be the sender of the main transaction") } depositExpiration := s.chain.GetNotaryDepositExpiration(payer) if r.FallbackTransaction.ValidUntilBlock >= depositExpiration { return fmt.Errorf("fallback transaction is valid after deposit is unlocked: ValidUntilBlock is %d, deposit lock for %s expires at %d", r.FallbackTransaction.ValidUntilBlock, address.Uint160ToString(payer), depositExpiration) } return nil } func (s *Server) broadcastP2PNotaryRequestPayload(_ *transaction.Transaction, data any) { r := data.(*payload.P2PNotaryRequest) // we can guarantee that cast is successful msg := NewMessage(CMDInv, payload.NewInventory(payload.P2PNotaryRequestType, []util.Uint256{r.FallbackTransaction.Hash()})) s.broadcastMessage(msg) } // handleAddrCmd will process the received addresses. func (s *Server) handleAddrCmd(p Peer, addrs *payload.AddressList) error { if !p.CanProcessAddr() { return errors.New("unexpected addr received") } for _, a := range addrs.Addrs { addr, err := a.GetTCPAddress() if err == nil { s.discovery.BackFill(addr) } } return nil } // handleGetAddrCmd sends to the peer some good addresses that we know of. func (s *Server) handleGetAddrCmd(p Peer) error { addrs := s.discovery.GoodPeers() if len(addrs) > payload.MaxAddrsCount { addrs = addrs[:payload.MaxAddrsCount] } alist := payload.NewAddressList(len(addrs)) ts := time.Now() for i, addr := range addrs { // we know it's a good address, so it can't fail netaddr, _ := net.ResolveTCPAddr("tcp", addr.Address) alist.Addrs[i] = payload.NewAddressAndTime(netaddr, ts, addr.Capabilities) } return p.EnqueueP2PMessage(NewMessage(CMDAddr, alist)) } // requestBlocks sends a CMDGetBlockByIndex message to the peer // to sync up in blocks. A maximum of maxBlockBatch will be // sent at once. There are two things we need to take care of: // 1. If possible, blocks should be fetched in parallel. // height..+500 to one peer, height+500..+1000 to another etc. // 2. Every block must eventually be fetched even if the peer sends no answer. // // Thus, the following algorithm is used: // 1. Block range is divided into chunks of payload.MaxHashesCount. // 2. Send requests for chunk in increasing order. // 3. After all requests have been sent, request random height. func (s *Server) requestBlocks(bq bqueue.Blockqueuer, p Peer) error { pl := getRequestBlocksPayload(p, bq.BlockHeight(), &s.lastRequestedBlock) lq, capLeft := s.bQueue.LastQueued() if capLeft == 0 { // No more blocks will fit into the queue. return nil } if lq >= pl.IndexStart { if capLeft < payload.MaxHashesCount { pl.Count = int16(capLeft) } pl.IndexStart = lq + 1 } return p.EnqueueP2PMessage(NewMessage(CMDGetBlockByIndex, pl)) } func getRequestBlocksPayload(p Peer, currHeight uint32, lastRequestedHeight *atomic.Uint32) *payload.GetBlockByIndex { var peerHeight = p.LastBlockIndex() var needHeight uint32 // lastRequestedBlock can only be increased. for { old := lastRequestedHeight.Load() if old <= currHeight { needHeight = currHeight + 1 if !lastRequestedHeight.CompareAndSwap(old, needHeight) { continue } } else if old < currHeight+(bqueue.CacheSize-payload.MaxHashesCount) { needHeight = currHeight + 1 if peerHeight > old+payload.MaxHashesCount { needHeight = old + payload.MaxHashesCount if !lastRequestedHeight.CompareAndSwap(old, needHeight) { continue } } } else { index := mrand.Intn(bqueue.CacheSize / payload.MaxHashesCount) needHeight = currHeight + 1 + uint32(index*payload.MaxHashesCount) } break } return payload.NewGetBlockByIndex(needHeight, -1) } // handleMessage processes the given message. func (s *Server) handleMessage(peer Peer, msg *Message) error { s.log.Debug("got msg", zap.Stringer("addr", peer.RemoteAddr()), zap.Stringer("type", msg.Command)) start := time.Now() defer func() { addCmdTimeMetric(msg.Command, time.Since(start)) }() if peer.Handshaked() { if inv, ok := msg.Payload.(*payload.Inventory); ok { if !inv.Type.Valid(s.chain.P2PSigExtensionsEnabled()) || len(inv.Hashes) == 0 { return errInvalidInvType } } switch msg.Command { case CMDAddr: addrs := msg.Payload.(*payload.AddressList) return s.handleAddrCmd(peer, addrs) case CMDGetAddr: // it has no payload return s.handleGetAddrCmd(peer) case CMDGetBlocks: gb := msg.Payload.(*payload.GetBlocks) return s.handleGetBlocksCmd(peer, gb) case CMDGetBlockByIndex: gbd := msg.Payload.(*payload.GetBlockByIndex) return s.handleGetBlockByIndexCmd(peer, gbd) case CMDGetData: inv := msg.Payload.(*payload.Inventory) return s.handleGetDataCmd(peer, inv) case CMDGetMPTData: inv := msg.Payload.(*payload.MPTInventory) return s.handleGetMPTDataCmd(peer, inv) case CMDMPTData: inv := msg.Payload.(*payload.MPTData) return s.handleMPTDataCmd(peer, inv) case CMDGetHeaders: gh := msg.Payload.(*payload.GetBlockByIndex) return s.handleGetHeadersCmd(peer, gh) case CMDHeaders: h := msg.Payload.(*payload.Headers) return s.handleHeadersCmd(peer, h) case CMDInv: inventory := msg.Payload.(*payload.Inventory) return s.handleInvCmd(peer, inventory) case CMDMempool: // no payload return s.handleMempoolCmd(peer) case CMDBlock: block := msg.Payload.(*block.Block) return s.handleBlockCmd(peer, block) case CMDExtensible: cp := msg.Payload.(*payload.Extensible) return s.handleExtensibleCmd(cp) case CMDTX: tx := msg.Payload.(*transaction.Transaction) return s.handleTxCmd(tx) case CMDP2PNotaryRequest: r := msg.Payload.(*payload.P2PNotaryRequest) return s.handleP2PNotaryRequestCmd(r) case CMDPing: ping := msg.Payload.(*payload.Ping) return s.handlePing(peer, ping) case CMDPong: pong := msg.Payload.(*payload.Ping) return s.handlePong(peer, pong) case CMDVersion, CMDVerack: return fmt.Errorf("received '%s' after the handshake", msg.Command.String()) } } else { switch msg.Command { case CMDVersion: version := msg.Payload.(*payload.Version) return s.handleVersionCmd(peer, version) case CMDVerack: err := peer.HandleVersionAck() if err != nil { return err } go peer.StartProtocol() default: return fmt.Errorf("received '%s' during handshake", msg.Command.String()) } } return nil } func (s *Server) tryInitStateSync() { if !s.stateSync.IsActive() { s.bSyncQueue.Discard() return } if s.stateSync.IsInitialized() { return } var peersNumber int s.lock.RLock() heights := make([]uint32, 0) for p := range s.peers { if p.Handshaked() { peersNumber++ peerLastBlock := p.LastBlockIndex() i := sort.Search(len(heights), func(i int) bool { return heights[i] >= peerLastBlock }) heights = append(heights, peerLastBlock) if i != len(heights)-1 { copy(heights[i+1:], heights[i:]) heights[i] = peerLastBlock } } } s.lock.RUnlock() if peersNumber >= s.MinPeers && len(heights) > 0 { // choose the height of the median peer as the current chain's height h := heights[len(heights)/2] err := s.stateSync.Init(h) if err != nil { s.log.Fatal("failed to init state sync module", zap.Uint32("evaluated chain's blockHeight", h), zap.Uint32("blockHeight", s.chain.BlockHeight()), zap.Uint32("headerHeight", s.chain.HeaderHeight()), zap.Error(err)) } // module can be inactive after init (i.e. full state is collected and ordinary block processing is needed) if !s.stateSync.IsActive() { s.bSyncQueue.Discard() } } } // BroadcastExtensible add a locally-generated Extensible payload to the pool // and advertises it to peers. func (s *Server) BroadcastExtensible(p *payload.Extensible) { _, err := s.extensiblePool.Add(p) if err != nil { s.log.Error("created payload is not valid", zap.Error(err)) return } s.advertiseExtensible(p) } // RequestTx asks for the given transactions from Server peers using GetData message. func (s *Server) RequestTx(hashes ...util.Uint256) { if len(hashes) == 0 { return } var sorted = make([]util.Uint256, len(hashes)) copy(sorted, hashes) sort.Slice(sorted, func(i, j int) bool { return sorted[i].CompareTo(sorted[j]) < 0 }) s.txCbList.Store(sorted) for i := 0; i <= len(hashes)/payload.MaxHashesCount; i++ { start := i * payload.MaxHashesCount stop := (i + 1) * payload.MaxHashesCount if stop > len(hashes) { stop = len(hashes) } if start == stop { break } msg := NewMessage(CMDGetData, payload.NewInventory(payload.TXType, hashes[start:stop])) // It's high priority because it directly affects consensus process, // even though it's getdata. s.broadcastHPMessage(msg) } } // StopTxFlow makes the server not call previously specified consensus transaction callback. func (s *Server) StopTxFlow() { var hashes []util.Uint256 s.txCbList.Store(hashes) } // iteratePeersWithSendMsg sends the given message to all peers using two functions // passed, one is to send the message and the other is to filtrate peers (the // peer is considered invalid if it returns false). func (s *Server) iteratePeersWithSendMsg(msg *Message, send func(Peer, context.Context, []byte) error, peerOK func(Peer) bool) { var deadN, peerN, sentN int // Get a copy of s.peers to avoid holding a lock while sending. peers := s.getPeers(peerOK) peerN = len(peers) if peerN == 0 { return } pkt, err := msg.Bytes() if err != nil { return } var ( // Optimal number of recipients. enoughN = s.discovery.GetFanOut() replies = make(chan error, peerN) // Cache is there just to make goroutines exit faster. ctx, cancel = context.WithTimeout(context.Background(), s.TimePerBlock/2) ) enoughN = (enoughN*(100-s.BroadcastFactor) + peerN*s.BroadcastFactor) / 100 for _, peer := range peers { go func(p Peer, ctx context.Context, pkt []byte) { // Do this before packet is sent, reader thread can get the reply before this routine wakes up. if msg.Command == CMDGetAddr { p.AddGetAddrSent() } if msg.Command == CMDPing { p.SetPingTimer() } replies <- send(p, ctx, pkt) }(peer, ctx, pkt) } for r := range replies { if r == nil { sentN++ } else { deadN++ } if sentN+deadN == peerN { break } if sentN >= enoughN && ctx.Err() == nil { cancel() } } cancel() close(replies) } // broadcastMessage sends the message to all available peers. func (s *Server) broadcastMessage(msg *Message) { s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, Peer.Handshaked) } // broadcastHPMessage sends the high-priority message to all available peers. func (s *Server) broadcastHPMessage(msg *Message) { s.iteratePeersWithSendMsg(msg, Peer.BroadcastHPPacket, Peer.Handshaked) } // relayBlocksLoop subscribes to new blocks in the ledger and broadcasts them // to the network. Intended to be run as a separate goroutine. func (s *Server) relayBlocksLoop() { ch := make(chan *block.Block, 2) // Some buffering to smooth out possible egressing delays. s.chain.SubscribeForBlocks(ch) mainloop: for { select { case <-s.quit: s.chain.UnsubscribeFromBlocks(ch) break mainloop case b := <-ch: msg := NewMessage(CMDInv, payload.NewInventory(payload.BlockType, []util.Uint256{b.Hash()})) // Filter out nodes that are more current (avoid spamming the network // during initial sync). s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, func(p Peer) bool { return p.Handshaked() && p.LastBlockIndex() < b.Index }) s.extensiblePool.RemoveStale(b.Index) } } drainBlocksLoop: for { select { case <-ch: default: break drainBlocksLoop } } close(ch) close(s.relayFin) } // verifyAndPoolTX verifies the TX and adds it to the local mempool. func (s *Server) verifyAndPoolTX(t *transaction.Transaction) error { return s.chain.PoolTx(t) } // RelayTxn a new transaction to the local node and the connected peers. // Reference: the method OnRelay in C#: https://github.com/neo-project/neo/blob/master/neo/Network/P2P/LocalNode.cs#L159 func (s *Server) RelayTxn(t *transaction.Transaction) error { err := s.verifyAndPoolTX(t) if err == nil { s.broadcastTX(t, nil) } return err } // broadcastTX broadcasts an inventory message about new transaction. func (s *Server) broadcastTX(t *transaction.Transaction, _ any) { select { case s.transactions <- t: case <-s.quit: } } func (s *Server) broadcastTxHashes(hs []util.Uint256) { msg := NewMessage(CMDInv, payload.NewInventory(payload.TXType, hs)) // We need to filter out non-relaying nodes, so plain broadcast // functions don't fit here. s.iteratePeersWithSendMsg(msg, Peer.BroadcastPacket, Peer.IsFullNode) } // initStaleMemPools initializes mempools for stale tx/payload processing. func (s *Server) initStaleMemPools() { threshold := 5 // Not perfect, can change over time, but should be sufficient. numOfCNs := s.config.GetNumOfCNs(s.chain.BlockHeight()) if numOfCNs*2 > threshold { threshold = numOfCNs * 2 } s.mempool.SetResendThreshold(uint32(threshold), s.broadcastTX) if s.chain.P2PSigExtensionsEnabled() { s.notaryRequestPool.SetResendThreshold(uint32(threshold), s.broadcastP2PNotaryRequestPayload) } } // broadcastTxLoop is a loop for batching and sending // transactions hashes in an INV payload. func (s *Server) broadcastTxLoop() { const ( batchTime = time.Millisecond * 50 batchSize = 42 ) txs := make([]util.Uint256, 0, batchSize) var timer *time.Timer timerCh := func() <-chan time.Time { if timer == nil { return nil } return timer.C } broadcast := func() { s.broadcastTxHashes(txs) txs = txs[:0] if timer != nil { timer.Stop() } } for { select { case <-s.quit: loop: for { select { case <-s.transactions: default: break loop } } return case <-timerCh(): if len(txs) > 0 { broadcast() } case tx := <-s.transactions: if len(txs) == 0 { timer = time.NewTimer(batchTime) } txs = append(txs, tx.Hash()) if len(txs) == batchSize { broadcast() } } } } // Port returns a server port that should be used in P2P version exchange with the // peer connected on the given localAddr. In case if announced node port is set // in the server.Config for the given bind address, the announced node port will // be returned (e.g. consider the node running behind NAT). If `AnnouncedPort` // isn't set, the port returned may still differ from that of server.Config. If // no localAddr is given, then the first available port will be returned. func (s *Server) Port(localAddr net.Addr) (uint16, error) { var connIP string if localAddr != nil { connIP, _, _ = net.SplitHostPort(localAddr.String()) // Ignore error and provide info if possible. } var defaultPort *uint16 for i, tr := range s.transports { listenIP, listenPort := tr.HostPort() if listenIP == "::" || listenIP == "" || localAddr == nil || connIP == "" || connIP == listenIP { var res uint16 if s.ServerConfig.Addresses[i].AnnouncedPort != 0 { res = s.ServerConfig.Addresses[i].AnnouncedPort } else { p, err := strconv.ParseUint(listenPort, 10, 16) if err != nil { return 0, fmt.Errorf("failed to parse bind port from '%s': %w", listenPort, err) } res = uint16(p) } if localAddr == nil || // no local address is specified => take the first port available (listenIP != "::" && listenIP != "") { // direct match is always preferable return res, nil } defaultPort = &res } } if defaultPort != nil { return *defaultPort, nil } return 0, fmt.Errorf("bind address for connection '%s' is not registered", localAddr.String()) } // optimalNumOfThreads returns the optimal number of processing threads to create // for transaction processing. func optimalNumOfThreads() int { // Doing more won't help, mempool is still a contention point. const maxThreads = 16 var threads = runtime.GOMAXPROCS(0) if threads > runtime.NumCPU() { threads = runtime.NumCPU() } if threads > maxThreads { threads = maxThreads } return threads }